Introduction to Advanced Control

- Discrete Time Systems
- Programming (Excel and Matlab)
- Selected Math Topics
 - ➤ Linear Algebra and Norms
 - Numerical Optimization
 - Singular Value Decomposition
- Model Predictive Control
- ➤ Discrete Value Systems (Programmable Logic Control)
- > Parameter and State Estimation
- Nonlinear Systems

Discrete Time Systems

- ➤ All computer controlled data acquisition systems produce and use sampled data.
- The measured values occur as discrete points in time.
- ➤ Usually samples are taken at uniform intervals:
 - \triangleright Sampling Time Δt , Sampling Frequency, ω
- ➤ Values exist at all points in time, just available at discrete points in time.
- > Convention, use k instead of t

$$> t = k \Delta t$$

Sampling Time Example

First order time delay system response to step of size A:

$$y(t) = 0 t < \alpha$$
$$= KA(1 - e^{(\frac{t-\alpha}{\tau})}) t > \alpha$$

 \triangleright Sketch y(t) and y(k) for $\Delta t=10, 1, K=2, A=1, \tau=5, \alpha=1$

Introduction to Advanced Control

- Discrete Time Systems
- Programming (Excel and Matlab)
- Selected Math Topics
 - ➤ Linear Algebra and Norms
 - Numerical Optimization
 - Singular Value Decomposition
- Model Predictive Control
- ➤ Discrete Value Systems (Programmable Logic Control)
- > Parameter and State Estimation
- Nonlinear Systems

Background: Dynamic Modeling

Generalized Mass Action (GMA) Systems (Voit 2000)

- ➤ Mass balance on each species
- \triangleright Power law rate equations, $r = a x_1^{b1} x_2^{b2} x_3^{b3}$

Simple Ordinary Differential Equation model form capturing qualitative / quantitative behavior:

$$\frac{dx_1}{dt} = a_{11}x_1^{b11}x_2^{b12} + a_{12}x_1^{b13}x_3^{b14} - a_{13}x_1^{b15}x_4^{b15}x_5^{b16}$$

$$\frac{dx_2}{dt} = a_{21}x_2^{b21}x_3^{b22} + a_{22}x_2^{b23}x_4^{b24} - a_{21}x_1^{b11}x_2^{b12}$$
:

$$\frac{dx_n}{dt} = f(x, a, b)$$

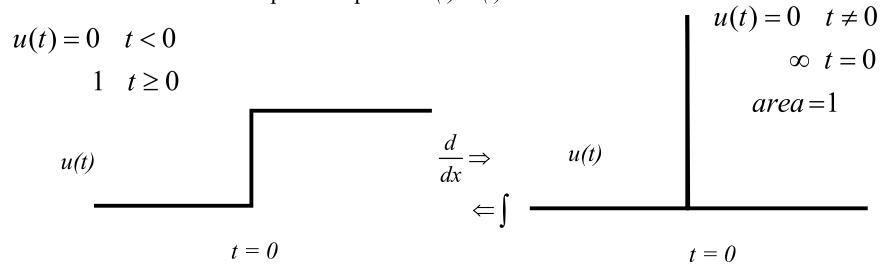
a are rate constants, b are kinetic orders

Outline

- ➤ Last Time: Discrete Time Systems
 - \triangleright Sampled data, \triangle t sample time
 - ➤ Integer values for time, k=0, 1, 2, 3, ...
- ➤ Today: SISO Discrete Time Models
 - > Step response coefficients
 - > Impulse response coefficients
 - ➤ Auto Regressive and Moving Average Models
 - > Excel modeling
 - Matlab modeling

Continuous Time Step and Impulse

Continuous time ideal step and impulse: H(t) $\delta(t)$



Usually forcing function for open-loop modeling, u(t)

Step: change valve position

Impulse: instantaneous "dump" into system

Discrete Time Step and Impulse

Discrete time ideal step and impulse

$$u(k) = 0 \quad k < 0$$
$$1 \quad k \ge 0$$

$$u(k) = 0 \quad t \neq 0$$
$$1 \quad t = 0$$

$$\begin{array}{c} \mathbf{x} \ \mathbf{x} \\ u(k) \end{array}$$

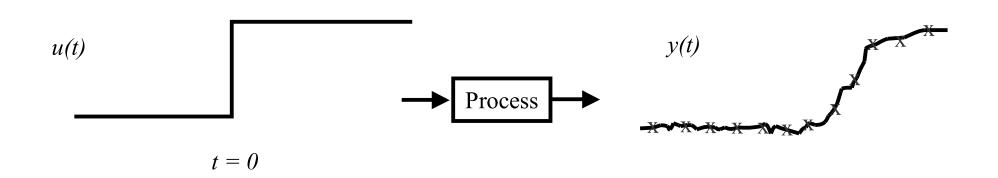
X

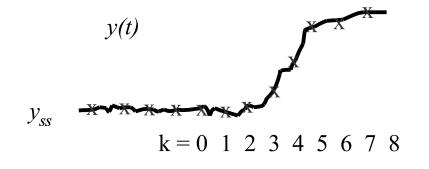
$$k = 0$$

$$k = 0$$

u(k)

Discrete Time Step Response





$$s_i = \frac{y(i) - y_{ss}}{\Delta u}$$

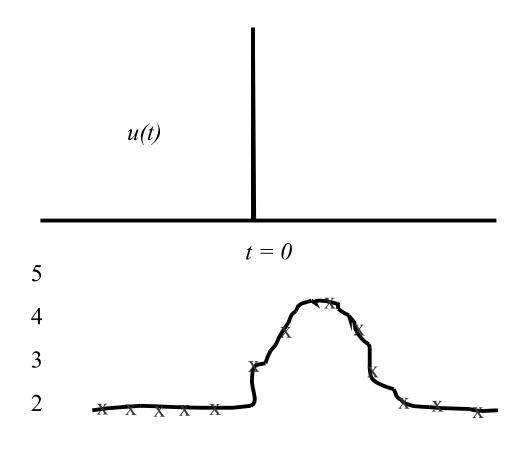
Discrete Time Step Response Coefficients

<u></u>			
k	u(k)	<i>y(k)</i>	si
-3	1	10.00	yss = 10
-2	1	10.00	
-1	1	10.00	
0	3	10.00	0.00
1	3	16.32	3.16
2	3	18.65	4.32
3	3	19.50	4.75
4	3	19.82	4.91
5	3	19.93	4.97
6	3	19.98	4.99
7	3	19.99	5.00
8	3	20.00	5.00
9	3	20.00	5.00
10	3	20.00	5.00
11	3	20.00	5.00

 s_0 is important, direct change

Why have more than 7 coefficients?

Discrete Time Impulse Response Coefficients



$$b_i = \frac{y(i) - y_{ss}}{imp \, size}$$

$$b_0 = 1$$

$$b_1 = 2$$

$$b_2 = 3$$

$$b_3 = 2$$

$$b_4 = 1$$

$$b_5 = 0$$

$$b_6 = 0$$

$$b_7 = 0$$

Relationship Between Step and Impulse Response Coefficients

Impulse from step:

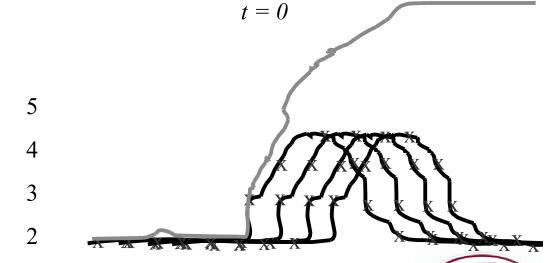
$$b_i = s_i - s_{i-1}$$

Step from impulse:

$$s_i = \sum_{j=0}^{j=i} b_j$$

Think of step
as many impulses!

u(t)



2005 Intermediate Process Control - Gatzke