
Basics of Computing
Ed Gatzke, gatzke@sc.edu

• Computers do exactly what you tell them to do
– Garbage In / Garbage Out

• Digital information stored as 0s or 1s, low or high voltage
• Central Processing Unit (CPU)

– Processes lists of simple instructions:
• Move data from one memory location to another
• Compare two pieces of memory (logic gates)
• Specialized (Math, Graphics, Sound)

• Input / Output
– Input: Mouse, Keyboard, File, URL/Online
– Output: Video, Sound, File, Printouts

Hardware Schematic

CPU
Execution Stack

L1 CACHE

L2 CACHE
FPU
SSE

ROM (BIOS)

RAM

HARD
DRIVES

IDE, ATA

Graphics
Card

GPU

VRAM

Monitor

PCI
AGPPeripherals

Keyboard
Mouse

USB CHIP

Sound ChipSpeakers

NICNetwork PCI

Computing Hardware

• Differences in hardware
– PC CPU not the same as (old) Mac CPU or Unix box
– x86 (Intel or AMD) vs. PowerPC vs. MIPS vs. Alpha

• Differences in operating system
– Windows 95, ME, XP, Vista (usually compatible)
– Apple OSX
– Linux, BSD, Unix

• OS is low level program that controls how programs execute
and how components talk
– Hard Drives, Memory, Keyboard, Mouse, Screen
– Binary executable format (.exe on XP) files
– .exe generally won’t work on other platforms (exceptions)

Programs

• Executable programs are build from “source code”
– Excel, Word, Powerpoint, Explorer, Firefox

• Source code is made up of simple building blocks
– Data types (Integers, characters, real numbers, arrays)
– Statements (k=k+1, k=max(x), k=a*b)
– Relational operators (<, >, ==)
– Logical Operators (AND, OR)
– Conditional Statements (IF condition THEN do)
– Loops (FOR i=1:10 do, WHILE eps>0.1 do)

• Specific syntax differs from language to language
• Variable names relate to something in memory

Compiled vs. Interpreted

• Compiled languages (C, C++, Fortran)
– Convert source code to executable format
– Resulting program runs very quickly
– Executable only runs on target OS + hardware

• Interpreted languages (Java, C#, Matlab, MathCad)
– Interpreter compiled for specific OS + hardware
– File is read by interpreter in protected “sandbox”
– Java, C# partial compilation, bytecode
– Matlab, can sometimes compile to executable

Flow Charting of Algorithms

• Algorithm is a method to solve a problem
• Flow charts are graphical representations of algorithms
• Data Input and Output using simple functions

a=input(‘How many Apples?’)

str=readfile(filename)

print(‘Number must be > 0!’)

plot(t,x)

Statements

• Simple execution statements in rectangles

i=i+1

sum=a+b

a=max(x)

c=myfunction(a,b)

Conditional Statements

• IF THEN ELSE statements
• Branches execution flow

Age < 21 Y

N

Example

age > 18 Y

N

a=input(‘What year were you born?’)

now=get_the_current_year()

age=now-a

print(‘You can vote’)

print(‘You CANNOT vote’) END

a=input(‘What year were you born?’)
now=get_the_current_year()
age=now-a
IF (age > 18)

print(‘You can vote’)
ELSE

print(‘You CANNOT vote’)
ENDIF

Variable Trace

• Variables must get some initial value
• Determine values as the program executes

a now age
Initial variable values: null null null

a=input(‘What year were you born?’ 1978 null null
now=get_the_current_year() 1978 2006 null
age=now-a 1978 2006 28
IF (age > 18) 1978 2006 28

print(‘You can vote’)
ELSE

print(‘You CANNOT vote’)
END

Pseudo Code

• Don’t worry about syntax or details
• Conplex general method leaving out specifics

Get input data (may involve many steps, reading files, etc)
Check input data
IF (data is consistent)

Compute result
Display result

ELSE
Report Error and Stop

END

Data Types

• Boolean: TRUE or FALSE
– Sometimes 1=true, 0=false

• Integers: -2, -1, 0, 1, 2, etc.
– Usually limited to some range

• Floating Point: 1.43e2 => 143 -4.5e-2 => -0.045
– sign, exponent (limited), mantissa (limited accuracy)

• Characters: ‘x’ ‘2’ ‘@’ ‘+’
• Arrays: a=[2 3 -1 2 3]

– Vector of primitives
• Objects: complex data types

– Person.firstname = ‘George’ <- String of Characters
– Person.age = 22 <- integer

Statements

• Usually, each language has a set of base functions
– min, max
– floor round down to nearest int)
– ceil round up to nearest int)
– mod(x,y) remainder of x/y
– pow(x,y) find x^y
– sin(x) exp(x)
– length(x) length of a vector, not always used

• You can usually write your own specialized functions
– out=average(xvector)

Conditional Statements

• Check some condition, if met, do something
IF (x<y)

print (‘x is less than y’)
ELSE

print (‘x is NOT less than y’)
END

• PEMDAS Order of Operations
IF ((x-1 < 0) AND (x*y<0))

Use parens liberally in many cases to clarify
IF (((x-1) < 0) AND ((x*y) < 0))

FOR Loops

• FOR: if you know how many times it should execute
x=[1 2 3]
a=length(x) <= a now is 3, not null
FOR i=1:a <= i is 1, then 2, then 3.

print(x(i)) <= this prints 3 times
END

Output:
1 i=1, first element of x
2 i=2, second element of x
3 i=3, third element of x

FOR Loop

i <= a Y

N

x=[1 2 3]

a=length(x) a=3

i=1

i=i+1

print(x(i))

x=[1 2 3]
a=length(x)
FOR i=1:a

print(x(i))
END

END

FOR Loops

• FOR: if you know how many times it should execute
x=[1 2 3]
a=length(x) <= a now is 3, not null
FOR i=1:a <= i is 1, then 2, then 3.

print(i) <= this prints 3 times
print(x(i)*x(i)) <= this prints 3 times

END

Output:
1 Value of i first time through
1 Value of x(i)*x(i) when i=1
2 Value of i second time
4 Value of x(i)*x(i) when i=2
3 Value of i third and final time
9 Value of x(i)*x(i) when i=3

WHILE Loops

• When you don’t know how many times it must loop
• Must loop until converges, or until told to quit
• Can loop forever if not careful!!

i=1
a=input(‘Enter a number > 5’
WHILE (i < a)

i=i+1
END

While Loop

i < a Y

N

i=1

a=input(‘Enter a number > 5’

i=i+1

i=1
a=input(‘Enter a number > 5’
WHILE (i < a)

i=i+1
END

END

Multiple things in a FOR, WHILE, or IF

• Usually, you can do multiple commands as part of a
FOR, WHILE, or IF.

x=[1 2 3]
a=length(x)
FOR i=1:a

print(i)
print(x(i)*x(i))
print(‘Done with this loop iteration’)

END

• IF inside IF? FOR inside FOR?

Nested IF

a=input(‘Enter any integer’)
IF (a > 0)

IF (mod(a,2) == 0)
print(‘Positive even number!’)

ELSE
print(‘Positive odd number!’)

END (This ends the inner IF statement)
ELSE

print(‘Negative number or zero!’)
END (This ends the outer If statement)

Nested IF

a=input(‘Enter any integer’)
IF (a > 0)

IF (mod(a,2) == 0)
print(‘Positive even number!’)

ELSE
print(‘Positive odd number!’)

END
ELSE

print(‘Negative number or zero!’)
END

a>0 Y

N

a=input(‘Enter any integer’)

print(‘Negative number or zero!’)

mod(a,2)
==0

Y

N

print(‘Positive odd number!’)

print(‘Positive even number!’)

END

Nested FOR

FOR row=1:3
FOR col=1:3

x(row,col) = row*col
END (Ends inner FOR statement)

END (Ends inner FOR statement)

row col (Col is inner loop, iterates through repeatedly)
1 1
1 2
1 3
2 1 Resulting x is a 2 dimensional array:
2 2 x= 1 2 3
2 3 2 4 6
3 1 3 6 9
3 2
3 3

Subroutines

• Sometimes you need to do a few things over and over
• Do not replicate same code over and over
• Make a user defined function

FUNCTION out=average(input)
sum=0 (Initialization is important!)
a = length(input)
FOR i=1:a

sum=sum+input(i) (Counter or summer is important)
END
out = sum / a

Bisection Method

• Given a function of one variable x, find a value of x such
that f(x)=0.

• Assume that you have upper and lower bounds on x
• Assume the function is continuous on your domain
• Assume that f(xl) and f(xu) are different signs (+/- or -/+)

– There is at least one zero crossing on your domain

f(x)
f(x)

Bisection Method Pseudo Code

Get xl and xu
Determine xm, the midpint using bisection
Determine f(xl), f(xu), f(xm)
WHILE f(xm)^2 > epsilon (while not converged)

IF f(xl) and f(xu) both positive or both negative
xl=xm

ELSE
xu=xm

END
Determine new xm and f(xm)

END

Bisection Method Pseudo Code
With error checking

Get xl and xu
Determine xm, the midpint using bisection
Determine f(xl), f(xu), f(xm)
IF f(xl) and f(xu) both positive or negative OR if (xl>=xu)

Display error message and quit
END
WHILE f(xm)^2 > epsilon (while not converged)

IF f(xl) and f(xu) both positive or both negative
xl=xm

ELSE
xu=xm

END
Determine new xm and f(xm)

END

Bisection Method Pseudo Code
% Initialization of epsilon, xl, xu
epsilon = 0.00001
xl=input(‘Enter lower bound on x’)
xu=input(‘Enter upper bound on x’)
IF (xl >= xu)

print(‘Error, xl >= xu)
return

END
xm= xl + (xu-xl)/2
fxl=nonlinearfunction(xl)
fxu=nonlinearfunction(xl)
fxl=nonlinearfunction(xl)
IF (fxl*fxu > 0)

print(‘f(xl) and f(xu) are both positive or negative’)
return

END

WHILE (fxm*fxm > epsilon)
IF (fxl*fxm > 0)

xl = xm
fxl = fxm

ELSE
xu = xm
fxu = fxm

END
xm = xl + (xu-xl) / 2
fxm=nonlinearfunction(xm)

END
print (‘solution for f(x)=0 is:’)
print (xm)

Debugging

• You will make errors
• Try to go through procedure step by step
• Visualize what variables have what values at each step
• Add print statements to print out values
• Get parts working as you expect, then build on that
• Try smaller cases, then extrapolate

– FOR i=1:3 instead of FOR i=1:length(X)
• Use good variable names (depends on language)

– Balance between long and short, clarity and typing
– i instead of first_loop_integer_counter
ListOfStudentGrades or list_of_grades or list

• Add comments to your code!
• Try “edge cases” to see if anything breaks

My Method

• Get some code to do something (small part of whole)
• Test code to see if it runs as expected
• Expand code to do something else
• Repeat

• Don’t just sit down and write a program and hope it
works the first time. Do sections, parts, so you always
have something that works.

• Keep versions. Periodically make a backup copy:
program-3.m

• After you get it to work, you may need to step back and
redo the whole thing (once you finish, a simple easy way
may be apparet)

