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Motivation
-]

* Many process states may be unmeasured.
» Too expensive, too time consuming, or impossible to measure
 Control of unmeasured states may be desired.
» Ex. Various metabolites in a fermentation reactor.
* Model Predictive Control (MPC) methods can handle a broad class of systems.
» Adequate dynamic model is needed to model states
» Closed-loop results are often difficult to predict with traditional MPC tuning.

» Prioritized objective MPC formulation offers a well-defined ordered list of
control objectives. (Tyler and Morari, 1998, Bemporad and Morari, 1998)




Model Predictive Control (MPC)

(Garcia, Prett, and Morari, 1989)

* Model Predictive Control is an advanced control algorithm that handles:
» Multivariable interacting systems
» Soft constraints on both inputs and outputs
» Measured disturbances
» Process time delays and difficult dynamics
» Known future setpoint changes (reference transitions)
« Limitations
» Requires an explicit model of the process
» Need to solve a constrained optimization problem online
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The Optimization Problem
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* Objective function: » .
P = Z Tee(i) + Z r Au(i) LP formulation

where: i=1 i=1

Setpoint error (€): e(1) = [r(1) - y(1)|

Input movement (Au): Au(1) = |u(1) - u(i-1)|

I', 1s a vector of weights (penalties) with entries corresponding to each error term.
I', 1s a vector of weights with entries corresponding to each input movement term.

* The optimization problem:
i D
{u(i).. u(m)}
subject to:
output, error (e), and input movement (Au) constraints

*Only continuous variables == standard LP (1-norm, co-norm)
QP (2-norm)




State-Space Approach
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* A linear state-space model of the system was obtained:
x(k+1) = Ax(k) +B_u(k)
y(k) = Cx(k)+Du(k) + update

»Model explicitly defines all states, enabling constraints to be placed on unmeasured
states just as they are placed on process outputs.

* State estimates for both measured and unmeasured states are found using an external state

estimation routine such as a Luenberger Observer.
d

= reference (setpoint) r Process

= measured output
= unmeasured disturbance

A . Observer
X = state estimate
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Mixed Integer Formulation to Prioritize Objectives

(Tyler and Morari, 1998, Gatzke and Doyle, 2001)
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_ Discretizing and prioritizing objectives leads to explicitly defined control
objects avoiding difficulties associated with MPC tuning.

_ Increase in the computational complexity of the optimization problem.
(more constraints, and new binary variables)

Additional objective function terms: penalize not meeting discrete objectives and not doing
so in order.

p m
O =T,0+T,P+) Tee(i)+ Y T,Au(i)
i=l i=l

Additional constraints:

e(i) < NA-0) +B. O: < Pi P 1< P;
Vi=l.p Vi=1.No Vi=1.Np-1
Discretize Ensure objective is met Ensures objectives are
Continuous Control before priority flag is met in order of priority.
Objectives satisfied.

Binary Variables: LP = MILP
QP == MIQP




Multiple Objectives of Equal Priority

(Grossmann, 1991)
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Extension: Objectives of Equal Priority

Or= B I (N =4N3)

Vi=1.No Both O, and O, are of priority 1.
Ensures objective is met
before priority flag is 01 = P1 AN Same Priority
satisfied. 0, < Pl‘/
0,< P,
0,< P,
N, = va\ *Both O, and O, must be met for P,

# of Objectives # of Priorities § flag to be satisfied.

*Can be extended to handle any logical
clause using propositional logic.
* Ensure objectives are met in order as

* This does not have to be the case. before: Pii1<Pi
VZ — 1 “ Np -1

* Each discrete objective is assigned
its own priority flag.




Anaerobic Fermentation Pathway of

Saccharomyces cerevisiae
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(adapted from Curto et al. 1995)

X, = Internal glucose )

X, i Glucose-6-pho§phate > Dynamic

X, = Fructose-1,6-diphosphate States

X, = Phosphoenol pyruvate

X, =ATP J

X = Glucose uptake . } Input

X, = Hexokinase/glucokinase

Xg¢ = Phosphofructokinase Assumed

Xy = Glyceraldehyde-3-phosphate Constant
dehydrogenase

X,0= Pyruvate kinase )

X,,= Glycogen and trehalose .
production Disturbances

X ,= Glycerol production

X ;= ATPase } Assumed

Xl 4= NADH/NAD+ ratio Constant



Modeling the Complex Metabolic Pathway
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* By representing each individual metabolic reaction as a power-law term, the
resulting model will be a Generalized Mass Action (GMA) model.
(Cascante et al., 1995, Curto et al., 1995 and Sorribas et al., 1995)

* The 5 state GMA model:

Internal glucose X, =082 Xz_O.2344 Xo-2.82 X' XSO% X,
Glucose-6-phosphate — > ¥, =282 X°™ Xx."® x - 0.9 X'™ X;** x,-0.@® Xx,*¥ X,

Phophoenol pyruvate — X, =0.@ X°® x*® x x.*® _0.05 X°®x*® x°® x

Adenosine triphosphate

X.=0.® X% X x x 0% Lom XCX°® x® xy _o28® X x"® x
(ATP) 5 3 5 941 u 3 4 5 0 1 5 7

—0.® X,V X, -0 X X "™ X, - XX,




The Simplified System
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I
Manipulated Variable (u) = X; (Rate of External Glucose Uptake)
Process States (x) = X,X,,X3,X,,Xs (X, = Fructose-1,6-diphosphate conc.)
Process Output (y) = X, (ATP concentration)
Disturbances d) =X, Xy, (Polysaccharide/glycerol production rates)
I
u, = 19.7 mM/min
X5.=9.1969 mM

3ss

Y = 1.1247 mM
d, =14.31 mM/min and 203mM/min

SIMO Process (single-input multi-output) system.
Two variables (X, and y) are to be controlled by manipulating a single input (Xy).




Closed-Loop Performance Test

* Att=>5 min, the setpoint of ATP concentration (y,,) was stepped from 1.1247 mM
to 1.2 mM.

* The concentrations of ATP (y) and fructose-1,6-phosphate (X,) are bounded above
and below at numerous levels.

» Att =25, a disturbance is introduced by stepping the rate of glycerol production
(d,) from 203 mM/min to 0 mM/min.

— >
Soft Constraints — >
— >
— >




Traditional MPC Results
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Prioritized Objective MPC
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Prioritized Objective MPC Results
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Prioritized Objective MPC Results
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Future Work
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* Nonlinear dynamic systems
» Use of a nonlinear model in a similar Nonlinear MPC formulation.
» Find the global solution to the nonconvex optimization problem associated
with the nonlinear MPC.

 Large scale applications
» Address computational issues associated with bigger problems for real-
time control applications. Find more efficient solution methods to solve
larger problems faster.

« Robustness analysis
» Attempt to characterize the robustness of the controller for different levels
of model uncertainty. (Linear model describing a nonlinear process.)




Summary

State-Space model explicitly defines all process states.

Using the model and current state estimates from the observer, the states
can be predicted over the horizon (p).

Constraints on the state trajectories can be incorporated into
the optimization problem for inferential control of unmeasured
states.

« Using propositional logic, objectives can be prioritized.
L> Extended to objectives of equal priority.
* Prioritized Objective MPC shows improvement over traditional MPC.

* Biological processes, such as the Fermentation Pathway system presented, could
benefit from this MPC formulation.
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