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Abstract

Details and results of a combined moving-horizon fault detection/isolation and parameter
estimation technique will be presented. Parameters are treated as disturbances that a�ect
the plant model. The estimation technique performs a 1-norm minimization of plant model
measurement mismatch over a �nite horizon by adjusting parameter values over the same
horizon. To implement process knowledge, this minimization is constrained such that only S
di�erent faults (parameters) may change during a speci�c horizon window. Model estimates
and parameter values for the entire horizon window are calculated at each iteration. Multiple
linear models are used to capture nonlinear process characteristics such as asymmetric response,
changing dynamics and varied gains.

1 Introduction

Modern advanced control and optimization methods increasingly require detailed informa-
tion about the target system. Parameter estimation techniques can provide a portion of this
needed information. However, linear estimation techniques can become inadequate in cases
involving nonlinear systems. On the other hand, nonlinear estimation techniques can quickly
become intractable for problems of moderate size. Realistic systems may have many unmea-
sured parameter variations (unmeasured disturbances) which can and should be estimated
for use in control strategies. Such unmeasured disturbances can include system faults. A
fault may not be a catastrophic event, but rather a change in the system that adversely limits
or modi�es the system properties. A method for detecting faults and estimating parameter
values is desirable.

This paper presents a method for obtaining parameter estimates, given process measure-
ments and adequate system models. This new method uses a multiple linear models and
Mixed Integer Linear Programming (MILP) to formulate and solve a Moving Horizon (MH)
optimization problem. A Continuous Stirred Tank Reactor (CSTR) case study is presented,
along with results.

1.1 Related Approaches

There are many di�erent methods for attempting fault diagnosis, parameter estimation, and
nonlinear modeling. Presented is a partial listing of some relevant work.

Fault detection and isolation has become an important topic for chemical engineers at-
tempting to minimize process down time and industrial accidents. Rule-based diagnosis and
root cause analysis has been presented in numerous sources [5]. A method for diagnosis
based on digraph representations has also had some success [11][7]. Many fault detection
and isolation methods are adequate for dealing with faults on a qualitative level, but in many
cases one desires a more useful estimate of the current system state.
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Parameter estimation can be treated as a state estimation problem. Kalman �ltering has
been used extensively to solve linear estimation problems. Nonlinear estimation techniques
have also been applied. The Extended Kalman Filter (EKF) has met with much success
[12][15]. Moving horizon methods can produce results similar to those of Kalman Filtering.
An overview of nonlinear estimation is found in [10]. One should also consider the similarity
of moving horizon estimation methods to moving horizon optimal control methods (such as
MPC Control and QDMC).

Multiple model approaches hold great interest and promise because of the ability to
represent a complex nonlinear system using established and tractable techniques. Typically,
the complex nonlinear system is partitioned into regions where a local model is assumed
to accurately represent the system. Many di�erent methods for partitioning model spaces
and switching between models have been proposed. See [9] for general discussion of multiple
models. Fuzzy logic model selection [13] and Gaussian model selection [8] have both been
used as multiple model methodologies. A multiple model moving horizon approach was
proposed in [2]. A multiple model approximation has been applied to fault diagnosis in [1].

Fault diagnosis usually infers the use of qualitative rules. Parameter estimation can
be treated as a moving horizon optimization problem. The combination of estimation and
diagnosis results in a problem that can be formulated and solved using Mixed Integer (MI)
optimization methods. A Mixed Integer Quadratic Programming (MIQP) formulation has
been proposed in [14] and [3]. This type of formulation expresses qualitative rules about a
system as constraints involving integer variables. Previous work has demonstrated the the
usefulness of the method on small scale linear systems.

1.2 Proposed Approach Advantages and Limitations

The proposed method uses a Mixed Integer Linear Programming (MILP) formulation. This
formulation minimizes either the total or maximum absolute error between the system mea-
surements and the model predictions. Many estimation techniques use a Quadratic Problem
formulation which minimizes the 2-norm of the measurement-model error. The LP formu-
lation allows for real-time solution of realistic problems, while still giving accurate results.
The multiple model formulation empowersthe estimation method with the ability to rep-
resent typical system nonlinearities, such as asymmetric response, changing system gains,
and variable system dynamics. This results in improved parameter estimates over linear
methods. A principle drawvback of the multiple model approach is that it requires accurate
system models and increases the size of the optimization problem.
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2 Methodology

This section will describe how to set up and solve the horizon based estimation problem.

2.1 Formulation

The current formulation solves the problem:

min
i = k � h::k

jjm1(y(i)� by(i))jj1 + jjm2��(i)jj1

where k is the current time, yi is the process measurement vector at time i, by(i) is the vector
of process model estimates at time i, m1 is a scaling vector for weighting or normalizing
the measurements, m2 is a scaling vector for weighting and normalizing the change in the
parameter estimate, h is the length of the moving horizon, �i is the vector of parameter
estimate at time i, and ��i is given by:

��(i) = �(i)��(i� 1)

�i�h is the value of the parameter estimate �i�h+1 from the previous horizon window. An
impulse response formulation is used to calculate the response of the process model estimate,
by(i) to changes in the system parameters, �. An individual system parameter (or fault) may
be described at time i as �j(i). This individual parameter estimate is the sum of the
contributions from each model for that parameter:

�j(i) = �j;1(i) + :::+ �j;n(i)

where n models are used for a certain parameter variation. Mixing coe�cients are not used
to select models based on operating regime. The models are selected to best �t the available
data, given the existing constraints. The impulse response formulation for by(i) is:

by(i) =
FX
j=1

Mj;1�j;1(i) + :::+Mj;n�j;n(i)

where Mj;n are the impulse response coe�cients for model Mj;n. F is the total number of
disturbances modeled in the formulation. The index j represents the number of possible
faults (or disturbances). The index n represents the number of models used for a single fault
or disturbance.

In order to handle asymmetric response to a parameter change, at least two models are
used. The values for all �j;n(i) (and therefore all �j(i)) are constrained to be positive values,
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� 0. This means that for negative changes of a parameter, the formulation actually uses the
negative of the impulse response matrix. This type of formulation assume that large positive
and negative parameter changes do not occur in a parameter over a single window length.

The formulation to this point only includes continuous variables and few constraints.
Solving this formulation without additional constraints typically yields an underspeci�ed
problem that matches the measurement values with the estimated measurement values ex-
actly. At this point, one may make the assumption that only a limited number of disturbances
can a�ect the system during a single horizon. This leads one to use binary decision vari-
ables to represent whether or not a fault has occurred in the current horizon window. The
following constraints are added:

�j;1(i) + ::: + �j;n(i) � Mfj 8i; 8j

FX
j=1

fj � S

for all fault parameters j, fault models 1:::n, and all horizon indices (times) i. The value M
is a large number that ensures whenever �j;n(i) is nonzero, fj switches from 0 to 1. S is the
total number of faults that can occur in a horizon window. In the presented results, response
to positive and negative changes in a parameter are treated as separate fault events.

The size of the basic problem can now be calculated. Assuming that there are N models
for each fault, the horizon length is h, and there are O system outputs, in the one-norm case,
the total number of variables is:

F + hFN + hO + hF

where F is the number of binary fault variables, hFN are the number of variables for the
parameter values �j;n; hO are the number of variables used to calculate the one-norm of the
measurement-model error, and hF is then number of variable used to calculate the one-norm
of the change in parameters over the horizon.

2.2 Solution Method

Solving a large scale MILP problem can be computationally intensive. The use of multiple
models only makes the problem larger. For a moderately sized problem, there may be
thousands of variables to solve. Even with increased computational power, the task seems
impossible in real time. Making modi�cations to the MILP solution strategy allows one to
make dramatic speed increases in the solution time.
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In general, when S = 1 (the one fault case), the solution for this formulation is trivial.
There are only F possible combinations of integer variables available. One may directly
solve the large LP formulation using an MILP, but having the knowledge that there are only
F possible cases allows one to �nd a more direct solution. In each possible case, only the
variable for the given fault are nonzero; the variable for all the other faults are constrained
to zero. Setting up and solving F di�erent LP problems for a single fault is computationally
trivial. The LP problem with the minimal objective function will be the overall MILP
solution.

In the multiple fault case this becomes less trivial. There are many combinations of faults
to explore and enumeration quickly becomes impossible. S standard MILP solution method
will evaluate a large LP problem at each node in the branch and bound tree. Intelligently
using branch and bound can serve to speed the computational process.

The proposed solution method is outlined as follows-

� Solve small single fault problem for each fault

� Order the best objective function �ts from the F possible solutions

� Evaluate MILP by modi�ed branch and bound:

� reduce problem when possible

� skip nodes if applicable

� enumerate cases if useful

The MILP can start at a node other than the root node, root node being the total LP
relaxation. For example, in a 2 fault case (S = 2), assume that solving the single fault
problem for each possible fault results in the f1 having the best �t, f2 having the next
best, and so on to fF . This requires F solutions to small (size 1) problems. Now add the
constraints that f1 = 1 and f2 = 1. If f1 = 1 and f2 = 1 all other faults are constrained
to 0 in the

P
fi � S = 2 example. Therefore one may solve this node as a moderately

small problem (size 2). The objective function of this solution becomes the new best integer
solution for the problem, which is also an upper bound on the overall MILP problem. The
entire enumeration of possible integer solutions with f1 = 1 numbers only F . These cases
can all be quickly evaluated as moderately small problems. The best solution of these cases
now becomes the best integer solution. Using the branch and bound technique, the node
corresponding to f1 = 0, all other fi unconstrained must be evaluated. If the objective
function of this node is larger than the integer bound, the solution procedure can stop with
the current best integer solution as optimal. The solution of this node is a large LP problem,
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Figure 1: Modi�ed branch and bound example for S=20

taking much longer than the smaller problems. The solution LP solution at this node can
be warm started with a feasible starting point using the results from the original F small
optimization problems of size 1. If the value of the objective function at this node is less
than the optimal integer solution, the true optimal solution must lie in the f1 = 0 branch.
There are now F �1 possible integer solution size 2 problems with the constraints f1 = 0 and
f2 = 1. These moderately small problems can be quickly enumerated. A new best integer
solution may be found. The node with constraints f1 = 0, f2 = 0, all other fi unconstrained
must be solved. Again this node is a large LP problem, taking much longer than the smaller
problems. The solution LP solution at this node can also be warm started with a feasible
starting point using the results from the original F small optimization problems of size 1. If
the value of the objective function at this node is greater than the optimal integer solution,
the true optimal integer solution has already been found.

The procedure can be repeated as need until a valid optimal integer solution is found.
Ultimately, this may in some cases require that all possible fault combination be evaluated.
It is expected that these cases will be rare in practice. This modi�ed solution method
intelligently modi�es the MILP solution engine such that large scale problems need not be
evaluated. By solving smaller problems corresponding to single fault cases and exploiting
the known constraints of the problem, a good integer solution can be found early in the

7



computation. By exploiting the structure of the problem, the LP nodes for computation can
be decreased in problem size, greatly increasing computational e�ciency.

2.3 Formulation Issues

For illustration purposes, consider the following simple example with the forcing fuction d

representing an exogenous disturbance:

dx

dt
= �x� (d� 1)2; xo = �1

y = x+ 1

It is desirable to develop models the system using step tests. The response to disurbance
steps at time 0 from d = 0 to d = 1 and d = 0 to d = 1:8 is given by:

t y;�d = 1 y;�d = 1:8
0 0 0
1 0.63 0.23
2 0.86 0.31
3 0.95 0.34
4 0.98 0.35
55 0.99 0.36
6 1 0.36

This system has input multiplicities. The steady state locus is given in Figure 2. The
dynamic character of the response to step changes are identical, no mater the input level.
The steady state gain for the system is higher for the lower level input than for the high level
input. Using these two models in the current estimation formulation will result in biased
parameter estimates. The scaled impulse response coe�cients are:

t M1 M2

0 0 0
1 0.63 0.13
2 0.23 0.05
3 0.09 0.02
4 0.03 0.01
55 0.01 0
6 0.00 0
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Figure 2: Steadystate locus for example

Now assume that a disturbance hits the real system. The response of the system to a
step change from 0 to 1.9 is:

t y;�d = 1:9
0 0
1 0.32
2 0.44
3 0.48
4 0.50
55 0.51
6 0.51

The best �t for this measurement data (assuming that �(0) = 0) would be to use only
the �rst model to �t the data. The resulting parameter estimate would be 0.51 for the entire
horizon length.

This example shows that biased estimates are possible in some cases. If the local models
accurately capture dynamic di�erences, the parameter estimates can be much more accurate.

In another case, assume that only one model is used for a single fault. Then the impulse
response for a single output system is:

y =M1�1 +M2�2 + :::MF�F

In some cases, the output response to a parameter change may also be formed from the
combination of other faults. This means that a nonzero vector x can be found such that for
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a given disturbance model Mi,

Mi = [M1 ::: Mj ::: MF ]x; j 6= i

This can be true when the constraint for maximum number of faults is not used in the
estimation formulation (S = F ). In this case, when allowing output biases as faults, any
disturbance response could be created by the linear combination of the output biases. In
e�ect this system is unobservable. Depending on the weighting matrices m1and m2, either
the actual disturbance or a linear combination of the output bias models or a combination
of both will be given as the parameter estimate. Setting S to a value close to 1 rather than
F allows the optimization to correctly identify the disturbance.

2.4 Degenerate Solution Test

In some cases, the measured response to a fault may resemble the response of another fault
or combination of faults. It is useful to know which faults are distinguishable from other
faults or fault sets. If one assumes that all measurements may potentially be biased, the
measurement response to a fault may be represented as either a change in the fault parameter
or a combination of changes in the measurement biases.

In the current formulation, parameters are assumed to remain constant over the horizon.
Only S di�erent parameters may change over an optimization window, and these parameters
are constrained to be positive values. In this way, asymmetric response can be captured in
the linear models. The traditional methods of checking the rank of the observability matrix
fail in these conditions because the parameters are limited to positive values. A method for
�nding degenerate fault sets is desirable.

First, assume that Mi is the impulse response matrix model for fault i. In the entire
system there may be F total faults, Mi 2 [M1:::MF ]. Given a set of N models, we wish to
�nd out which models in the set M1:::MF may be used to represent thesubset N models,
Mi; i 2 N . For notational convenience, we de�ne the subset in question as the �rst N models
of the total set, [M1:::MN ] of [M1:::MF ]. De�ning an integer variable fi which represents the
boolean value of whether or not a model set is required to represent the subset, the MILP
problem can be formulated as:

min
[x;y]

FX
i=1

fi

subject to:
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[M1:::MN ]x� [M1:::MN :::MF ][y1:::yN :::yF ]
T = 0P

yi � V fi � 0; 8iP
x � BPN

i=1 fi � N � 1

0 � x � U

0 � y � U

fi 2 [0; 1]

where the vectors x and yi are used to �nd any set of parameters that will produce similar
output values across the horizon. The �rst constraint is used to force x and y to use the
models to �nd an equivalent output value across the horizon. The second constraint (with V
any suitable large value) forces fi to become 1 when any element of yi is nonzero. The third
constraint forces the elements of x to be nonzero. The fourth constraint forces the set of yi
found to represent the subset to not be the subset itself. The last three constrints ensure
that the elements of x and y are constrained to be positive numbers and all fi are binary.

The result of this problem is the minimal set of faults (set i 2 J) that could possibly be
used in an optimization problem to represent the given subset of models. The problem can
be re-solved with the additional constraint:

X
fi � J � 1

The new problem �nds the minimal set of faults to represent the subset of models that
is not the original set or the new found set. This iterative procedure can be used to �nd all
of the potential degenerate model sets for a set of models by solving the MILP and adding
the new constraint, and then resolving. Eventually, too many constraints will be added and
no new set of degenerate models can be found.

Due to the total number of fault constraints and weightings in the moving horizon for-
mulation, this does not mean that the degenerate sets are likely to occur when used in the
moving horizon optimization process.

3 Case Study

A description of the Van Der Vusse CSTR model may be found in [4] or [6]. This model
simulates a �rst-order reaction for A ) B with two competing reactions B ) C and
2A) D.
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k1o = 1:287 � 1012h�1 �HRBD = �41:85 kJ
mol A

k2o = 1:287 � 1012h�1 � = 0:9342 � 10�4 kJ
l

k3o = 1:287 � 1012h�1 CP = 3:01 kJ
kgK

E1 = �9758:3K CPK = 2:0 kJ
kgK

E2 = �9758:3K kw = 4032 kJ
hm2K

E3 = �8560K AR = 0:215m2

�HRAB = 4:2 kJ
mol A

mk = 5:0 kg
�HRBC = �11 kJ

mol A
VR = 0:1m3

Table 1: Model parameters

dCA

dt
=

_V

VR
(CAO � CA)� k1(�)CA � k3(�)C

2
A

dCB

dt
= �

_V

VR
CB + k1(�)CA � k2(�)CB

d�

dt
=

_V

VR
(�O � �)�

(k1(�)CA�HRAB + k2(�)CB�HRBC + k3(�)C
2
A�HRAD)

�Cp

+
kwAR

�CpVR
(� � �K)

d�K

dt
=

1

mKCPK

�
_QK + kwAR (� � �K)

�

ki = kioe
( Ei

�+273:15 )

_Qk = FKCPK(�ko � �k)

All reaction models use temperature dependent Arrhenius reaction rates. The model has
four states: concentration of A, concentration of B, reactor temperature, and cooling jacket
temperature. With this process, it is desirable to produce as much product B as possible.
This system exhibits many highly nonlinear characteristics which include: input multiplicity,
gain sign change, asymmetric response, and minimum to nonminimum phase behavior. These
nonlinear characteristics are very prevalent at the most desirable operating point. See Figure
3 for a comparison of dynamic response to a step change in the feed �ow rate. From this
�gure, you can see that inverse response is observed for changing to a low �ow rate and not
observed for changes to higher �ow rates. As seen from the process values at steady state,
the process gain changes from positive to negative causing input multiplicity. The optimal
operating point is at the convergence of changing gains and inverse to non-inverse response.

The process model equations, parameters, and operating conditions may be found in
Appendix A. All simulation results were performed using MATLAB 5.1.
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Figure 3: Response of model to step changes at time 0, initial feed �ow = 14.9

4 Results

Results are presented using the Van Der Vusse case study. It is assumed that the four states
of the CSTR are directly measureable. An initial steady state point was selected near the
process optima. Step response models were developed for ten di�erent parameter variations.
The step response models were evaluated for �5% and �25% for a total of 20 di�erent
models. A moving horizon window of size 25 was chosen to account for system dynamics.

The systems accruately distinguishes between parameters in the single fault case (S =

1). All twenty faults can be distinguished and accurately estimated. Given a change in

a parameter the, estimation method can estimate the parameter value very closely. For

example take the set of measurements in Figure 8. These measurements are taken from the

Van Der Vuse reactor model after a 10% increase in the feed �owrate at time = 5 minutes.

In Figure 5 the results for estimating this 10% increase in the feed �ow are shown. The

10% increase hit the system 20 minutes before this estimation snapshot was computed. The

two models used to estimate the total parameter are shown. As one can see in Figure 5,

both the 5% model and the 25% model are used when estimating a 10% disturbance. The
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Table 2: Potential faults for CSTR case study

f2 increase in feed �ow rate f2 decrease in feed �ow rate
f3 increase in coolant �ow rate f4 decrease in coolant �ow rate
f5 increase in feed temperature f6 decrease in feed temperature
f7 increase in coolant temperature f8 decrease in coolant temperature
f9 increase in feed concnetration f10 decrease in feed concentration
f11 increase in jacket heat transfer coe�cient f12 decrease in jacket heat transfer coe�cient
f13 increase in Ca measurement bias f14 decrease in Ca measurement bias
f15 increase in Cb measurement bias f16 decrease in Cb measurement bias
f17 increase in � measurement bias f18 decrease in � measurement bias
f19 increase in �k measurement bias f20 decrease in �k measurement bias
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Figure 4: Measurements for 10% increase in feed �ow at time = 5
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Figure 5: Estimates using multiple models

two model estimates can be summed directly because the models were normalized before

the optimization took place. In Figure 6 the estimation results for using single models are

shown. As can be seen, the estimates are not as accurate as the multiple model case. The

correct fault is distinguished from the others, but the estimates are slightly o� when not

using the multiple linear models.

The evolution of a fault over time is also of interest. This estimation method estimates
the value of the parameters over the entire horizon, not just the current estimate or the
initial value estimate. In Figure 7 the actual input values over the estimation horizon for
di�erent times are shown. As time marches forward, new measurements are available and
the estimation process is accomplished again.

In Figure 8 the estimates over the moving horizon for di�erent times are displayed. In
After the fault is fully evolved, the amount of error in the estimate becomes larger. At this
point, the change in the measurements is becoming negligible, so any model error can lead
to increased estimation error.

The estimation method works well in multiple fault scenarios as well. In the following
example, the input feed �ow rate is decreased by 20% at time t�25 and the feed concentration
is decreased by 10% at time t� 15. The output measurements for this parameter change are
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Figure 6: Estimates using single models
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Figure 8: Horizon parameter estimates for 10% increase in feed �ow

given in Figure 9. The overall parameter estimates for time t = 25 are shown in Figure 10.
Here, the parameter estimates accurately picked the correct faults from the group of 20 and
also accurately estimated the parameter values.

4.0.1 Potential other results:

1. S=F case, no int, uses all faults to perfectly �t data (can do now)

2. Accurate in detecting correctly all faults (can do now) Graph? 20 plots of estimates
for all 20 faults?

3. Accurate in estimating ramped fault level (can do now)

4. Accurate in presence of signi�cant noise (can do now)

5 Conclusions

In this paper, we have developed and used a moving horizon method for detecting and
estimating parameter changes. Using a moving horizon allows the use of a �nite amount
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Figure 9: Measurements for dual fault case, -20% input feed �ow step at t-25 and -10% feed
concentration step at t-15

of data in the optimization problem. This method makes use of multiple linear models to
capture the true behavior of the actual nonlinear system. The problem can be formulated
as a MILP with an integer constraint on the total number of changing parameters over the
horizon.

There are limitations to this method, some of which have been espoused in this article.
Using multiple linear models can lead to biased estimates in some cases. This will not al-
ways occur, but can be seen in some mathematical examples. The results from one problem
produce a potential fault set. This set may not be the only set of faults that can accu-
rately portray the existing data. This means that multiple model output values may exist.
Due to optimization weights and a single optimal solution, it should be rare but possible
to �nd di�erent sets of faults yielding the same or similar horizon based estimation results.
Computationally, solving a large scale MILP can be tedious. For multiple fault cases, enu-
merating all possible cases is typically a poor solution. An improved MILP solution method
is proposed that can exploit the problem structure and existing information.

In the future, even larger problems may be explored. In the propoesd method, separate
models for positive and negative parameter shifts as well as small and large parameter shifts
were used. Use of traditional linear models can allow for solution of larger scale problems
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Estimates for −20% change in input flow at t−25 and −10% fl ow at t−15

t−20 t−10 t
−12

−10

−8

−6

−4

−2

0

C
ha

ng
e 

in
 in

pu
t f

ee
d 

co
nc

en
tr

at
io

n,
 %

Figure 10: Estimates for dual fault case -20% input feed �ow step at t-25 and -10% feed
concentration step at t-15

(at least 4x), but the system estimates should be less accurate. This may be a valid tradeo�
in systems where only linear models are available.
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