Basics of Computing
Ed Gatzke, gatzke@sc.edu
"

Computers do exactly what you tell them to do
— Garbage In / Garbage Out
Digital information stored as Os or 1s, low or high voltage
Central Processing Unit (CPU)
— Processes lists of simple instructions:
 Move data from one memory location to another
« Compare two pieces of memory (logic gates)
» Specialized (Math, Graphics, Sound)
Input / Output
— Input: Mouse, Keyboard, File, URL/Online
— Output: Video, Sound, File, Printouts

Hardware Schematic

‘ Speakers |<—>| Sound Chip
I ROM (BIOS) I oC| Graphics
. 1 Card
Peripherals AGP
Keyboard "’l USB CHIP |‘_' CPU —
Mouse Execution Stack
IDE, ATA et
<
‘ L1 CACHE
1 ‘ VRAM ‘
HARD
DRIVES FPU
RAM L2 CACHE SSE ;
‘ Monitor

‘ Network H NIC PCI

Computing Hardware

Differences in hardware

— PC CPU not the same as (old) Mac CPU or Unix box
— x86 (Intel or AMD) vs. PowerPC vs. MIPS vs. Alpha
Differences in operating system

— Windows 95, ME, XP, Vista (usually compatible)

— Apple OSX

— Linux, BSD, Unix

OS is low level program that controls how programs execute
and how components talk

— Hard Drives, Memory, Keyboard, Mouse, Screen
— Binary executable format (.exe on XP) files
— .exe generally won't work on other platforms (exceptions)

Programs

Executable programs are build from “source code”
— Excel, Word, Powerpoint, Explorer, Firefox
Source code is made up of simple building blocks
— Data types (Integers, characters, real numbers, arrays)
— Statements (k=k+1, k=max(x), k=a*b)

— Relational operators (<, >, ==

— Logical Operators (AND, OR)

— Conditional Statements (IF condition THEN do)
— Loops (FOR i=1:10 do, WHILE eps>0.1 do)
Specific syntax differs from language to language
Variable names relate to something in memory

Compiled vs. Interpreted

 Compiled languages (C, C++, Fortran)
— Convert source code to executable format
— Resulting program runs very quickly
— Executable only runs on target OS + hardware

* Interpreted languages (Java, C#, Matlab, MathCad)
— Interpreter compiled for specific OS + hardware
— File is read by interpreter in protected “sandbox”
— Java, C# partial compilation, bytecode
— Matlab, can sometimes compile to executable

Flow Charting of Algorithms

« Algorithm is a method to solve a problem
* Flow charts are graphical representations of algorithms
e Data Input and Output using simple functions

a=input(‘"How many Apples?’)

str=readfile(filename)

print(‘Number must be > 0’)

plot(t,x)

NN
AAANAN

Statements

« Simple execution statements in rectangles

I=1+1

sum=a+b

a=max(x)

c=myfunction(a,b)

Conditional Statements

e |F THEN ELSE statements
e Branches execution flow

Example

ﬁnput(‘What year were you boran

| a=input(‘What year were you born?’)
now=get_the_current_year()
‘ now=get_the_current_year() ‘ age=now-a
| IF (age > 18)
print(“You can vote’)
‘ age=now-a ‘ ELSE
print("You CANNOT vote’)
ENDIF
age>18 Y / print(“You can vote’) /
N

/:Jrint(‘You CANNOT vote’)// >[END]

Variable Trace

* Variables must get some initial value
 Determine values as the program executes

a now age
Initial variable values: null null null

a=input(‘What year were you born?’ 1978 null null

now=get_the current_year() 1978 2006 null

age=now-a 1978 2006 28

IF (age > 18) 1978 2006 28
print(“You can vote’)

ELSE

print(“You CANNOT vote’)
END

Pseudo Code

« Don’t worry about syntax or details
« Conplex general method leaving out specifics

Get input data (may involve many steps, reading files, etc)
Check input data
IF (data Is consistent)
Compute result
Display result
ELSE
Report Error and Stop
END

Data Types

-]
Boolean: TRUE or FALSE

— Sometimes 1=true, O=false

Integers: -2,-1,0, 1, 2, etc.

— Usually limited to some range

Floating Point: 1.43e2 => 143 -4.5e-2 =>-0.045

— sign, exponent (limited), mantissa (limited accuracy)
Characters: ‘X’ 2"'@’ ‘+’

Arrays: a=[2 3 -1 2 3]

— Vector of primitives

Objects: complex data types

— Person.firstname = ‘George’ <- String of Characters
— Person.age = 22 <- integer

Statements

o Usually, each language has a set of base functions

— min, max
— floor round down to nearest int)
— cell round up to nearest int)

— mod(x,y) remainder of x/y

— pow(X,y) find x*y

— sin(x) exp(x)

— length(x) length of a vector, not always used

* You can usually write your own specialized functions
— out=average(xvector)

Conditional Statements

 Check some condition, if met, do something
IF (X<y)
print (‘x is less than y’)
ELSE
print (‘x is NOT less than y’)
END

« PEMDAS Order of Operations
IF ((x-1 < 0) AND (x*y<0))

Use parens liberally in many cases to clarify
IF (((Xx-1) <0) AND ((x*y) <0))

FOR Loops

 FOR: if you know how many times it should execute

X=[1 2 3]
a=length(x) <=anow is 3, not null
FOR I=1:a <=1is 1, then 2, then 3.
print(x(i)) <= this prints 3 times

END

Output:

1 1=1, first element of x

2 1I=2, second element of X

3 1=3, third element of x

x=[1 2 3]
a=length(x)
FOR i=1l:a

print(x(i))
END

FOR Loop

x=[1 2 3]

y

a=length(x) a=3

print(x(i))

y

i=i+1

FOR Loops

 FOR:if you know how many times it should execute

x=[1 2 3]
a=length(x) <= anow is 3, not null
FOR i=1:a <=1Is 1, then 2, then 3.
print(i) <= this prints 3 times
print(x()*x(i)) <= this prints 3 times
END
Output:

Value of i first time through
Value of x(i)*x(i) when i=1
Value of i second time
Value of x(1)*x(i) when i=2
Value of i third and final time
Value of x(i)*x(i) when i=3

© wpr~LDNPEFP P

WHILE Loops

 When you don’t know how many times it must loop
e Must loop until converges, or until told to quit
« Can loop forever if not careful!!

=1
a=input(‘Enter a number > 5’
WHILE (1< a)
I=i+1
END

While Loop

| i=1 |
=1
a=input(‘Enter a number > 5’ | a=input(‘Enter a number > 5’ |
WHILE (i< a) >
I=i+1
END

END

I=i+1

Multiple things in a FOR, WHILE, or IF

e Usually, you can do multiple commands as part of a
FOR, WHILE, or IF.

X=[1 2 3]
a=length(x)
FOR i=1:a
print(i)
print(x(i)*x(i))
print(‘Done with this loop iteration’)
END

e |Finside IF? FOR inside FOR?

Nested IF

a=input(‘Enter any integer’)
IF(a>0)
IF (mod(a,2) ==0)
print(‘Positive even number!’)

ELSE
print(‘Positive odd number!’)
END (This ends the inner IF statement)
ELSE

print(‘Negative number or zero!’)
END (This ends the outer If statement)

Nested IF

a=input(‘Enter any integer’)
IF(a>0)
IF (mod(a,2) ==0)
print(‘Positive even number?!’)
ELSE
a=input(‘Enter any integer’) I print(‘Positive odd number?)
END
ELSE
print(‘Negative number or zero!’)
END

a0 Y

N

<

FOR row=1:3
FOR col=1:3
X(row,col) = row*col

END
END

row col

1

W W WNDNDNDNDNPEP B

1

WNNPFP WDMNPEFEPWDN

Nested FOR

(Ends inner FOR statement)
(Ends inner FOR statement)

(Col is inner loop, iterates through repeatedly)

Resulting x is a 2 dimensional array:

X=

1 2 3
2 4 6
3 6 9

Subroutines

e Sometimes you need to do a few things over and over
* Do not replicate same code over and over
 Make a user defined function

FUNCTION out=average(input)
sum=0 (Initialization is important!)
a = length(input)
FOR i=1:a
sum=sum+input(i) (Counter or summer is important)
END
out=sum/a

Bisection Method

* Given a function of one variable x, find a value of x such
that f(x)=0.
 Assume that you have upper and lower bounds on x
e Assume the function is continuous on your domain
e Assume that f(x) and f(xu) are different signs (+/- or -/+)
— There is at least one zero crossing on your domain

() f(x)

Bisection Method Pseudo Code

Get x| and xu
Determine xm, the midpint using bisection
Determine f(xl), f(xu), f(xm)
WHILE f(xm)"2 > epsilon (while not converged)
IF f(xI) and f(xu) both positive or both negative
Xl=xm
ELSE
XU=Xm
END
Determine new xm and f(xm)
END

Bisection Method Pseudo Code
With error checking

Get xl and xu
Determine xm, the midpint using bisection
Determine f(xl), f(xu), f(xm)
IF f(x]) and f(xu) both positive or negative OR if (xI>=xu)
Display error message and quit
END
WHILE f(xm)"2 > epsilon (while not converged)
IF f(xI) and f(xu) both positive or both negative
Xl=xm
ELSE
XU=Xm
END
Determine new xm and f(xm)
END

% Initialization of epsilon, x|, xu
epsilon = 0.00001
XI=input(‘*Enter lower bound on x’)
xu=input(‘Enter upper bound on x’)
IF (XlI >= xu)
print(‘Error, xI >= xu)
return
END
xm= x| + (xu-xl)/2
fxlI=nonlinearfunction(xl)
fxu=nonlinearfunction(xI)
fxlI=nonlinearfunction(xl)
IF (fxI*fxu > 0)
print(‘f(xl) and f(xu) are both positive or negative’)
return
END

WHILE (fxm*fxm > epsilon)
IF (fxI*fxm >0)

Xl = xm

x| = fxm
ELSE

XU = Xm

fxu = fxm
END

xm = x| + (xu-xl) / 2
fxm=nonlinearfunction(xm)
END
print (‘solution for f(x)=0 Is:’)
print (xm)

Debugging

You will make errors
Try to go through procedure step by step
Visualize what variables have what values at each step
Add print statements to print out values
Get parts working as you expect, then build on that
Try smaller cases, then extrapolate

— FOR 1=1:3 instead of FOR i=1:length(X)
Use good variable names (depends on language)

— Balance between long and short, clarity and typing
— 1 Instead of first_loop _integer_counter
ListOfStudentGrades or list_of grades or list
Add comments to your code!
Try “edge cases” to see If anything breaks

My Method

Get some code to do something (small part of whole)
Test code to see if it runs as expected

Expand code to do something else

Repeat

Don’t just sit down and write a program and hope it
works the first time. Do sections, parts, so you always
have something that works.

Keep versions. Periodically make a backup copy:
program-3.m

After you get it to work, you may need to step back and
redo the whole thing (once you finish, a simple easy way
may be apparet)

