Globally Optimal Nonlinear
Model Predictive Control

C. E. Long, P. K. Polisetty, and E. P. Gatzke

Department of Chemical Engineering, University of South Carolina

Presentation Qutline

» Background and Motivation
 Nonlinear Model Predictive Control
» Formulation
» Deterministic Method for Solving Nonconvex Problem
* Case Study
» Isothermal CSTR with Van de Vusse kinetics
* Summary



Model Predictive Control (MPC)
(Garcia, Prett, and Morari, 1989)

« Model Predictive Control is an advanced control algorithm that handles:
« Multivariable interacting systems
* Soft constraints on both inputs and outputs
* Measured disturbances
* Process time delays and difficult dynamics
« Known future setpoint changes (reference transitions)
« Limitations
« Requires an explicit model of the process

* Need to solve a constrained optimization problem online
Predict

Process  [rrmrmnne

1. Using process data, formulates an el
optimization problem. U B--==-
2. Solves the problem online and
implements the optimal control move. I Ly L
3. Waits for new data at next time step. AR

(Past) (Present)



Linear vs. Nonlinear Formulations

[d (] A
Linear Formulations:

: : : O(u
» Mismatch between linear model and nonlinear process can lead to (u)
poor closed-loop performance and/or instability.

Global
Optimum

* Linear model - convex problem L

(linear constraints) (only one minimum)

« Efficient solvers (local) exist to solve the convex problem < v >
Convex Objective Function

Nonlinear Formulations: D(u) 4 el

* Nonlinear model handles process nonlinearities. Optimum

y

* Nonlinear model nonconvex problem
(nonlinear constraints) (multiple minima)

Global
Optimum

 Local solvers left susceptible to choosing suboptimal minima.

< >
* Need to guarantee global optimality in nonconvex problems. v

Nonconvex Objective Function



Nonlinear Model Predictive Control (NMPC)

Formulation
e

Objective Function: )
) 1-norm formulation du

O = zp:ree(i) + Zm:FuAu(i)‘/

Process

Constrained Optimization Problem:

nin ) Observer
{u(i).. u(m); y
P |

subject to:
x(k+1) = f(x(k) u(k) . r = reference (setpoint)
y(k) _ g(x(k) u(k) Nonlinear Process Model y_ = measured output
d, =unmeasured disturbance
y, = predicted output

‘r(z’) — y(i)‘ <e(i) Vi=l.p Error Terms

u(i—2)—u(i—1)|<Au(i—1) Vi=1l.m Auterms

Re-written in a
more compact form

—

d(i)=y,(0)- Yo (0)  Disturbance Update

uL <uc< uU Actuator Limits Nonconvex NLP



Online vs. Offline Methods for MPC

Online
Formulate the appropriate optimization
problem based on current data at each
time step.

Solve the problem online.
 computationally demanding
e real-time constraints

Possibility of unnecessarily solving the
same problem over and over again

Solution is optimal and pertains
exactly to the process’ current state.

Offline

Partition solution space into
characteristic regions based on a set of
parameters (states, inputs, etc...)

Solve problems from each region
offline

* high dimensionality issues

e (Can you foresee all scenarios?

At each time step, identify appropriate
region online based on current data
and “look up” the solution.

* low online computational demand

Implement solution from the region.
e Suboptimal?



Deterministic Method for Solving the
Nonconvex NLP

m C'x
mn C'x st A <b
’ 4" =0
st. & <b | |-
v f(x)=0 w=g(w,x)
xt<x<x? xt<x<aY
wht<w<w?

Linearization of
Convex Functions

Reformulation Solve LP

Branch and Bound Tree

Create Convex
Relaxations

Root node

Fathoming

wx gow,x, x5 XY wh wY) < w< g(w, x, x5, xY, whwY)
st. A <b

w

A{ J “o
X

Ay | <b, Consider Each Partition Branch the Space
X

as a New Problem
xE<x<K?




Benchmark Control Problem

Consider the isothermal operation of a SISO two state

CSTR exhibiting Van de Vusse kinetics: 3
l 1.2F
kl kz 11F
A —» B=—P C %
= 1F
k, =
2A =P D |

0.8}

Where the corresponding reaction rates are: T

= - 2 0'60 5'0 160 15;0
ry=-KCy-KkCy "),

k,C, - Kk,Cy Steady State Loci for the Reactor Operation at
Different Feed Concentrations (C,,) Exhibiting the
Presence of an Input Multiplicity

I'p =

The system can be described by: where:
C, = Conc. of Species A = process state (x,)
d — E (C/o -C, )_ kC, - k3Cj Cz; = Conc. of Species B = process output (y= X,)
d 14 k, = Reaction Rate Constants
F = Feed Flow Rate .
& B _ le = kZCB — (chza \Y% = Reactor Volume (constant) (F/V) = process input (u)
V

¥

= Conc. of A in the Feed

D>(')
o



Closed-loop Performance Test

- 0000000000000
Both setpoint tracking and disturbance rejection are tested through a
series of setpoint transitions and disturbance loads.

Assume the process 1s initially being operating where:
* Feed Flow Rate/Reactor Volume (F/V) = 181 mol/liter-hr process input (u)

« Conc. of B (Cp) = 1.1 mol/liter process output (y)
« Conc. of A in the Feed (C,,) =10 mol/liter disturbance (d)

Yop™ 1.1

Ysp— 1.0
Cao™10 =0.8
Cao=9 Y
C,o=7
@ @ @ @ @ @ @ >

=0 =0.1 =0.2 =0.3 =0.4 =0.5 =0.6 hrs
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Closed-loop Results
(single degree of freedom)
-]

Objective Function: C :
O =T e(p)+ Z [uAu(i)

S

terminal weight

Tunings: m=1 I';=100
p =30 I =

1.3f

1.2f
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] e
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Steady State Loci for the Reactor Operation at
Different Feed Concentrations (C,,) Exhibiting the
Presence of an Input Multiplicity



Sample Optimization Problem
-]

Assume the process is operating at: 60

! 1
Upper Bound I
on (F/V) I

u =181 mol/liter-hr
y =1.1 mol/liter 50 u
C,o =10 mol/liter \I

Y
(=)

Consider the Objective Function as:

O =T e(p)+ i [uAu(i)

i=1

(terminal weight)

Objective Function Value
(3]
o

N
o

Let: m=1 Fy=100
p =30 r=0

10T Global
Minima

Assume bounds on the input.

0 50 100 150 200
0<u = 200 Process Input (F/V)

Sample objective function for problem having the setpoint
moved from the initial condition of 1.1 mol/liter to 1 mol/liter.



Real-Time Considerations
-

2

10 - - - - » Sampling Time = 7.2 seconds
= Average Local Solve
o Time for Glohal Solve .
s » Must terminate solves to meet real-
g 1 time constraint
% Real-time Threshold € constraints.
£ 5 . .
L i » Global solution might have been
= I ]
B Rt msiiai B found, not guaranteed.
3
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Simulation Problems longer than 7.2 seconds to solve globally.



Closed-loop Results
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Use of a Terminal Weight
(multiple degrees of freedom)

Objective Function:

® =T e(p)+ > Tuhu(i)
i=1
Tunings: m=2 I';=100
p=30 T =0.005 terminal weight

As in the single degree of freedom (m=1) case, the
modified objective function (using the terminal
weight) allows for the controller to better track
the setpoint.



Concentration of B (Cb)

Feed Flow Rate (F/V)

ao)
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Concentration of B (Cb)
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Improvement over using the traditional
objective function without the hard constraint.
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Noise Run
— ]

gk N = Setpoint ] Objective FllllctiOll ~ e Setpoint
=7 s [ p| o 1.4} === Local
% = G?gﬁal -1 m § — Global
S 1.2F . . g Al
g ; O => T e(i)+e(p)+ D Tuhu@@) §°
g 1k H . . E
e \ "*—— \ i=1 i=1 g Ir
8 0.8} . i . . 3 “‘ = § sk
0 0.1 0.2 0.3 04 0.5 06 0.7 T ’ O_OﬁTZ_
200 : I I I ; : . . (o e
g | e(p) weighted more heavily <21 = Goat [T
% 150}F --=- Local 1 g ||+ Bounds
£l = Giobal | than other errors. s
3 < 100}
3 S oo E
w i : I : I I' : L?.’ i M
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Tunings o—oﬁfz—
N " ———
T m=2  T=100 5
£ S p=30 I ,=0.005 2 o L
8 of ] =
g g 4
3 7t = 10,000 5
60 0j1 0t2 0t3 0t4 0t5 0t6 0.7 - so—oﬁlz—
800
'g | -== Local | NO]SC % ,
5 anf \ » white measurement noise with £ “ ;
° — b a standard deviation of 3% 8 \
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0

Time (hours) 0 0.1 0.2



Summary
-]

» A NMPC algorithm using a deterministic global optimization search method is
proposed.

» The deterministic approach guarantees global optimums to the nonconvex NLPs
associated with the NMPC formulation.

» The algorithm eliminates poor performance in the CSTR example resulting
from suboptimal input trajectories provided by local solution techniques.

» The proper objective function and controller tunings must be utilized to achieve
the desired closed-loop results.

» Considerations must be made for cases where the desired solution cannot be
obtained sufficiently fast for real-time use.
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