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Abstract

An integrated fault detection, fault isolation, and parameter estimation technique is presented in this

paper. Process model parameters are treated as disturbances that dynamically affect the process outputs.

A moving horizon estimation technique minimizes the error between process and model measurements

over a finite horizon by calculating model parameter values across the estimation horizon. To implement
qualitative process knowledge, this minimization is constrained such that only a limited number of

different faults (parameters) may change during a specific horizon window. Multiple linear models are

used to capture nonlinear process characteristics such as asymmetric response, variable dynamics, and

changing gains. Problems of solution multiplicity and computational time are addressed. Results from

a nonlinear chemical reactor simulation are presented.
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1 Introduction

Fault detection is a critical problem for the chemical process industries. In order to ensure both
safe operations and quality production, process faults must be detected and isolated. If a fault is
considered as a continuous disturbance that disrupts a process, the extent of the disturbance should
be estimated in order for corrective actions to be taken. Using model-based approaches, parameter
estimation techniques can provide accurate estimates for the disturbance levels of a process. Linear
estimation techniques can prove inadequate in cases involving nonlinear systems. On the other
hand, nonlinear estimation techniques can quickly become intractable for problems of moderate
size. Industrial systems typically have many unmeasured disturbances which can and should be
estimated for use in control strategies. Excessive change in an unmeasured disturbance can be
considered a system fault. Such faults may not be a catastrophic process event, but rather a change
in the system that adversely affects the system properties. A method for quickly and accurately
detecting faults and estimating parameter values is desirable to keep processes running safely and
on-target. The integrated problem of fault detection, isolation, and estimation for nonlinear systems
incorporates concepts from the fields of fault diagnosis, state estimation, and nonlinear modeling.
Fault detection and isolation has become an important topic for chemical engineers attempting
to minimize process down time and prevent industrial accidents. A typical approach for fault
detection and diagnosis is to compare the process model outputs and actual process values [1, 32,
33]. Such residual methods for isolation can be accomplished by different types of analysis. The
various methods include: threshold tests, fuzzy logic, neural networks, and others [14]. A similar
method for detection and isolation of process faults is Principal Component Analysis (PCA). PCA

methods typically use a low-order multi-dimensional steady state representation of a process for



generation and analysis of residuals [9, 10, 27]. Quantitative rule-based diagnosis and root cause
analysis methods have been presented in numerous sources. A successful method for diagnosis
is based on digraph representations of qualitative process variable states and their interactions
[15, 21]. This method is effectively an efficient method for generating knowledge about a system

in the form of expert rules. A more general approach for diagnosis and analysis is the use of a
generic rule structure for representation of qualitative process knowledge [8]. Essentially, fault
detection methods all use some type of process model and reasoning method for detection and
isolation. This is effective for fault detection and isolation on a qualitative level, but in many cases

it is desirable to calculate an estimate of the current system state.

If a process fault is treated as a time-dependent continuous parameter, the resulting problem
can be considered a traditional state estimation problem. One favored state estimation approach,
Kalman filtering, has been used extensively to solve linear estimation problems. Nonlinear estima-
tion techniques have also found application (for an overview, see [20]). In particular, the Extended
Kalman Filter (EKF) has been used extensively for nonlinear estimation [6, 5, 24, 30] and is based
on higher order approximations of a nonlinear state space process model. Moving horizon estima-
tion methods can produce results similar to those of Kalman filtering. Moving horizon methods
solve an on-line optimization problem at every sampling time using a finite set of process data and a
model of the system [3, 12, 22, 23, 26, 31]. The advantage of moving horizon methods is the ability
to include various types of constraints in the optimization problem. One should keep in mind the
similarity of moving horizon estimation methods to moving horizon optimal control methods such
as MPC and DMC. Both the control and the estimation problems use receding horizon approaches
and solve an optimization problem at each sampling time.

In many situations, a nonlinear state space process model may not be available or convenient for



use. Multiple model approaches hold great promise for nonlinear systems because of the ability to
represent a complex nonlinear process using established and tractable linear techniques. In typical
multiple model applications, the complex nonlinear system is partitioned into regions where local
models are assumed to accurately represent the system. Many different methods for partitioning
model spaces and switching between models have been proposed (see [19] for a general discussion
of multiple models). Fuzzy logic model selection [17, 25] and Gaussian model selection [2, 13, 16]
have both been used, and a multiple model moving horizon approach was proposed in [3]. A
multiple model approximation has been applied to fault diagnosis in [1]. These different methods
all assume that the behavior will be qualitatively similar to the local approximations of the real
nonlinear system.

Fault diagnosis usually implies that qualitative rules expressing knowledge about a process are
used for diagnosing a root cause. The state estimation problem can be treated as a moving horizon
optimization problem. In this work, we combine the goals of estimation and diagnosis, resulting
in a problem that can be formulated and solved using Mixed Integer (MI) optimization methods.
Related work on Mixed Integer Quadratic Programming (MIQP) approaches to process control
and fault diagnosis have recently appeared [4, 18, 28, 29]. This type of formulation expresses
qualitative rules about a system as constraints involving integer variables. The previous work has
demonstrated the usefulness of the method on small scale linear systems using a quadratic objective

function.



2 Estimation Methodology

The proposed method generates parameter estimates for a process, given process measurements
and system models. The method uses multiple linear models to approximate the actual values of
the true nonlinear system. At each sampling time, an optimization problem is solved to minimize
the error between the past process measurements and the process model for a horizon of limited
size. The optimization problem is solved at each sampling time using this limited set of process
measurements and past information from process estimates. This problem can become computa-
tionally demanding. As a result, efficient solution strategies must be used.

The proposed estimation method uses a Mixed Integer Linear Programming (MILP) formula-
tion. Boolean variables taking the valQeor 1 are used to express the absence or presence of a
fault, respectively. Using a Linear Programming (LP) formulation creates an optimization problem
that minimizes either the total absolute error or maximum absolute error between the system mea-
surements and the model predictions. Other estimation techniques use a Quadratic Problem (QP)
formulation that minimizes the 2-norm of the measurement-model error. Solving the less compu-
tationally demanding LP formulation proposed in the present work allows for real-time solution of
complex problems, while still yielding accurate results.

The proposed method also makes use of multiple linear models. The multiple model formu-
lation empowers the estimation method with the ability to represent system nonlinearities, such
as asymmetric response, changing system gains, and variable system dynamics. This results in
improved parameter estimates as compared to the use of single linear methods. The principle
drawbacks of the multiple model approach are the need for multiple accurate system models and

the increased number of decision variable in the optimization problem. The following sections



detail the formulation and solution of the horizon-based estimation problem.

2.1 Formulation

Assume that there is an impulse-response model of the process output behavior as a function of the
given disturbances. Lgtbe the estimated model output response to the disturb&hcEse actual
process measurement residuals are given aghe vectorg, andy are composed of the vectors

for each of the individual outputg, andy,. The indexo takes values from to n,, n, being the

total number of system outputs. The disturbance veetm developed from the concatenation of

the individual vectors for separate disturbanégs, The current formulation solves the following

optimization problem for the vector of disturbances

k
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fi e {01} (8)

Equation 1 details the objective function for this problem. In this equatios the current time,

y(1) is the actual process measurement vector at tinggi) is the vector of process model es-
timates at time, @ is a diagonal scaling matrix for weighting or normalizing the measurement
error, R is a diagonal scaling matrix for weighting and normalizing the change in the parameter
estimates/ is the length of the moving estimation horizon, &) is the total parameter esti-

mate for disturbancg at timei. The valueA©(7) is the change in a parameter from one time step

to another defined in Equation 2. In Equatiore2j — H) is the value of the parameter estimate

©(k — H + 1) from the previous horizon window optimization result. For model representation,

an impulse response formulation is used to describe the response of the process model estimate,
y(i), to changes in the system parametés,An individual system parameter (or fault) may be
described at timéasO; (i) wherej is the index describing distinct faults. In the formulation, there
may be multiple models for a single model parameter to model output pairing. The individual
parameter estimate is the sum of the contributions from each model for that parameter, as stated
in Equation 3. Herey; models are used for a given parameter variation. Mixing coefficients are
not used to select models based on operating regime. Mixing coefficients would result in a mixed
integer nonlinear programming problem. Instead, models are selected to best fit the available data
during the optimization, given the constraints. Assume that there apgocess measurements

or model outputs available. The resulting impulse response formulation for a single model out-
put g, is shown in Equation 4, wher#&/,, ; ,, are the impulse response coefficients for the model
corresponding to output, parametey, and modek for that parameterF is the total number of

disturbances modeled in the formulation. The indeepresents the index of the possible faults



(or disturbances). The valug represents the total number of models used for a single fault or
disturbancej, and can be different for different valuesof

In order to handle asymmetric response to a parameter change, two distinct sets of models can
be used for each disturbance. The values fof al(i) (and therefore alb,(i)) can be constrained
to be semi-positive. This means that for negative changes of a parameter, the formulation will
use the negative of the impulse response matrix. This type of formulation assumes that both large
positive and large negative parameter changes will not occur in a single parameter over a single
window length. Cases where positive and negative changes in a parameter would affect the system
over a single horizon calculation would be treated as two separate faults.

The formulation to this point only includes continuous variables and few constraints. Solv-
ing this formulation without additional constraints typically yields an underspecified problem that
matches the measurement values across the horizon with the estimated model measurement values
exactly. One can now make the assumption that only a limited number of disturbances can affect
the system during a single horizon. This leads to the use binary decision variables to represent
whether or not a fault has occurred in the current horizon window. Equations 5 and 6 are used
in the formulation to express the logic constraints, for all fault paramgtefesilt modelsl...n;,
and all time values across the horizenThe valueP is a large number that ensures whenever a
disturbancéd, () is nonzero f; switches fron0 to 1. S is the total number of faults that can occur
in a horizon window. In the presented formulation, response to positive and negative changes in
a parameter are treated as separate fault events. The vafdap(&sare constrained to positive
values in Equation 7 and Equation 8 limits the valueg;ab 0 or 1.

The size of the problem can now be calculated. Assuming that thene; anedels for each

fault, the horizon length i¢, and there are, system outputs, the total number of variables (for



the 1-norm case) is:

HFn;+ Hn,+ HF + F 9

where H F'n; are the number of variables for the parameter valygs Hn, are the number of
variables used to calculate the one-norm of the measurement-modelféffdg the number of
variables used to calculate the one-norm of the change in parameters over the horizois trel
number of binary fault variables.

To set up the problem in the general form:

min ¢’ [z 27" (10)

subject to the constraints:

all 21" < b (11)
< [z2Fal1T <ub (12)

0 < oz (13)
€ {01} (14)

The variables:. andz;, in the formulation are:

z. = | 0T |Ay|T |AO|T (15)



v = f (16)

As stated before, the parameter valuesare all assumed positive. This may be considered
to be the extent of a given disturbance, even though the actual parameter may drift negative. The
binary variablesf are constrained to or 1. Therefore, all the variables have positive values. The

value of the objective function], can now be evaluated as:

The impulse response model for the system using multiple models can be written as follows:

y= MO (18)
wherey, M, 6, andy are given by:
r T
y = | gt ... gf ... 377{] (29)
- T
Yo = | Golk) ... Golk—1) ... Go(k—H+1) (20)
M = | M ... M .. MF] (21)
Ml]l Ml,j,n Mljn]
Mj = M07j71 . Mo,j,n . Mo,j,n]- (22)
Mno,j,l e Mno,j,” e Mncnj,nj
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© = |6r ... 67 ... oL (23)
T T

r T

Oin = | Oj(k) ... 0;(i) ... O;n(k—H+1) ] (25)
T

y = | ol Yo Yn, (26)

r T
Yo = | yolk) ... wolk—1i) ... yo(k;—HJrl)] (27)

To calculateAy, the following constraint is used:

ly—9] <Ay (28)

where the process measurementge known and the modgl= M© can be substituted so that

the constraint can be written as:

©
[ -M —I < -y (29)

Ay

©
[ M I <y (30)

Ay

The constraint to calculat®© is described by:

©(i) —6( —1)| < A© (31)
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and can be established by creating a matrix such that

Mol =0(i) —0(i—1) (32)
with the result being:
11 ©
{ Me —1I < 0 (33)
| A©
11 ©
{ —Mey —I <0 (34)
| A©

To express the propositional logic constraints which forces varighitea value ofl whenever

O is nonzero, the matriX/p according to Equation 5 can be found such that:

o
_Mp —PI <0 (35)
/

The total number of faults are constrained to be less thay Equation 6.

The weights for model errory, can be used to develop a vectdy, to appropriately weight
|Ay|. Similarly, My can be found for the parameter weiglitpenalizing| A©|. The complete
optimization problem can now be described as:

min[0 Mg MEo]" [0 Ayt AeT )T (36)

subject to the constraints:
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-M —I 0 0 —y
M -1 0 0 y
M, 0 -7 0 0

° 07 Ay AOT fTIT < (37)
—Meg 0 —I 0 0
—Mp O 0 —PI 0
0 0 0 [1...1] S

0 <[0T AyT AOT|T (38)

0< [£] <1 (39)

f e {0,1} (40)

2.2 Solution Method

Solving a large scale MILP problem can be computationally difficult. In this application, the opti-
mization computation is expected to be reformulated using new data and solved at every sampling
time. The use of multiple models for accommodation of the nonlinear system response increases
the problem size. For a moderately sized problem, there may be hundreds of continuous deci-
sion variables. Even with increased computational power, the task can be daunting in real time.
Improvements to the MILP solution strategy can dramatically decrease the solution time.
In general, wherb = 1 (the one fault case), the solution for this type of formulation is trivial.
In such a case, there are onypossible combinations of feasible integer solutions available to

choose from. The formulation can be solved using an general form MILP routine, but having the

13



knowledge that there are only possible cases allows one to find a much more direct solution.

In each possible fault scenario, only the variables for the single fault are nonzero; the variable for
all the other faults are constrained to zero by the propositional logic constraints. Setting up and
solving F’ different LP problems for the single fault cases is computationally trivial. The resulting
LP problem solution with the minimal objective function will be the overall MILP solution in the

S =1 case.

In the multiple fault case the problem becomes less trivial. There are many combinations of
faults to explore and enumeration quickly becomes impossible. Standard MILP solution methods
will evaluate a large LP problem involving many variables at each node in a binary branch and
bound tree. Intelligently using the properties of branch and bound can serve to speed the compu-
tational process.

The proposed solution method is outlined as follows-

e Solve the small single fault problem for each of thi¢ault cases
e Order the best objective function fits from thegpossible solutions

e Evaluate the MILP by modified branch and bound:

— reduce problem size when possible (number of variables)
— skip nodes if applicable

— enumerate cases if useful

A traditional MILP solution strategy would solve a total LP relaxation at the root node, relaxing

all integer constraints. The proposed MILP method can start at a node other than the root node,
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proceeding by a modified branch and bound procedure. See Figure 1 for an illustration of the
modified branch and bound search for a situation witere2 and F' = 20.

For example, in the case with a maximum of 2 faglis= 2), assume that solving the single
fault problems for each of the possible faults resultg ihaving the best fitf; having the next best,
and so on tgfr. This requirest” solutions to small problems. These problems can be considered
sizel, where there aré/ (n; + n, + 1) continuous variables artbinary variables in each of the
problems.

Next, the case with the two best fault (= 1 and f, = 1) is considered. Addition of the
constraintsf; = 1 and f, = 1 will create an integer feasible 2 fault solution. Af = 1 and
f2 = 1, all other fault variables are constrained)tm this Zle f; < 2 example. Therefore, one
may solve this node as a moderately small problem (size 2 Mith+ (n; + 1) + n,) continuous
variables). The objective function of this solution becomes the new best integer solution for the
problem, which is also an integer feasible upper bound on the overall MILP problem.

The entire enumeration of possible integer solutions assuiieggl numbers only?'. These
cases can all be quickly evaluated as moderately small size 2 problems. The best solution of these
cases now becomes the best integer feasible upper bound solution. Using the branch and bound
technique, the node correspondingfto= 0, all other f; unconstrained must now be evaluated.
If the objective function of this node is larger than the integer feasible upper bound, the solution
procedure can stop with the current best integer solution as optimal because any other integer
feasible solution in this portion of the branch and bound tifge< 0) is guaranteed to have a less
optimal solution. The solution of this node is a large LP problem, 8ize 1, which takes much
longer to solve than the smaller scale problems. Additionally, the LP solution procedure at this

node can be warm started with a feasible starting point using the results from the ofignall|
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optimization problems of size 1.

If the value of the objective function at this node is worse than the optimal integer solution, the
true optimal solution could still lie in th¢, = 0 branch of the tree. There are ndw— 1 possible
integer solution size 2 problems with the constraifyts= 0 and f, = 1. These moderately small
problems can again be quickly enumerated. A new best integer feasible solution may be found
during this enumeration. The node with constraifits= 0, f, = 0, all other f; unconstrained
must now be solved. Again this node is a large LP problem, taking much longer than the smaller
problems. The LP solution at this node can also be warm started with a feasible starting point using
the results from the origindl’ small optimization problems of size 1. If the value of the objective
function at this node is greater than the current optimal integer feasible upper bound solution, the
true optimal integer solution has been found.

The procedure can be repeated as needed until a valid optimal integer solution is found. Ul-
timately, in the worst case, this may require that all possible fault combinations be evaluated. It
is expected that such cases will be rare in practice. This modified solution method intelligently
modifies the MILP branch and bound solution routine such that large scale problems need not
be evaluated. By solving smaller problems corresponding to single fault cases and exploiting the
known constraints of the problem, a good integer solution can be found early in the computation.
By exploiting the structure of the problem, the LP nodes for computation can be decreased in

problem size, greatly increasing computational efficiency.

2.3 Formulation Issues

In some cases, use of multiple models to represent nonlinear systems can lead to biased distur-

bance estimates. For illustration purposes, consider the following simple example with the forcing
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functiond representing an exogenous disturbance:

dx

P (d—1)2 z,=—1 (41)

y=x+1 (42)

It is desirable to develop models of the system using step tests. The response to disturbance steps
attime O fromd = 0tod = 1 andd = 0 to d = 1.8, sampled every time unit are shown in the
second and third columns of Table 2.

This system exhibits input multiplicities as seen in the steady state locus shown in Figure 2.
The scaled transient dynamic character of the response to step changes is identical, no matter the
input level. The steady state gain for the system is higher for the lower level input than for the
high level input. Using these two models in the current estimation formulation will result in biased
parameter estimates. In order to see this, note that the scaled impulse response coefficients are
given asM; andMs in columns four and five of Table 2. The gain for modé] is 1 and the gain
for model M, is 0.2.

Now assume that a step disturbance occurs in the simulation at tim8. The response of
the system to the step change for a level of 0 to 1.7 is seen in column six of Table 2. The best
fit for this measurement data (assuming tBg0) = 0) could use either model to fit the data.

If there is a weight omM\O, the resulting parameter estimate would be 0.51 using only the high
gain model); for the entire horizon length. This example demonstrates that biased estimates are
possible in some cases. If the local models accurately capture the transient dynamic differences,

the parameter estimates can be more accurate using multiple models. Even in biased estimate
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situations, knowledge of the correct fault can be beneficial.
In another case, assume that only one model is used for each fault in a systefhpoisisible

disturbances. The impulse response for a single output system is:

y:M1@1+M2®2++MF®F (43)

In some cases, the output response to a parameter change could also be attributed to the combi-
nation of other fault responses. Mathematically, this implies that a nonzero wecéor be found

such that for a given disturbance modé],

Mg |z, j#i (44)

Removing the constraint limiting the maximum number of faults in the estimation formulation
(letting S = F’) can allow this to occur. Witly = F, if output biases are assumed as faults, any
parametric disturbance change could be re-created by the linear combination of the various output
biases. In effect, the different faults for such a system are indistinguishable. Depending on the
weighting matrices) and R, either the actual disturbance, the linear combination of the output
bias models, or a combination of both will be given as the parameter estimate result. Seting

a value close to 1 rather thanallows the optimization to correctly identify the fault disturbance

or disturbances.

2.4 Detectability Analysis: Degenerate Solutions

In some cases, the measured response to a fault may resemble the response of another fault or

combination of faults. It is useful to know which faults are distinguishable from other faults or sets
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of faults. As stated previously, one may assume that all measurements may potentially be biased,
then the measurement response to a non-bias fault may be represented as either a change in the fault
parameter or a combination of changes in the measurement biasessS @iflgrent parameters

may change over an optimization window, with these parameters constrained to be positive values.
In this way, asymmetric response can be captured in the linear models. The traditional methods of
checking the rank of an observability matrix fails in this formulation because the parameters are
limited to positive values. A method for finding degenerate fault sets is desirable.

First, using a single model for each fault, assume fatis the impulse response matrix for
fault j. In the entire system there may betotal faults,M; € [M;... Mr|. Now given a subset
containingN of the F' faults, we wish to find out which models in the $&f; ... M| may be used
to represent the subset of models. For notational convenience, we define the subset in question as
the first V models of the total sef)M;...My] of [M;...MF|. Defining an integer variablg which
represents the boolean value of whether or not a model set is required to represent the subset, the

MILP problem can be formulated as:

F
min »_ f; (45)
[5,2] j=1
subject to the constraints:
[Ml...MN]S - [Ml...MN...MF][2’1...ZN...ZF]T = 0 (46)
Z s > B (48)
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=
IA

< N-1 (49)
?g s <U (50)
0< 2z <U (51)
fi € [0.1] (52)

where the vectors andz; are variables used to find any set of parameters that will produce similar
output values across the horizon. Equation 46 is used to foaoe > to use the models to find an
equivalent output value across the horizon. Equation 47 (Ridny suitable large value) forces
f; to a value of 1 when any element gfis nonzero. Equation 48 forces the elements taf be a
positive number. In Equation 49, the set:0fis forced to represent a subset that is not the subset
itself. The last three constraints, Equations 50, 51, and 52 ensure that the elemeansl ofare
constrained to be positive numbers andfalare binary.

The result of this problem is the minimal set of faults (g} that could possibly be used in an
optimization problem to represent a given subsetomodels. The total number of faults in the

degenerate set 8. The problem can be re-solved with the additional constraint:

Y. fi<D-1 (53)

J€fD
The new problem finds the minimal set of faults to represent the subset of models that is not the
original set or the recently found set. This iterative procedure can be used to find all of the potential
degenerate model sets for a set of models by solving the MILP and adding the new constraint, and
then resolving. Eventually, too many constraints will be added (enough subsets will be excluded)

and new sets of degenerate models cannot be found. Because of constraints on both the total
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number of faults and weightings used in the moving horizon formulation, this analysis result does
not mean that degenerate sets are likely to result when used in the moving horizon estimation

process.

3 Results and Discussion

A nonlinear Continuous Stirred Tank Reactor (CSTR) model is used to generate process data.
In particular, the well-studied Van der Vusse kinetic scheme is considered [7, 11]. This system
exhibits many highly nonlinear characteristics, including: input multiplicity, gain sign change,
asymmetric response, and both minimum and nonminimum phase behavior. These nonlinear char-
acteristics are very prevalent at the most desirable operating point. See Figure 3 for a comparison
of dynamic response to a step change in the feed flow rate. From this figure, one can see that in-
verse response is observed for changing to a low flow rate and not observed for changes to higher
flow rates. As demonstrated from the process values at steady state, the process gain changes from
positive to negative, causing input multiplicity. The maximum product concentration is achieved at
the operating point where the convergence of changing gains and inverse to non-inverse response
exists.

A full description of the Van der Vusse CSTR model may be found in [7] or [11]. A feed stream
of feedstockA enters a reactor and reacts to form the desired prodicihe model assumes a
first-order reaction fod = B with two competing reaction8 = C' and2A = D. The relevant

mass and energy balances are as follows (assuming a well-mixed constant volume reactor) :
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dC s 1%

W = VR(CAO - CA) - kl(U>CA - k3(v)0124 (54)
e v
d—tB = —3-Cs + h(v)Ca — ka(0)Ci (55)
dv . \%4 (kl (U)CAAHRAB + ]{JQ(U)CBAHRBC + kg(U)CiAHRAD)
e ) (56)
dt VR pOp
kwAr
_ 57
pCpVR (U UK) ( )
W L e Cr(vre — v8) + huAr (0 — vx)) (58)
dt - mKCPK KCYPK\Vko k w41R K
b o= el o) (59)

Temperature-dependent Arrhenius reaction rates are assumed. The model has four states: con-
centration of A, concentration of B, reactor temperature, and cooling jacket temperature. With this
process, it is desirable to produce as much product B as possible. The model parameters are given
in Table 3. All simulation results were performed using MATLAB 5.3 and CPLEX 6.5. Compu-
tation time using a Sun Ultra Enterprise 3000 with a 366 MHz processor with 20 binary variables
typically is on the order of 500-1000 seconds for each iteration, allowing for one or two faults
in the estimation horizon and the general purpose CPLEX MILP optimization routine. Using the
proposed modified optimization routine, the same problems can be solved in less than 60 seconds.

It is assumed that the four states of the CSTR are directly measurable. An initial steady state
point was selected near the process optima. Step response models were developed for ten different
parameter variations using a sampling time of 1 minute and 40 step response coefficients. The step
response models were evaluated-&26 and+25% parameter variations for a total of 20 different

faults, shown in Table 4. These variations represent the expected variation for parameters in the
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system. A moving horizon window of size 25 was chosen to account for the system dynamics.
R values were all taken as 1 antlvalues were set to 0.001R values can be modified to scale
error estimates according to expected variation levélszalues can be increased to smooth the
parameter estimates.

The systems accurately distinguish between parameters in the single faulbcase)( All
twenty faults can be distinguished and accurately estimated. Given a change in a parameter, this
estimation method very accurately estimates the parameter value. For a representative example,
see the measurements in Figure 4. These measurements are taken from the reactor model after a
10% increase in the feed flow rate at time 5 minutes. Figure 5 shows the results for estimating
this 10% increase in the feed flow at time- 25. The 10% increase affects the system 20 minutes
before this estimation result was computed. The two models used to estimate the total parameter
are shown. As one can see in Figure 5, both the 5% model and the 25% model are used when
estimating a 10% disturbance. The two model estimates can be summed directly because the mod-
els were normalized before the optimization took place. In Figure 6, the same fault measurements
are shown, but normally distributed noise’ (= 0.01) is now added to the signals. The resulting
estimates are shown in Figure 7. The accuracy of the resulting estimates degrades with the addition
of significant noise, but the correct fault is detected. In Figure 8, the estimation results using single
models for estimation are shown. As can be seen, the estimates are not as accurate as the multi-
ple model noise-free case, with slight deviation occurring across the horizon. The correct fault is
distinguished from the others, but the estimates are slightly in error when not using the multiple
linear models.

The evolution of a fault over time is also of interest. This estimation method estimates the

value of the parameters over the entire horizon, not just the current estimate or the initial value
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estimate. In Figure 9, the actual input values over the estimation horizon for different times are
shown. At each sampling time, new measurements are available and the estimation process is
accomplished again. In Figure 10, the estimates over the moving horizon for different times are
displayed. After the fault is fully evolved, the amount of error in the estimate becomes larger. At
this point, the change in the measurements is becoming negligible, so any model error can lead to
increased estimation error.

In some cases, disturbances may affect a system as a ramp rather than a step. Figures 11 and
12 show measurements and estimates at time25 for a gradual increase in the feed flow rate
starting at timet = 5 and slowly ramping up to +10% at time= 25. The correct fault and
accurate level are detected.

This estimation method works well in multiple fault scenarios as well. In the following exam-
ple, the input feed flow rate is decreased by 20% at firae25 (t = 0) and the feed concentration
is decreased by 10% at tinke— 15 (¢t = 10). The output measurements for this parameter change
are given in Figure 13. The overall parameter estimates for tinte=k £5) are shown in Figure
14. Here, the parameter estimates accurately picked the correct faults from the group of 20 and
also accurately estimated the parameter values.

Degenerate solutions may be possible in this system. Considering all the sets of faults con-
sisting of a single disturbance, the detectability analysis reveals that at least four other disturbance
responses must be used to represent a single fault. For systems with multiple faults, the analysis
could be used as needed to determine if degenerate solutions exist. Unique solutions should exist

for this example forS taking values 1 or 2.
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4 Conclusions

In this paper, we have described a moving horizon method for detecting and estimating parameter
changes. The receding horizon formulation allows the use of a finite amount of data in the opti-
mization problem. This method makes use of multiple linear models to capture the behavior of the
actual nonlinear system. The problem is formulated as a MILP with an integer constraint on the
total number of changing parameters over the horizon.

There are limitations to this method, some of which have been described in this article. The use
of multiple linear models can lead to biased estimates in some cases. This will not always occur,
but can be seen in some mathematical examples. The results from one problem produce a potential
fault set. This set may not be the only set of faults that can accurately portray the existing data if
degenerate fault sets are available. This means that multiple causes may exist. Due to optimization
weights and a single optimal solution, it should be rare but possible to find different sets of faults
yielding the same or similar horizon based estimation results. Computationally, solving a large
scale MILP can be difficult. For multiple fault cases, enumerating all possible cases is typically
a poor solution. An improved MILP solution method is proposed that can exploit the problem
structure and existing information.

In the future, larger problems may be explored. In the proposed method, separate models for
positive and negative parameter shifts as well as small and large parameter shifts were used. Use of
linear models can allow for the solution of larger scale problems, but the system estimates should
be less accurate for nonlinear systems. This may be a reasonable tradeoff in systems where only

linear models are available and the process exhibits weak nonlinear character.
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Appendix: Nomenclature

a generalized optimization problem constraint matrix

A, heat exchange area

b generalized optimization problem vector

B arbitrary positive value

c generalized optimization problem objective coefficients
Cx concentration of specie$ in the reactor

Cio  concentration of specie$ entering the reactor
Cg concentration of species in the reactor

Cy heat capacity of the reaction mixture

Cpx  heat capacity of the coolant

D total number of faults in a degenerate solution
A©  variable representing the value®fi) — O(i — 1)
Ay variable representing value gf— g

AHpg; heat of reaction for reaction

E; activation energy for reaction

26



f variable for the integer values representing separate faults

fi single fault for fault;

fo set of faults that can produce identical process response
F total number of faults

Fy flow rate of coolant into the jacket

H horizon length

index for time

~.

J index for faults

J value of the objective function

k; reaction rate coefficient for reaction

kio Arrhenius pre-exponential factor for reaction
k current time

kw heat exchange coefficient

LP Linear Programming problem

M mass of coolant in jacket

M combined impulse response matrix

M; impulse response matrix for a faylt

M, ;, impulse response matrix relating outpub fault j using modeh
Mp matrix formed for the propositional logic constraint

Mg vector formed according to values @f the error weight onAy|

Mp vector formed according to values Bf the error weight onA©|

Mg matrix formed for theA© constraint

MILP a Mixed Integer Linear Programming problem
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(%2¢

Uko

Vkr

index for models for a faulf

total number of models for a fault

total number of process outputs

number of faults in the subset used for find a set of equivalent faults

index for the outputs

large value

weighting matrix forAy

jacket energy transfer from reactor

Quadratic Programming problem

weighting matrix forA©

density of reactor contents

variable used to in the degenerate fault set formulation, limited to be greater than 0
total number of faults allowed to occur over a horizon

time

total estimated parameter variable, limited to be greater than 0

total estimated parameter value for fauht timez, limited to be greater than 0
individual model parameter value for fayltmodeln, at timei, limited to be greater than 0
arbitrary upper bound

temperature of the reactor

temperature in the cooling jacket

temperature of coolant entering the jacket

volumetric flow rate of feedstock into the reactor

volume of the reactor
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Ze continuous variables in the optimization problem taking values greater than O
T integer variables in the optimization problem taking value O or 1

y(7) process measurement residual vector at time

yo(i)  process measurement value for outpat time:

y(1) process model vector at time

Uo(1)  process model value for outpugt time:

z variable used in the degenerate fault set formulation, limited to be greater than 0
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Figure Captions

Figure 1. Modified branch and bound example for dual fault case with 20 possible faults. Node
numbers indicate solution order and node sizes represent the size of the corresponding LP relax-
ation.

Figure 2: Steady state locus for simple examéfe,: —r—(d—-1)?2z,=-1,y =2+ 1,
showing input multiplicity.

Figure 3: Response of CSTR model to step changes in the feed flow rate at time 0, with the
initial steady state feed flow = 14.9. Input multiplicity and both minimum and nonminimum phase
behavior are apparent.

Figure 4. Measurements at time= 25 for 10% increase in feed flow at timte= 5 without
process noise.

Figure 5: Estimates at time= 25 across the estimation horizon using multiple models and
measurements for 10% increase in feed flow at tiree 5 without process noise. Squares indi-
cate the total estimate, circles show the contribution from the +5% model, and crosses indicate
contribution from the +25% model.

Figure 6: Measurements at time= 25 for 10% increase in feed flow at time= 5 with
normally distributed noisesf = 0.01).

Figure 7: Estimates at time= 25 across the estimation horizon using multiple models and
measurements for 10% increase in feed flow at time5 with normally distributed noises¢ =
0.01). Squares indicate the total estimate, circles show the contribution from the +5% model, and
crosses indicate contribution from the +25% model.

Figure 8: Separate estimates at time 25 using measurements from a 10% increase in feed
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flow at timet = 5 using single models in both cases.

Figure 9: Actual parameter values over estimation horizon for 10% increase in feed flow at
timet = 5.

Figure 10: Horizon parameter estimates for 10% increase in feed flow att timé using
multiple models with constraint allowing a single fault across estimation horizon.

Figure 11. Measurements at time= 25 for ramped change in in feed flow rate to +10% at
timet = 25 starting at time = 5 without process noise.

Figure 12: Estimates at time= 25 using measurements for ramped change in in feed flow
rate to +10% at time = 25 starting at timg = 5 without process noise.

Figure 13: Measurements for dual fault case at time 25 with -20% input feed flow step at
timet = 0 and -10% feed concentration step at time 15.

Figure 14: Estimates at time= 25 using measurements for dual fault case with -20% input
feed flow step at timé = 0 and -10% feed concentration step at titme 15.

Table 1: Output response for example problem. Modélsand M, are developed from chang-
ing d from a value of O to values dfand1.8, respectively.

Table 2: Van der Vusse CSTR model parameters.

Table 3: Potential faults for CSTR case study.
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20 Possible faults
Maximum of 2 faults

O@-@

Objective: -0.92
f2=0

Best objective: -2.22;+fe Objective: -3.41

Best objective: -1.04¥fs
18 cases withif0, =1

Figure 1. Modified branch and bound example for dual fault case with 20 possible faults. Node

numbers indicate solution order and node sizes represent the size of the corresponding LP relax-
ation.
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Figure 2. Steady state locus for simple exam;%lge,: —x—(d—-1>%2, = -1,y =z + 1,
showing input multiplicity.
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total estimate, circles show the contribution from the +5% model, and crosses indicate contribution
from the +25% model.

40



2.3 1.1
E225 £
£ £1.08
< 2.2 s
€2.15 =
8 : 8 1.06
2.1
0 10 20 0 10 20
Time (min) Time (min)
1142
O ~
= L112,
2 o
g 114.1 £112.8
. &
o) +112.7
g 114 2
o $112.6
x ap]
113.9 112.5
0 10 20 0 10 20
Time (min) Time (min)
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Figure 11: Measurements at time= 25 for ramped change in in feed flow rate to +10% at time
t = 25 starting at time = 5 without process noise.

46



H
I

=
N

L]
Il

=
o

L]
Il

0
T

(®2)
T

Disturbance Estimate (%)

N

0 5 10 15 20 25
Estimation Horizon (min)
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Figure 13: Measurements for dual fault case at ttme25 with -20% input feed flow step at time
t = 0 and -10% feed concentration step at time 15.
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Figure 14: Estimates at time= 25 using measurements for dual fault case with -20% input feed
flow step at timg = 0 and -10% feed concentration step at titne 15.
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t|y(Ad=1) | y(Ad=18) | My | My | y(Ad=1.7)
0 0 0 0 0 0

1 0.63 0.23 0.63| 0.13 0.32

2 0.86 0.31 0.23| 0.05 0.44

3 0.95 0.34 0.09| 0.02 0.48

4 0.98 0.35 0.03| 0.01 0.50

5 0.99 0.36 001 O 0.51

6 1 0.36 0 0 0.51

Table 2: Output response for example problem. Modé|sand M, are developed from changing
d from a value of O to values dfand1.8, respectively.
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Table 3: Van der Vusse CSTR model parameters.

ko =1.287-102h~" | kpo =1.287- 10 h~" | kyo = 1.287 - 102 2!
E = —97583 K Ey, = 97583 K E3 = —8560 K
AHpap =42 | AHppe = —11 2= | AHgppp = —41.85 £
p=10.9342 Cp = 3.01% Cpr = 2.0%
kyw = 403257 Ap = 0215 m? my = 5.0kg
Vi =101 Fro = 10.52% Ugo = 60C
V =14.10+
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Table 4: Potential faults for CSTR case study.

ent

fi increase in feed flow rate fa decrease in feed flow rate

f3 increase in coolant flow rate f1 decrease in coolant flow rate

fs increase in feed temperature fe decrease in feed temperature

fr increase in coolant temperature fs decrease in coolant temperature
fo increase in feed concentration f1o decrease in feed concentration
f11 | increase in jacket heat transfer coefficient,, | decrease in jacket heat transfer coeffici
fi3 increase irC, measurement bias fia decrease iilt', measurement bias
J15 increase inC, measurement bias fie decrease i1, measurement bias
fiz increase in measurement bias fis decrease i measurement bias
f19 increase in;, measurement bias f20 decrease in, measurement bias
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