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6.1 Introduction

The implementation of the nonlinear model predictive control techniques
discussed in the previous chapter requires knowledge of the current state
of the nonlinear system in order to compute the solution to the open-loop
optimal control problem formulated at each control interval. Feedback in
these controllers comes from the update of the current state. Since the full
state of the nonlinear system is not directly measurable in most applications,
some method of reconstructing the current state of the system from the
measured outputs must be employed. In this chapter, several methods of
state estimation for nonlinear systems are presented.

The estimation of the state of a linear system is performed using tech-
niques based on well-established optimal linear estimation theory. Due to
the mathematical complexity introduced by a nonlinear model, nonlinear
optimal state estimation is much less established in practice. However, a
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number of sub-optimal techniques that are computationally tractable have
been proposed for solving the nonlinear problem. Each of these techniques is
based on some simplification of or approximation to the underlying nonlinear
stochastic system. Consequently, they have their associated advantages and
limitations. It is these techniques, which can reasonably be implemented in
real-time applications, that are discussed in this chapter.

We begin with a review of linear state estimation to set the stage for
the nonlinear approaches. Linearized filters for the nonlinear system are
the next topic and include extended Kalman filtering and statistical ap-
proximation methods. Nonlinear observers are then presented followed by
a nonlinear moving horizon state estimator. We close with a brief discus-
sion of combined state and parameter estimation. The goal of this chapter
is to summarize the methods currently available for nonlinear state estima-
tion from an applications-oriented viewpoint. Since these techniques will be
implemented using a process control computer, we emphasize techniques in
which the measured outputs are available at discrete sampling times.

Before proceeding with our discussion of state estimation, let us define
the state, inputs, parameters, and outputs of a nonlinear dynamic system.
The state is the minimum amount of information necessary at the current
time to uniquely determine the dynamic behavior of the system at all future
times given the inputs and parameters. An input is an independent variable
of the system analogous to the forcing function of a dynamic differential equa-
tion. Chemical process examples include the feed rate and composition to a
process unit and the inlet cooling medium temperature to a heat exchanger.
Parameters consist of the physical properties used in the description of the
system. For chemical processes, parameters include thermodynamic proper-
ties such as density and heat capacity, physical dimensions such as volume
and area, and rate terms such as heat transfer coefficients and reaction rate
constants. In the discussion that follows, we assume that the inputs and
parameters of the system are known. An output of the system is a variable
that can be measured directly. Outputs may be either a state variable or
some function of the state. State estimation is the process of determining the
state from the output measurements given a dynamic model of the system.
We illustrate this terminology with the following example.

Ezample 6.1

Consider an exothermic reaction carried out in a perfectly mixed batch re-
actor with a constant temperature cooling coil. The reaction is second-order
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and irreversible in which chemical species A dimerizes to form species B.
A+A—B
The rate of reaction of species A is expressed as follows.
r=—kCa%,  k=koexp(—E,/RT)

The rate coefficient, k, is described by an Arrhenius relation in which kg is the
frequency factor, E, is the activation energy, T" is the reactor temperature,
and R is the gas constant. Heat is generated due to the heat of reaction and
removed via heat transfer through the cooling coil in which AH is the heat
of reaction, V' is the volume of the reactor, and U, A, and T, are the overall
heat transfer coefficient, heat transfer area, and temperature of the cooling
coil.
h=—-AHVEKCA®> +UA(T. - T)

This expression assumes that the heat capacity of the cooling fluid is large
and the resistance through the coil wall is negligible such that the coil tem-
perature remains constant at the cooling fluid temperature.

A dynamic model of the batch reactor can be obtained from mass and
energy balances in which p and C are the density and heat capacity of the
fluid in the reactor, respectively.

% = —koexp(—E,/RT)Cx2 (6.1)
dT AH , UA
- G foexp(—Ea/ RT)C, +VpC(TC T) (6.2)

This model assumes that the heat of reaction, density, and heat capacity are
independent of temperature.

For this batch reactor model, the concentration of species A, Ca, and
the reactor fluid temperature, 7', are the state variables, the cooling coil
temperature, T¢, is the input, and the remaining items are parameters. The
dynamic model consists of the two differential equations in Egs. 6.1 and 6.2
that determine the behavior of the state variables. In a typical application,
the temperature is measured and used to estimate the concentration.

6.2 Linear Systems

In this section, the basic concepts of state estimation are discussed using lin-
ear models. These concepts are extended to nonlinear models in Section 6.4.
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We adopt this approach in order to introduce the topic within a simpler
framework. In addition, several nonlinear state estimation techniques are
based on the application of linear state estimation on a linearization of the
nonlinear model. More information on linear system theory and state esti-
mation can be found in standard linear system theory reference texts such
as Kwakernaak and Sivan [34] and Kailath [26].

6.2.1 Linear System Models

A continuous-time linear system model can be constructed using the follow-
ing system of linear differential equations.

#(t) = Az(t) + Bu(t) (6.3)
y(t) = Caz(t)

This representation is referred to as a linear state-space model in which y €
RP is the output, u € R™ is the input, z € R™ is the state of the system, and
Ae R B e R™ and C € RP*" are the system matrices. We restrict
the input to bounded, integrable functions in the following discussion.

If the output measurements are available only at equally spaced time
intervals or sampling periods, referred to as At, a discrete linear state-space
model can be used to describe the dynamic behavior of the system. In this
chapter, we represent discrete-time models with the discrete time index k
specified as a subscript and the system matrices denoted by an overbar.

Thr1 = z((k+1)At) = Azy, + Buy, (6.4)
ye = y(kat) = Cuxy

The discrete-time system matrices are obtained from the continuous-time
matrices in Eq. 6.3 as follows.

At
A = Al B= (/ eATdT> B, 0=
0

The difference equation in Eq. 6.4 is valid when the input remains constant
over the sampling period and the output is sampled at the same time the
input is injected [34]. Due to the long process response times for most
chemical processes, sampling periods much larger than the computational
time required by the controller are used. Therefore, the validity of Eq. 6.4
typically can be assumed for chemical process computer control applications.
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The linear system models presented in Egs. 6.3 and 6.4 are referred
to as time-invariant since the system matrices are independent of time. For
continuous-time systems, time-varying models, in which the system matrices
are functions of time, are represented as follows.

z(t) = A(@t)z(t) + B(t)u(t) (6.5)
y() = C(b)=(t)
For the discrete-time system in Eq. 6.4, the time dependence of the system
matrices is represented by a subscript indicating the discrete time index.
Tht1 = Apzi + Brup (6.6)

s = C_'kmk

6.2.2 Observability of Linear Systems

Before proceeding with a discussion of state estimation, we first consider
whether it is possible to estimate the state from the output measurements
for a given linear system model. If C' = 0, for example, state estimation
is clearly not possible because the output measurements are always zero
and contain no information about the state. A system in which the state
can be determined uniquely from the output measurements is referred to as
observable. Observability for linear systems is a global property of the system
matrices that does not depend on the specific state, input, or output values.
A characterization of observable linear systems is developed as follows.
Consider the output of the discrete linear system in Eq. 6.4 at successive
sample times up to sample time k& = n — 1. The outputs are related to the
initial state of the system, x, and the previous inputs, {ug,u1,...,un—2}.

Yo = Cxo
Y, = CA(L'() + CB'U,()
Yys = CA2£E0 + CABU() = C_'Bul

Yn—-1 = éAn—lmo =+ C’An_QB’U,O R OBun_Q

These relations can be combined into a linear system of equations, Ozg = ),
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in which the pn x n matrix O is called the observability matriz.

C Yo
_ CA ~CB
o=| "7 |, y=| "™ 6.7)
cAv-1 Yn-1 — CA" 2Bug — ... — CBuy_y

The initial state zg can be determined uniquely if O is full rank. In this
case, the linear system in Eq. 6.4 is observable or reconstructable. Since O
is constructed from only A and C, (C, A) is referred to as observable. If
O is not full rank, any initial state with a component in the null space of
O cannot be uniquely determined from the output measurements. In this
case, the linear system in Eq. 6.4 is not observable and the null space of O
is called the unobservable subspace of the linear system. If the unobservable
subspace does not contain unstable modes of A, the system is detectable.
The linear system model in Eq. 6.4 can be transformed into observer
canonical or modal form using the nonsingular transformation matrix V.
This transformation matrix is partitioned into the observable and unobserv-
able subspaces of the linear system. The observable subspace, V,, is com-
posed of the basis vectors of the range of @. The unobservable subspace,
Vu, is composed of the basis vectors of the null space of O.
w=Va, V= [ Vo ] , 2oyl = XfAv-lzk + V Buy,
WV e = ¢ V‘lzk

The advantage of observer canonical form is that the observable modes, z°,
and the unobservable modes, 2%, are apparent by inspection of the parti-
tioned system.

Zk41 _ “;io 0~ z,
Zpiq A A, 2y
. zk

w = e o] | %]

Since the canonical form is generated by a similarity transform that results
in a lower triangular matrix, the characteristic values of the system are com-
posed of the eigenvalues of A, and A,. The linear system is detectable if and
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only if the eigenvalues of A,, which are the characteristic values of the un-
observable modes, have moduli strictly less than one. Detectability ensures
that the modes of the system that cannot be observed or reconstructed from
the output measurements are stable.

The continuous-time linear system in Eq. 6.3 is observable if there exists
some d, 0 < § < oo, such that the state z(t — §) can be uniquely determined
from y(7) and u(7) for all u(7) and t —§ < 7 < t. It can be shown that
when the observability matrix in Eq. 6.7 is constructed from the continuous-
time system matrices A and C, the same conditions for observability and
detectability apply for continuous-time systems. A proof using the deriva-
tives of the output and following an argument similar to that presented here
for discrete-time systems is available in [26]. The continuous-time observer
canonical form is constructed in the same manner as that for discrete-time
systems. In this case, the system is detectable if and only if the eigenvalues
of A, are strictly negative.

For time-varying linear systems, the conditions for observability are more
complicated and involve the state transition matriz, ®, and the observability
Gramian matriz, M. The time-varying, continuous-time system in Eq. 6.5
is observable if and only if for all ¢ > 0 there exists a o > 0 such that the ob-
servability Gramian matrix M (¢t — o,t) is nonsingular. The continuous-time
observability Gramian is a symmetric, nonnegative definite matrix computed
from the state transition matrix ®(¢,1,).

¢
M(t—-o,t) = T (r,t —o)CT(1)C(r)®(r,t —0)dr  (6.8)
t—o

The continuous-time state transition matrix is the solution to the matrix
differential equation

dd(t,t

—(dt;‘) = AWB(tt,),  Bltote) =1 (6.9)
that describes the dynamic behavior of the following unforced or autonomous
linear system.

2(t) = A(t)a(t), a(t) =0, §,)=(ls)

Note that when A is a time-invariant matrix, the state transition matrix can
be determined from the matrix exponential for A in Eq. 6.4.

The time-varying discrete linear system in Eq. 6.6 is observable if and
only if for every k there exists a j < k—1 such that the discrete observability
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Gramian matrix

k
M@G,k) = S @7(,j+1)CCi®(i,j + 1) (6.10)
i=j+1

is nonsingular. The observability Gramian matrix is computed using the
discrete state transition matrix, ®(k, j), which is the solution to the following
difference equation.

(k+1,5) = A(k,j), 2G5 =1 (6.11)

This matrix describes the dynamic behavior of the autonomous discrete lin-
ear system.
Tpiil = Apmg, zy = Bk, 0)ag

A more detailed discussion of observability for linear systems can be found
in Kwakernaak and Sivan [34] and Kailath [26].

6.3 Linear State Estimation

We denote estimated variables with the symbol “"”. Since these variables
are determined using the output measurements, we will also indicate the time
index of the output measurements along with the time index of the estimate.
For the discrete-time system in Eq. 6.4, Z;; represents the estimate of the
state at sample time j given output measurements up to sample time k. For
continuous-time systems, Z (7 | k) represents the estimate of the state at time
T given discrete output measurements up to sample time k.

The estimate Z; is a smoothed state estimate when j < k, a filtered
state estimate when j = k, and a predicted state estimate when j > k. The
filtered estimate is the current estimate based on all of the available output
measurements. It is this estimate of the state that is normally used for con-
trol applications. Predicted estimates are obtained by using the model in
Eq. 6.4 to extrapolate the filtered estimate into the future. These estimates
typically are used to compute the objective or cost function in model predic-
tive control formulations. Smoothed estimates are based on both past and
future output measurements and provide a more accurate estimate than the
filtered estimate. Smoothed estimates usually are computed off-line from
previously collected process data and used in process analysis and diagnosis.
For continuous-time systems, the estimate Z (r| k) is a smoothed estimate
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when 7 < kAt, a filtered estimate when 7 = kAt, and a predicted estimate
when 7 > kAt.

A very simple conceptual approach to discrete linear state estimation is
to solve Eq. 6.7 for the unknown initial state zy. The filtered state at sample
period k is then easily computed from the known inputs. However, in any
practical application there are unmeasured disturbances present such that
the solution to Eq. 6.7 may not exist or may result in an unreliable estimate.
Therefore, an approach that considers disturbances in the determination of
the state estimate is more useful.

6.3.1 Least Squares Estimator

We assume that disturbances to the state and measurement can be repre-
sented by additive terms to the state-space model. The discrete linear system
in Eq. 6.4 with disturbances is expressed as

Thy1 = Azp+ Bug +wy (6.12)
Yp = C_'Svk + vg

in which w € R"™ is the process or state disturbance vector and v € R? is
the measurement disturbance vector. The process disturbance vector models
unmeasured disturbances to the process that effect the state. The measure-
ment disturbance vector represents the error in the measuring device caused
by instrument noise.

One approach that can be considered to estimate the state of the system
in Eq. 6.12 is to minimize the estimated process and measurement distur-
bances in a least squares sense. The following least squares minimization
problem is solved to obtain an estimate of the initial state for the discrete
linear system with disturbances.

k-1 k
: ~T = A I oF el
_ min Wl Qo D 1k + Y D@ M + Y 0 R 05 (6.13)
{w—l|k""1wk—1|k} j=0 j=0
ok = To+ o1
Subject to: i’j+1|k = A.’ftﬂk + Bug + le[k
Uik = Y — CZjjk

In this approach, Zg is the estimate of the initial state given k output

measurements, Zo is an a priori estimate of the initial state, w; are the
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estimated state disturbances in which @_;; is a correction to the a priori
estimate, and 9, are the estimated measurement disturbances. The weight-
ing matrices, Qg 1 Q71, and R™!, specify the relative contribution of each
of the terms in the quadratic objective. The inverse is used for notational
consistency in the succeeding sections.

The optimal solution to this least squares problem at time k, u”)}f’ %> 15 used
to compute the state estimate at time j given the k output measurements,
Z |k, as follows.

J ) 9
Biw = AlBo+ Y AT+ AT Bui (6.14)

This expression computes a smoothed state estimate when j < k, a filtered
state estimate when j = k, and a predicted state estimate when j > k.

The choice of the coefficients in the weighting matrices is a compromise
between minimizing the estimated process disturbances versus minimizing
the estimated measurement disturbances. This choice is based on the ex-
pected magnitudes of each of these disturbances. If the output measure-
ments are reliable, then R~! is chosen to be large relative to Q~!. This
choice tends to reduce the deviations between the measured output and the
predicted output by increasing the estimated process disturbances. In this
case, process disturbances are estimated to bring the model into agreement
with the output measurements. On the other hand, if the output measure-
ments are poor, then R™! is chosen to be small relative to Q1. This choice
prevents uncertain measurements from causing large estimated state distur-
bances. In this case, the model is assumed to be a more reliable indication
of the state than the output measurements.

6.3.2 Recursive Estimation

The least squares approach presented in the previous section is referred to as
non-sequential or batch estimation. It requires the solution of a least squares
problem using all k previous output measurements to obtain a filtered state
estimate at each sample time. As time progresses, the number of decision
variables in this optimization problem quickly becomes prohibitive, making
it a rather cumbersome procedure that cannot be implemented in practice.
However, a sequential or recursive solution to the batch estimation problem
posed in Eq. 6.13 that requires information only from the previous sample
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time can be constructed.

Sk = Zrjp—1 + Le(ye — Crp—1) (6.15)
i’k+1|k = A:ﬁk“c -t Buk (6.16)
Zoo = Zo

The filtered state estimate is computed from the predicted state estimate and
the output measurement at each sample time. A gain matrix, L, multiplies
the difference between the current measured output, yx, and the predicted
output, C_':ik| k—1, to form a correction to the predicted state estimate. The
gain matrix is a function of the system and weighting matrices used in the
batch least squares estimator as shown in the following section.

6.3.3 Kalman Filter

The least squares recursive estimator in Eq. 6.15 can also be derived by
minimization of the mean square reconstruction error [2]. The reconstruction
error is a measure of the deviation between the actual and estimated state.

€klk—1 = Tk — Tkjk—1 (6.17)

When w; and v; are independent, zero mean, normally distributed random
variables with covariances ) and R, respectively, and Zy is an independent,
normally distributed random variable with covariance (), the recursive esti-
mator in Eq. 6.15 produces the minimum variance estimate of the state. For
linear Gaussian systems this is also the most probable or mazimum likeli-
hood estimate. This recursive estimator is referred to as the discrete Kalman
filter. A detailed probabilistic derivation of the Kalman filter can be found
in Jazwinski [25] and Lewis [36].

In the probabilistic formulation, the covariances specify the expected
magnitudes of the disturbances to the output measurement and the state.
If the covariance of the measurement noise, R, is small relative to the co-
variance of the process noise, ), the measurements are relatively noise free
and the deviations between the measured output and the predicted output
should be small. If the measurement noise covariance is large relative to the
process noise covariance, the measurements are relatively uncertain and the
feedback correction to the model prediction should be small.

The probabilistic approach provides a rigorous way to determine the tun-
ing parameters for the estimator provided that the assumptions concerning
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the stochastic process are valid and the covariances are known or can be
determined. The filter gain is computed at each sampling time using the
covariance of the state estimate in Eq. 6.16, which we denote as P.

L, = PCT(CPCT+R)™ (6.18)
This covariance is propagated using the discrete filtering Riccati equation.
Piy1 = APAT + Q- APCT(CP.CT + R)“1ICP AT  (6.19)
B = Qo

The Riccati equation contains a term, AP, AT +@Q, that increases the covari-
ance of the state estimate at each sampling time due to the presence of state
or process noise. The remaining term represents the contribution due to the
output measurement and generally decreases the covariance. The recursion
in Eq. 6.19 tends to a constant matrix at large k when (C, A) is detectable,
Q@ and R are positive definite, and Qg is non-negative definite.

Py = A(Po — PoCT (CPyCT + R)1CP)AT +Q (6.20)

This matrix is called the steady-state discrete filtering Riccati matrix. The
steady-state Kalman filter gain is computed by using P, in Eq. 6.18.

For the time-varying discrete linear system in Eq. 6.6, the optimal filter
gain is computed from the solution of the discrete filtering Riccati equation
at each sampling time using the following expressions.

Ly = P,CF(CPCT +R)™ (6.21)
Piyn = APAR + Q — APCF (CyPCT + R)T'Cu P AT (6.22)
Py = Qo

There is no general steady-state solution to this Riccati equation or steady-
state filter gain for time-varying systems.

A stochastic model for the time-varying, continuous-time linear system
in Eq. 6.5 can also be constructed.

i) = A@®)z(t) + Bt)u(t) +w(t) (6.23)
y(t) = Ct)z(t) +o(t)
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When v(t) € R and w(t) € R" are independent, zero mean, white noise
processes with spectral densities ) and R, respectively, a continuous-time
Kalman filter similar to that for discrete systems is obtained [21].

Btt) = A@®&(t|t)+B@)u®) + L) (y(t) - C)E(t|t)  (6.24)
Lit) = PH)CH)TR™ (6.25)
Pt) = A@)P@®)+PH)A®)T +Q — Pt)Ct)TR™'C(t)P(t) (6.26)
P0) = Qo

The result in Eq. 6.24 is the minimum variance filtered estimate in which
the filter gain, L(t), is computed via the differential equation in Eq. 6.26 and
P(t) is the covariance of the state estimate Z(¢ | t). There is again a term for
the increase in the covariance due to the presence of state noise, A(t)P(t) +
P(t)A(t)T+Q, and a remaining term, P(t)C(t)T R~1C(t) P(t), that generally
decreases the covariance due to the contribution of the measurement.

The Kalman filter in Eq. 6.15 for discrete-time systems or Eq. 6.24 for
continuous-time systems produces the minimum variance and maximum like-
lihood state estimate provided that the assumptions concerning the stochas-
tic process are valid. In this case, the Kalman filter is the optimal linear
state estimator. It is nominally stable provided R is positive definite, @)
and @ are positive semidefinite, and the corresponding linear system is de-
tectable. Nominal stability ensures that the filtered state will converge to
the true state in the absence of disturbances for any initial reconstruction
error given an exact model of the process.

In addition to the standard linear system references previously cited,
optimal linear state estimation is discussed in Astrom [2] and Bryson and
Ho [8]. A discrete-time presentation is provided in Catlin [10]. A discussion
of square-root algorithms, which result in more accurate numerical compu-
tations, is presented in Park and Kailath [50]. An excellent practical review
of linear filtering and smoothing is contained in Gelb [21].

For the linear discrete-time optimal estimator, the gain in Eq. 6.15 must
be computed at each sampling time. A common approximation to the op-
timal estimator that avoids this computation is to use the steady-state so-
lution of the discrete filtering Riccati equation in Eq. 6.20 to determine the
steady-state Kalman filter gain matrix. The steady-state gain is then used
at each sampling time. Another common approximation is to discontinue
the update of the gain matrix at a given sample time and use this gain at
each successive sampling time. This technique avoids the computation of
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the steady-state gain matrix, but does not guarantee nominal stability when
the gain calculation is stopped at an arbitrary sample time [15].

6.3.4 Luenberger Observer

Another method of constructing a recursive estimator is to use a constant
gain matrix in Eq. 6.15 that achieves some desired performance criteria.

Eke = Bkp—1 + Lye — Clpp—1) (6.27)

The performance criterion is based on the dynamic behavior of the recon-
struction error and ignores the stochastic properties of the disturbances wy
and vg. This recursive estimator is referred to as a deterministic or Luen-
berger observer [40]. For discrete-time systems, the observer is nominally
stable if and only if the eigenvalues of the n x n matrix A — ALC have mod-
uli strictly less than one. This result comes from the dynamic response of
the reconstruction error from an initial nonzero value with no disturbances.

err1 = (A—ALC)e (6.28)

The gain matrix can be determined by choosing the eigenvalues of A — ALC,
which are referred to as the closed-loop observer poles. This technique is
referred to as pole placement and requires that the system be observable.
If the gain is chosen such that all of the eigenvalues are zero, the result
is a deadbeat observer. The choice of the observer poles is a compromise
between rapid decay of the reconstruction error, which requires that the
poles be placed close to the origin, and sensitivity to measurement noise and
modeling error, which increases as the poles are moved toward the origin.

An observer for continuous-time systems can be constructed analogous
to that for discrete-time systems. The reconstruction error for the estimate
in Eq. 6.24 behaves as follows.

e(t) = (A—LQC)e(t) (6.29)
e(t) = z(t)—&(t|¢t)

In this case, stability of the observer requires that the gain be selected such
that the eigenvalues of A — LC', which are the closed-loop observer poles, are
strictly negative. As the poles are moved further into the left half plane, the
rate of convergence of the reconstruction error increases. For the continuous-
time observer, there is also a compromise between the rapid decay of the re-
construction error and sensitivity to measurement noise and modeling error.
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The Luenberger observer is a deterministic estimator that is employed
when the stochastic model of the process is unknown or if the optimal filter
exhibits poor performance. It can also be employed to reduce the computa-
tional requirements of the estimator. For modern chemical process control
applications, however, computational time is generally not an issue with
linear systems except in large-scale applications. Further discussion of ob-
servers for linear systems can be found in Kwakernaak and Sivan [34] and
Kailath [26].

6.3.5 Moving Horizon Estimator

A recursive form of the batch state estimation problem in Eq. 6.13 can be
constructed using a moving horizon approach. In this approach, the state
estimate at time £ is determined recursively from the solution of the following
least squares problem that uses the predicted estimate at time & — N — 1,
Zx_N|k—N—1, and the most recent N + 1 output measurements.

. T o
R min _ Wi N1k Pe- NDk—N-1]k (6.30)
{@k—N—1]kse s Ph—1]k }

k-1 k
AT A—1 & ~T p—1a
+ D WQ B+ Y O R

Zr_Nk = ZTp-Nk-N-1+ Dp_N_1k
SubJect to: j:j+1|k = Ai‘ﬂk‘ = B’LL] -+ 'LZJ]I]C
v]lk — y] o Cil']lk

The moving horizon of output measurements allows for a finite number
of decision variables at each sampling time. This procedure is initialized
by computing the first N predicted estimates using the batch estimator in
Eq. 6.13. The state estimate at time n + j given k output measurements, in
which n = k — N, can then be computed from the predicted state estimate
at sample time n and the solution of the least squares problem in a manner
similar to the batch estimator.

: i I
£n+j|k = Aj:in|n—1 ey EA]_zu/):L—l—kﬂk + Z A’ Bugy 144 (6.31)
1=0 i=1

This expression computes a smoothed state estimate when j < N, a filtered
state estimate when j = N, and a predicted state estimate when j > N. It
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can be shown that the filtered estimate from the moving horizon estimator
is the optimal filtered estimate for the discrete stochastic linear system in
Eq. 6.12 in which vg, wg and Z follow the same assumptions made in the
Kalman filter, the weighting matrices Q! and R~! are the inverses of the
covariance matrices for wy and v, respectively, and the weighting matrix
Pk__lN is the inverse of the discrete filtering Riccati matrix at sampling time
k — N [47]. This matrix is the covariance of the state estimate Zj_yjx—n_1
and is computed using the recursion in Eq. 6.19.

Constraints

Since the moving horizon estimator produces the same estimate as the
Kalman filter, there is no incentive to implement this approach due to the
increased computational effort required to solve the least squares problem in
Eq. 6.30. The motivation for employing the moving horizon formulation is
the addition of constraints on the estimated states and state disturbances.

hoin € HEjjk S hpay §=k—=N+1,...,k (6.32)

Win S u’}]lk Swmaxa J :k—N,,k— 1 (633)

The estimated state constraint in Eq. 6.32 specifies maximum and minimum
limits on the estimate of the state. These constraints are applied to pre-
vent physically unrealistic state estimates, such as negative concentrations,
that can be due to spurious output measurements. The estimated state
disturbance constraint in Eq. 6.33 specifies limits on the estimated state
disturbances. These limits can be viewed as altering the probability distri-
bution function of the state disturbances such that the probability of any
state disturbance outside of the constraints is zero. This constraint prevents
estimated state disturbances that cannot realistically occur in the process.

The constraints are chosen to define a convex region in the w space con-
taining the origin. For systems forced by an input, the state constraints are
shifted by the nominal trajectory due to the input. A feasible constraint
set can always be achieved since w;_y_1jx is unconstrained at each sample
time. Due to these constraints, this formulation is a nonlinear estimator for
the linear system that requires the solution of the quadratic program con-
sisting of Egs. 6.30 through 6.33. Muske et al. [47] construct this constrained
moving horizon observer quadratic program. Meadows et al. [43] present an
example of moving horizon constrained state estimation in a linear model
predictive control application.
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6.4 Nonlinear Systems

Our presentation of nonlinear state estimation parallels the discussion for
linear systems in the previous section. We begin with a definition of ob-
servability for nonlinear systems. Nonlinear recursive filters and observers
analogous to the linear estimators follow. We then present nonlinear moving
horizon state estimation. Combined state and parameter estimation, a topic
not addressed in our presentation of linear systems, followed by a summary
of the nonlinear state estimation techniques closes our presentation.

Nonlinearity introduces additional complexity to the state estimation
problem. This complexity applies to the derivation as well as the imple-
mentation of the nonlinear state estimator. Since the optimal estimator
generally is not available for the nonlinear problem, nonlinear techniques
are based on sub-optimal approaches. These approaches lead to estimators
that are quite different from each other. There are also restrictions on the
nonlinear systems that each approach can adequately address.

6.4.1 Nonlinear System Models

Continuous-time nonlinear systems are described by the following nonlinear
system of differential equations in which y(t) € P is the output, u(t) € ™
is the input, z(t) € R™ is the state of the system, f : 7 x R™ x RT — R" is
the system function, and g : " x Rt — R™ is the measurement function.

#f) = Hzyui) (6.34)

y(t) = gl

We assume that the model parameters are known and do not include them
in the argument list for the system and measurement functions. We also
restrict the input to bounded, integrable functions. Discrete-time nonlin-
ear systems are described by the following difference equation in which the
discrete system function is f : 7 x ™ x Z+ — R" and the discrete mea-
surement function is g : " x Z+ — R™.

T+l = f(.’Ek,’LLk,k) (635)
e = &z, k)

In general, there exists no functional representation for the discrete sam-
pling of a continuous-time nonlinear system such as Eq. 6.4 for linear sys-
tems. In this case, the continuous-time nonlinear model in Eq. 6.34 with
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a discrete sampling period is used to model the system as a discrete pro-
cess. The output at each sample time is determined from the solution of the
nonlinear system of differential equations.

#r) = Halr)ulr)r) z (kAt) = xp, (6.36)
Tp+1 = z((k+1)At)
Ye = g(xk:a kAt)

When the input remains constant over the sampling period, u(7) can be
represented as a discrete input in which k is the discrete sampling time.

u(r) = ug, kAt <1 < (k+1)At (6.37)

Although we assume a uniform sampling period in the following discussion,
we are not restricted to this assumption.

6.4.2 Observability of Nonlinear Systems

Observability of a linear system is a global property that can be determined
either from the rank of the observability matrix for time-invariant systems
or from the rank of the observability Gramian matrix for time-varying sys-
tems. In contrast, observability of a nonlinear system is determined locally
about a given state or equilibrium point. In this section, we present a brief
description of the requirements for local observability of nonlinear systems.
The reader is referred to Hermann and Krener [22], Sontag [57], and Krener
and Respondek [33] for a more detailed discussion on continuous-time sys-
tems. A further discussion on discrete systems is contained in Nijmeijer [49],
Keerthi and Gilbert [28], and Lee and Nam [35].

Continuous-time Systems

Let y(t,t0,x0,u(t)) denote the output trajectory from an initial state zg,
initial time #p, and input u(t) for the continuous-time nonlinear system
in Eq. 6.34. Two states z¢p and 29 are defined to be indistinguishable if
y(t,to, zo,u(t)) = y(t,to,z0,u(t)) for to <t < T, T < oo, and all admissible
input trajectories u(t). The nonlinear system is observable at zg if the set of
states indistinguishable from z¢ contains only zo [22]. A nonlinear system
is observable if it is observable at z for all z € R". A weaker form of ob-
servability is obtained if we require that it only be necessary to distinguish
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zo from its neighbors. In this case, a nonlinear system is weakly observable
at zg if there exists a neighborhood 8™ of xg such that the set of states in
S" that are indistinguishable from z( contains only zo [22]. A nonlinear
system is weakly observable if it is weakly observable at z for all z € R".
These are global concepts of observability in which it might be necessary to
compute a trajectory that is very far from zo or in which T is very large.
By also restricting the state trajectories to a neighborhood of zg, local 0b-
servability can be defined. A nonlinear system is locally weakly observable at
xo if for every neighborhood X" of zy there exists another neighborhood &"
contained in X" such that the set of states in S™ that are indistinguishable
from z¢ for all input trajectories in which z(t,to, z0,u(t)) € X™ and 2o € S™
contains only zg [57]. This definition is slightly different from that presented
in [22]. A nonlinear system is locally weakly observable if it is locally weakly
observable at x for all z € R".

Local weak observability implies that states close to zy are distinguish-
able from zy without large excursions. The advantage to this concept is
that a linearized algebraic test similar to that for linear systems can be de-
veloped. The nonlinear system in Eq. 6.34 is observable at xg if there exists
a neighborhood of zy and a p-tuple of integers (k1, k2, ..., kp), referred to as
observability indices, such that

Dzkez o220, Tl . k=n

ii) The n row vectors of {Li;_l(dgi) § 4= Leon 38 J = Lo ) G
linearly independent.

in which pr (dg;) is the jth Lie derivative of the gradient of g; by the vector
field f [33]. An observability matrix can be constructed using the row vectors
L]f_l(dgi) in which full rank of this matrix implies local weak observability.

0 = [Lj’:l(dgi)], i=1,...,p j=1,...,k (6.38)

Note that when f and g are linear functions, this matrix is equivalent to the
observability matrix for continuous-time linear systems. If the continuous-
time system in Eq. 6.34 is observable, the continuous-time system with dis-
crete measurements in Eq. 6.36 is also observable for sufficiently small sam-
pling periods [57]. Certain unobservable systems can be decomposed into
local observable and unobservable subspaces by a state transformation [62].

A simpler observability test that is commonly applied to nonlinear sys-
tems can be constructed by linearizing the system about zy using the first
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order terms of the following Taylor series expansion [52].

z = f(zo,u,t)+ & (z—=z0) + ... (6.39)
o —
_ 9g
y = gl@o,t)+ 5~ e (z — o) +

Observability is determined using the linear system techniques discussed in
Section 6.2.2 with the linearized system matrices A(t) = 8f/0z and C(t) =
Og/0z. Note that this is an approximation to the nonlinear observability
matrix presented in Eq. 6.38. Observability of this linearized system may
not imply local weak observability of the original nonlinear system.

Discrete-time Systems

For the discrete nonlinear system in Eq. 6.35, consider any admissible input
sequence {ug,u1,...,ux—1} and an initial state zo. Let z;, j = 1,...,k,
denote the state sequence generated by the model, z; = f Ly, W~
1), and y;(zo) denote the output trajectory corresponding to zg, y;(zo) =
g(zj,7). Two states zop and 2o are indistinguishable if y;(zo) = y;(20) for
all j and all admissible input sequences. A nonlinear system is observable
at zo if the set of states indistinguishable from z( contains only zo [49].
This definition of observability requires an infinite test and, therefore, is
not useful in practice. A finite time test can be constructed in which the
discrete nonlinear system is finite time observable or strongly observable at
zo if for all zp € R™ and any admissible input sequence {ug,u1,...un—1},
yj(20) = yj(z0), 7 =1,...,n — 1 implies zo = zo. The system is strongly
observable if it is strongly observable at x for all z € R". A local concept
of observability for discrete systems can also be defined if we require that
it only be necessary to distinguish z( from its neighbors. In this case, the
discrete nonlinear system is strongly locally observable at xq if there exists
a neighborhood 8™ of z such that for all zp € S™ and all admissible input
sequences, ¥;(20) = yj(®0), j = 1,...,n—1implies zg = z [49]. The system
is strongly locally observable if it is strongly locally observable at z for all
z € R".

A stronger observability condition than finite time observability is uni-
form observability. The discrete nonlinear system in Eq. 6.35 is uniformly
observable at zg if for all zg € ®™ and all admissible input sequences, there
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exists an N € [n — 1,00) and a function a : R+ — R such that

N
> llyi(zo) — yj(z0)ll = e(llo — 2ol) (6.40)
j=0

in which a is a continuous, increasing function with a(0) = 0 [46]. The
system is uniformly observable if it is uniformly observable at z for all z €
R™. This condition is similar to the uniform observability property in [28]
and is a weaker discrete-time version of that presented in [44].

A linearized algebraic test for strong local observability of discrete non-
linear systems is developed as follows. The discrete nonlinear system in
Eq. 6.35 is observable at z if there exists a neighborhood of g and a p-tuple
of integers k1 > k2 > ... > kp > 0, Zle k; = n such that the observability
matrix O for the discrete nonlinear system is full rank in which F? is the ith
composite of the system function f [35].

gi(zo)

= .51
o=|:1| @0=2 g’(Fz(mO)) (6.41)

gi(F*!(z0))
When f and g are linear functions, this matrix is equivalent to the discrete
linear system observability matrix in Eq. 6.7.

Summary of Nonlinear Observability

Observability of nonlinear systems is determined by a linearized test that is
only guaranteed within a neighborhood of zy. This neighborhood may be
arbitrarily small or may extend over the entire operating range of interest.
Ray [52] states that observability of nonlinear systems is often determined by
the structure of the system and is not dependent on the state in a complex
manner. Consequently, linearized observability tests are usually adequate.
An additional complexity with nonlinear systems is that the observability
matrix can be a function of the input. In these cases, observability must be
verified for all admissible inputs since there may exist input values for which
the nonlinear system looses observability. For a number of practical cases,
however, the system is observable independent of the inputs. These systems
are referred to as observable for any input. Gauthier et al. [20] present a
characterization of these systems using single input—single output models.
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Ezample 6.2

Consider the batch reactor model presented in Example 6.1. The nonlinear
observability matrix in Eq. 6.38 is constructed as follows.

0 1
AH E AH 2 UA
_2p_CkCA —W—park'CA e V_pC

When Ca # 0, the nonlinear observability matrix is full rank and the system
is observable. In this example, the system is observable for any input since
the observability matrix is not a function of the input. Note that the same
observability matrix is obtained from the linearized model using Eq. 6.39.

6.5 Nonlinear Recursive Filters

The optimal linear filter in Eq. 6.15 produces the minimum variance and
maximum likelihood estimate of the state of the linear system in Eq. 6.4. To
develop a nonlinear analogy, one must first specify which estimate is desired
since they may not be the same for a nonlinear stochastic system. The min-
imum variance estimate is the conditional mean of the state. The maximum
likelihood or Bayesian estimate is the conditional mode or most probable
estimate. These estimates are determined from the conditional probability
density of the state given the output measurements. The conditional proba-
bility density of the state of a linear system with Gaussian noise is Gaussian
and completely determined by the mean and covariance. For a nonlinear
system, the conditional probability density of the state is not Gaussian even
when the state and measurement disturbances, w(t) and v(t), are Gaussian.
The determination of the conditional probability requires that Eq. 6.34 be
represented as a vector nonlinear stochastic differential equation.

dz(t) = f(z,u,t)dt+dg

4f
dt

The evolution of the conditional probability is determined by the use of
stochastic calculus and, in general, requires some approximations in order
to obtain an implementable filter.

These techniques are beyond the scope and intent of the discussion here.
We refer the interested reader to the following references for more informa-
tion. A Bayesian approach to stochastic state estimation for both linear and

= wli)
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nonlinear systems is discussed in Ho and Lee [23]. A detailed discussion
of the probabilistic approach to nonlinear state estimation is presented in
Jazwinski [25]. An overview is provided in Bryson and Ho [8]. A brief review
of the stochastic calculus concepts necessary to understand these techniques
is provided in Marcus [42].

6.5.1 Extended Kalman Filter

A straight-forward approximation to optimal nonlinear state estimation is to
linearize the nonlinear model about a given operating point and apply opti-
mal linear state estimation to the linearized system. The extended Kalman
filter computes a state estimate at each sampling time by the use of Kalman
filtering on a linearized model of the nonlinear system. This technique is jus-
tified if there exists a sufficiently large neighborhood in which the linearized
model is a good representation of the nonlinear system. If, in addition, the
disturbances are well represented by zero mean Gaussian state and mea-
surement noise, the optimal estimate for the linearized system should be a
reasonable approximation to the optimal estimate for the nonlinear system.
In this case, extended Kalman filtering is expected to provide an accurate
estimate of the state of the nonlinear system.

A linearized model of the continuous-time system in Eq. 6.34 about the
state * can be developed from the Taylor series expansion in Eq. 6.39. De-
pending on the selection of z*, several variations of the extended Kalman
filter can be developed. The most common approach is the first order filter
in which the nonlinear system is linearized about the current state esti-
mate at each sampling time using the first order terms in Eq. 6.39. More
complex approaches that attempt to compensate for the inaccuracy caused
by linearization, such as iterative and higher order filters, have also been
implemented. These extended Kalman filter techniques are presented in
the following sections. Further discussion of extended Kalman filtering is
contained in Jazwinski [25], Gelb [21], Bryson and Ho [8], Lewis [36], and
Stengel [58].

First Order Extended Kalman Filter

For the continuous-time nonlinear system with discrete output measure-
ments in Eq. 6.36, a linearized approximation to the nonlinear model can
be obtained by truncating Eq. 6.39 after the first order terms. This ap-
proximate model, linearized about the current state, is used to construct a
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time-varying Kalman filter at each sampling time. In order to ensure that
the partial derivatives exist, the system and measurement functions are re-
stricted to continuous functions in z such that f,g € C'.

The filtered state estimate is determined from the current output mea-
surement in the same manner as the linear recursive filter in Eq. 6.15.

Tee = Zp—1 + Lk (yk ~ g(ik|k—1,kAt)) (6.42)
Zop = Zo

The Kalman filter gain, Lg, is computed using the discrete, time-varying
Kalman filter formulation in Eq. 6.21 in which the linear system matrix CY
is replaced by the linearized measurement function Gj.

R 2 =
Ly = Pyy_1Gi (GkPk[k—le .3 R) (6.43)
og(x,t
e = g((9 )
Z x:ik“c_l, =kt

The estimated covariance of the state is updated at each sample time due
to the contribution of the discrete measurement as follows.

Py = (I— LiGy) By (6.44)

P = Qo

Between sampling times, the state estimate is propagated using the nonlinear
system model in Eq. 6.36.

(r1k) = (& |k),u(r),7), & (kat| k) = B (6.45)
Tprip = Z((k+1)At|k)

The covariance of the state estimate in Eq. 6.45 is propagated between sam-
pling times using the linear differential equation in Eq. 6.26 in which the lin-
ear system matrix A(t) is replaced by the linearized system function F (r | k).
Since there are no output measurements available between sampling times,
the contribution to the covariance from the output measurement is removed.

Prit) = FGINPEIN+PEIN)F ()T, Patir) = By (6.46)

pk+1|k = P((k+1)At|k)+Q
of (z,u,t)

F(rik) =
Oz z=&(7|k), u=u(kAt), t=7
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This continuous-time linear approximation of the estimated state covariance
is used in Eq. 6.42 to compute the Kalman filter gain. A discrete linear
approximation to the covariance can also be used in the Kalman filter gain
calculation. It is obtained from the time-varying filtering Riccati equation
in Eq. 6.21 with the contribution from the output measurement removed.

Bopie = @ (k+1atkal) Pp®T ((k+1ALEA) +Q  (6.47)
%’:At) F (t|k) ® (t,kAt), D (kat,kat) =1 (6.48)

In this expression, ® ((k+1)At,kAt) is the transition matrix of the time-
varying linear system obtained by linearization of the nonlinear system. This
discrete covariance approximation does not require the solution of a differ-
ential equation to determine the covariance, but the state transition matrix
must be computed. A further approximation can be made by linearizing
about the state #;; and assuming a time-invariant linear system for the
transition matrix calculation in Eq. 6.48. Wishner et al. [64] compared this
method of discrete covariance propagation to the continuous-time method
and found agreement within 0.1 percent for the example presented in the
reference.

The extended Kalman filter for the discrete nonlinear system in Eq. 6.35
is similar to that presented for continuous-time systems with discrete mea-
surements.

Tpk = Zpp—1 + Lk (yk - g(fffk[k—l,k)) (6.49)
Ly = Pye-1GY (kak|k—1@;}r s R) - (6.50)
Por = (I—LiGy) By (6.51)
Brpie = @y, k) (6.52)
Popie = FuPeFY +Q (6.53)

The discrete linear system matrices are formed from the partial derivatives
of the discrete nonlinear measurement and system functions.

Gr = w (6.54)
& T=8p|k—1
- Of(z,u,k)
F, = —or | (6.55)
T=Tp|ks U=Uk
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The functions f and g are also restricted to continuous functions in z so that
the partial derivatives in Eqgs. 6.54 and 6.55 exist.

A first order extended Kalman filter was implemented on an experimental
batch reactor to estimate heat generation by DeValliere and Bonvin [16] and
on an experimental batch styrene reactor to estimate conversion and chain
length distribution by Schuler and Suzhen [55]. Kozub and MacGregor [31]
implemented an extended Kalman filter on an semi-batch polymerization
reactor to estimate monomer concentration and a reactive impurity distur-
bance. Dimitratos et al. [19] estimated the monomer concentration in a
copolymerization reactor. Myers and Luecke [48] discuss an efficient numer-
ical integration technique for the system and covariance equations and used
this technique to estimate the specific growth rate in a fed-batch fermenter.

Linearized Extended Kalman Filter

The linearized extended Kalman filter determines the Kalman filter gains
from a nominal state and input trajectory [21]. The nominal state, Z(t),
and input, @(t), are specified a priori based on an assumed behavior of the
system. The Kalman filter gain for continuous-time systems with discrete
measurements is then computed as shown in Eqs. 6.43 through 6.47 in which
the measurement and system functions are linearized about the nominal state
and input trajectories.

G = %g(,t) (6.56)
0T  |z=3(kAt), t=kAt
F(rik) = i L] (6.57)
Oz z=3(7), u=i(kAt), t=r

The Kalman filter gain for discrete systems is computed as shown in Eqs. 6.50
through 6.53 in which the discrete measurement and system functions are
linearized about the nominal trajectories.

= og(z, k)

o= g (6.58)
— of (z,u, k)
B = =00
k Ey ) ) (6.59)
=&, u=lx

The advantage to this approach is that the filter gains can be computed
off-line, resulting in a considerable reduction in the real-time computational
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requirements of the filter. The disadvantage is the lack of feedback from
the process in the determination of the filter gain. Since the estimated
state is normally a better representation of the true state than the nominal
state, the linearized filter is less accurate. Systems that have large process
disturbances or are controlled between multiple operating points generally
are not well suited to this approach. This filter is applicable for systems
with a well-defined state and input trajectory. It is normally used when the
improvement in the performance of the first order filter does not justify the
real-time computations necessary to implement it.

Because of the approximations made in the propagation of the covariance
matrix in extended Kalman filtering, this covariance matrix can become a
poor estimate in some applications. In these cases, updating the filter gain
at each sampling period may result in computational effort that does not
improve the performance of the filter. Safonov and Athans [54] present a
linearized extended Kalman filter formulation that uses a constant filter gain
and present sufficient conditions for convergence of this filter. This approach
consists of a steady-state Kalman filter applied to the nonlinear process.
The nominal state trajectory is composed of a single operating point. The
robustness of the Kalman filter to model mismatch is sufficient to obtain
acceptable performance with this technique in some applications.

Iterative Extended Kalman Filter

In the first order extended Kalman filter approaches already discussed, the
nonlinear system equations are linearized about some estimate of the state.
If this estimate is not close to the true state, the linearized model may be
a poor approximation to the nonlinear system. Iterative schemes have been
developed in which a linearized model is determined from an updated state
estimate at each iteration. These schemes attempt to reduce the estimation
error by improving the approximation to the nonlinear system that is used
in the determination of the filtered state.

One iterative scheme that can be employed is to repeat the calculation of
Tk, in Eq. 6.42 [25]. This method is useful when compensating for nonlin-
earity in the measurement function. Letting &4, represent the ith iterate
of the filtered state, the next iteration is determined as follows.

Thlkirr = Zrp—1+ L (yk — 8(Zk|k,i> KAL) — Gr,i(Erp—1 — i‘k|k,z‘)) (6.60)

Zrko = Tk-1



338 CHAPTER 6. NONLINEAR STATE ESTIMATION

The filter gain and linearized measurement function are recomputed based
on the current iterate of the filtered state.

= P —1
Lii = Pyy1Gry (Gk,ipk|k—1G£,i+R) (6.61)
og(z,t)
Gr; = 281 (6.62
k’z 8$ Z‘:i‘k“c,i, t=kAt )

Egs. 6.60 through 6.62 are repeated until there is no significant difference
between the iterated filtered states. The estimated state covariance is then
updated in the same manner as Eq. 6.44 using the converged gain and lin-
earized measurement function.

pk[k = (I = Ly ;Gry) Pk|k_1 (6.63)

The state estimate and covariance are propagated between sampling times
as shown in Eqgs. 6.45 and 6.46 or Eq. 6.47 for continuous-time systems. For
discrete systems, Eqs. 6.52 and 6.53 are used. Note that a single iteration
results in the first order extended Kalman filter.

Nonlinearity in the system function is not addressed by the preceding
method. A second iterative method that takes system function nonlinearity
into account can be developed by also updating the estimated state Zgp—1 in
the iteration scheme [64]. The filtered state is iterated in the same manner
as the first method in which the filter gain, Ly ;, and linearized measurement
function, Gy ;, are computed as shown in Eqgs. 6.61 and 6.62.

Tgksitr = Zrjk—1,i + Liy (yk — 8(Zx)k,ir KAL) — G i (Bppo—1,i — i’k[k,i)) (6.64)

Trk,0 = Thjk—1

The current value of the estimated state, Zg|x—1,, used in the filtered state
calculation is computed using the following procedure.

Zklk—1, = Zpjeg + D (kAt, (k- 1)At,) (@k—uk—l = 2k—1|k,i) (6.65)

Zklk-1,0 = Trpp—1

The estimated state update requires a smoothed estimate at sample time
k — 1 and a filtered state at sample time k. The smoothed state estimate,
Zk—1|k,i» is computed iteratively as follows.

Zp-1lki+1 = Egpk + Sk, (i'k[k,i-i—l - ﬁkjk—l,z') (6.66)

Zh-1k0 = ZTh—1jk—1
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See Jazwinski [25] or Gelb [21] for a review of the nonlinear smoothing tech-
niques used to generate this expression. The filtered state estimate Zy ;
used in the estimated state calculation in Eq. 6.65 is determined by propa-
gating the current smoothed estimate forward one sample period using the
system equation.

2(¢|k,i) = (2 (x| 8d) su87),7); Z((k-1)At| ki) = Zg_1jk,; (6.67)
Zeks = 2 (kAt|k,i), Zk|k,0 = Tk|k—1

The transition matrix used in the estimated state update in Eq. 6.65,
® (kAt, (k — 1)At, i), is determined by linearizing about the current smoothed
state estimate Zg_q ;-

d® (t,(k — 1)At,5)

p” = F(t|ks) P (¢ (k-1)At,5), (6.68)
® ((k—1)At, (k—1)At) = T
Flrlhdl = of (z,u,t)

O lo=s_yyp i, umu((k-1)AD), t=r

The gain matrix used in the smoothed state iteration, Sk ;, is computed from
this transition matrix as follows.

Ski = By_1k—1®7 (kat,(k - 1)At,5) 15,;1,1_171. (6.69)
Pyp—1; = @ (kat,(k - 1)at,i) By 8T (kAt, (k — 1)At, i) + Q (6.70)

In this iterative method, Eqgs. 6.64 through 6.70 are repeated until there
is no significant difference between the iterated filtered states. The esti-
mated state covariance is then updated as shown in Eq. 6.63. The state
estimate and covariance are propagated between sampling times as in the
previous iterative method. Wishner et al. [64] state that 95 percent of filter
performance is achieved in two iterations for the example presented in the
reference. A single iteration of this method results in the first order extended
Kalman filter.

This iterative method uses a smoothed estimate from the previous sam-
ple time to determine the iterated state estimates. A globally iterated ex-
tended Kalman filter can be obtained by determining a smoothed estimate
of the initial state, Zyx, and then reprocessing all of the output measure-
ments starting from this smoothed initial state estimate [25]. Since the a
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priori estimate of the initial state is generally no better than an educated
guess, this procedure can significantly improve the performance of the fil-
ter. However, the increased computational burden may become substantial.
This technique was implemented on a semi-batch polymerization reactor by
Kozub and MacGregor [31]. It was found to improve the convergence of the
estimated states to the true state by providing a better estimate of the initial
state of the reactor.

These iterative approaches are used to compensate for the errors intro-
duced by linearizing a nonlinear system. However, multiple iterations of the
filtered state calculation require additional computation time which must
be taken into account when using these methods. In addition, there is no
guarantee that the iterations will converge since these methods are approx-
imations generated by successive linearization.

Second Order Extended Kalman Filter

If we restrict the system and measurement functions to twice differentiable
functions in x such that f,g € C?, the second order Taylor series expansion
for the continuous-time nonlinear system in Eq. 6.34 is as follows.

z = f(z*,u,t)+ F(z — z¥) Xn: (x — 2T Fi(z — %) (6.71)

wln—\

y = g(@"t)+Gz—=z%) + e (x — )T (z — z*)

N =
i

e = [0,...,0,_1,0,...,0]”
~~

jth location

In this expansion, 77 and G/ are the second order Hessian matrices of the
jth component of the system and measurement functions and e’ are the
standard unit basis vectors. The use of this expansion in the approximate
filter design results in the second order extended Kalman filter [3].

The filtered state is determined using the discrete output measurements
in the same manner as the first order filter in Eq. 6.42 with the addition of
a bias correction term II.

Epe = Tgp-1 + L (yk — 8(&xjk—1, KAL) — Hk) (6.72)
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The bias correction term is calculated as follows.
L . ;o
o, = ;3 (g,fcpk,k_l) (6.73)
j=1

The Kalman filter gain, Lg, is computed as shown in Eq. 6.43 for the first
order filter with an additional correction term I'.

A ~ -1
Ly = Pyy1G (GrPup—1GF + R +Ty) (6.74)
[ JRLLL T, 5 o o
Ty = 53 > e tr (g}cpklk_lgipkm_l) (6.75)
i=1j=1
_ Og(at) j _ %8 (z.t)
Gk oz 1"=:%klk—17 t=kAt gk oz x=i‘k|k—19 t=kAt

The covariance of the filtered state estimate, Pklk, is calculated from Pklk_l
in the same manner as the first order filter using Eq. 6.44.

Due to the second order terms, the state and covariance are coupled
between sampling times by a second bias correction term, u, and are prop-
agated using the following nonlinear system of differential equations.

E(rk) = £@E(18),u@),7) +u(rlk), & (kat| k) = Egp, (6.76)

15(7|k) = F(rI)Pik)+P(ik)F(rik)", P(katik) =By (6.77)

i I . 2,
plrk) = 5Eeﬂu«(JW(T;k)P(TIk)) (6.78)
J=1
8f : ’t
Py = HEwd
T z=3(7|k), u=u(kAt), t=7
; 0%fI(z,u,t
F R = —_éwQ )
z=&(7|k), u=u(kAt), t=7

The covariance of the state estimate at the next sample time is determined
as follows.

Poyp = P(k+1ack) +Q (6.79)

If ITx, T'x, and u(r|k) are removed, the first order filter is recovered.
When g is a linear function, the only difference between the second and first
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order filters is the term p (7| k) that couples the covariance and estimated
state differential equations. Athans et al. [3] state that the major improve-
ment over the first order filter is due to this term for the example presented
in the reference. A detailed derivation of this filter is presented in [3].

6.5.2 Statistical Approximation

In the statistical approximation approach, the system and measurement
functions are represented by a truncated polynomial series expansion. The
coefficients of these expansions are determined by minimizing the error be-
tween the function and the truncated polynomial based on the statistics of
the state. Consider a scalar system in which the system function error is
represented as follows.

e =f(z,u,t) — (ao(u,t) +ay(u, )z + ag(u, t)z? + ... + aj(u,t)a:j)

This approach seeks coefficients of the polynomial expansion that minimize
the mean square error between the system function and polynomial, E [e?],
in which E is the expectation operator. The coefficients are determined
by taking the partial derivative of the mean square error with respect to
each coefficient, equating these derivatives to zero, and interchanging the
derivative and expectation operations. The result is a linear system of equa-
tions in the coefficients containing moments and cross-moments of the state
and system function. The conditional probability density of the state is re-
quired to compute these moments which are generated by the expectation
operation. Since the exact probability density is normally not available, an
approximation must be used.

If the polynomial expansion is truncated after the linear term, the ap-
proach is referred to as statistical linearization [21] or quasilinearization [58].
The coefficients for the statistically linearized expansion of the system func-
tion, f (z,u,t) = f + Fz, are determined as follows.

E [f(a:,u, t)xT] — E[f(z,u,t)] E[z]T
E[(z - E[z])?]

An approximation for the measurement function is developed in the same
manner as the system function approximation. These expressions are re-
ferred to as describing functions for the nonlinear system.

For continuous-time systems with discrete measurements, the filter equa-
tions using the statistically linearized filter are similar to those of the ex-
tended Kalman filter. The filtered state is determined recursively from the

[ = El(eu1)], W=
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current output measurement as shown in Eq. 6.42. The filter gain is com-
puted as shown in Eq. 6.43 and the covariance of the filtered state estimate
is updated at each sample time as shown in Eq. 6.44 using the statistically
linearized measurement function gy.

2 A B -1
Ly = Pyui (ékpk|k-1ng+R) (6.80)
By = (I — Ligk) Py (6.81)

Between sampling times, the state estimate is propagated using the nonlinear
system function as shown in Eq. 6.45. The covariance of the state estimate
is propagated as shown in Eq. 6.46 using the statistically linearized system
function f.

P(r1k) = P (r1k)+ P (k) EF, P (kat|k) = Py (6.82)
Boig = P(k+vat|r) +Q

The statistically linearized measurement and system functions used in
this approach are determined at each sampling time as follows.

& = (B [g@uu_, kADEG, ] — B (g1, k) B [#5i1]) B, (6:83)

£ = (B [£(@kk, vk, kAOET| — B [f(@uk, ue, kA E [#7,]) Byt (6.84)

The expectation operations required to determine these statistically lin-
earized functions are computed using an assumed probability density func-
tion p(x) in which e’ and €' are the standard unit vectors.

Elf(zsut)] = nej Oo... - I(z,u,t)p(z) det ... dz"
fewt] = 3o [ [ Flewtne as . de

E [f(m,u,t):z:T] = i Zn:ejeiT /Oo /Oo fi(z,u, t)x'p(z) dat ... dz"
j=li=1 P

—0o0

A Gaussian distribution function typically is assumed in this approach. Sig-
nificant computational effort may be required to perform these integrations.
These computational aspects are discussed in Gelb [21] and Stengel [58].
Higher order polynomial expansions of the system and measurement
functions can be used in the development of an approximate nonlinear es-
timator. For example, Mahalanabis and Farooq [41] present a second order
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formulation for scalar systems. The higher order expansions are easily gen-
erated and can improve the performance of the estimator. However, the
corresponding filter equations require the determination of higher order mo-
ments and cross-moments of the state and model functions. Determination
of these higher order moments can greatly increase the computational re-
quirements of the filter.

6.5.3 Summary of Nonlinear Recursive Filters

Extended Kalman filtering is typically the first nonlinear state estimation
technique that would be attempted in most situations. It has been found to
work well for a number of chemical process control applications and is rel-
atively easy to implement. However, the performance of extended Kalman
filtering is directly related to the quality of the linear approximations made
in the state and covariance estimates. If the state disturbances are large, the
initial state estimate is poor, or the system is highly nonlinear, the linearized
equations may not be a good approximation to the nonlinear stochastic pro-
cess. In these cases, the extended Kalman filter estimates may not be close
to the optimal nonlinear estimates and may not converge to the true state.
Extended Kalman filtering can produce either biased or divergent estimates
under these conditions. It can also be difficult to tune the extended Kalman
filter to achieve acceptable performance. Poor choices of the covariance ma-
trices @, Qo, and R can also lead to biased or divergent state estimates.
Agarwal and Bonvin [1] discuss this issue in the context of state estimation
for a batch reactor. Dimitratos et al. [19] discuss adaptive schemes that
estimate the process noise covariance along with the state to improve the
filter tuning. Kozub and MacGregor [31] discuss the importance of includ-
ing integrating disturbance states in the model to prevent bias in the state
estimates due to unmeasured disturbances and model error.

Deciding which extended Kalman filtering technique to implement is
based on a trade-off between performance and complexity. The linearized
formulation is the easiest to implement but may not work well for many
applications. The second order and iterative approaches have been shown to
produce improved estimates [64], but they are more difficult to implement
and require more computational time. These approaches should normally
not be considered as an initial choice unless the first order filter is known not
to perform well for the given application or it is necessary to achieve higher
performance. For some applications, none of the extended Kalman filtering
approaches may perform well and another technique will be required.
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Statistical approximation techniques have generally been found to be
more accurate than extended Kalman filtering [21]. Another advantage of
these techniques is that derivatives of the system and measurement functions
are not required. Therefore, a much broader class of nonlinear functions can
be considered since there are no continuity restrictions that were necessary
for the extended Kalman filter. However, the computational requirements
may be greater due to the calculation of the expectation operations. These
requirements will depend on the system and measurement functions and the
assumed probability distribution. Although it is convenient, the choice of a
Gaussian distribution can be a gross approximation that may result in poor
performance for some applications. Gelb [21] presents a detailed example of
the implementation of this approach.

Ezample 6.3

We again consider the batch reactor presented in Example 6.1 and compare
the performance of the linearized and first order extended Kalman filters
in estimating the concentration of component A from the temperature mea-
surements. In this example, perfect temperature measurements are available
at a discrete sampling period of 30 seconds and there is no model error. The
nominal initial state of the reactor is a component A concentration of 1M and
a temperature of 20 °C. The filters are tuned to indicate that disturbances
are more likely to occur in the composition due to possible polymerization
side reactions not accounted for in the model. The covariance of the initial
state is chosen to indicate that the initial temperature estimate is much more
reliable than the estimate of the initial composition. The model parameters
and filter covariances are listed in Table 6.1.

The steady-state Kalman filter gain used in the linearized filter is de-
termined by linearization of the model equations about the nominal initial
state. The continuous-time linear approximation of the estimated state co-
variance is used in the first order filter. We simulate three different initial
temperatures using an estimated initial concentration of 1M in which the
actual concentration is 0.9M. Figure 6.1 shows the excellent performance
of both filters when the initial batch temperature is at the nominal initial
condition of 20 °C. When the initial temperature is lowered to 10 °C, both
filters demonstrate slower convergence to the true concentration. However,
the degradation in performance of the linearized filter is considerably greater
as shown in Figure 6.2. When the initial temperature is increased to 30 °C,
there is little effect on the first order filter performance when compared to
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Model Parameters Filter Covariances
AH liter— °C
oF  —300EeLE 0 [ 10 0 ]
Y4 1.00 x 1073 sec™! B 3
55 20.0 °¢C R i}

g _ liter

k() 1.00 x 10 gmole—sec 100 0
E./R 17.50x10° °C @o 0 1

Table 6.1: Batch Reactor Model Parameters and Filter Covariances

20 °C. As shown in Figure 6.3, however, the linearized filter estimates oscil-
late around the true state and do not converge. This example demonstrates
the good performance of the first order filter and the limited applicability
of the linearized filter over this 20 °C initial temperature range. It also sug-
gests that an iterated or higher order extended Kalman filter may not be
necessary for this application.

6.6 Nonlinear Observers

The nonlinear recursive filter techniques presented in the previous section are
intended to produce an approximate optimal estimate of the state. Similar
to the linear observer discussed in Section 6.3.4, nonlinear observers consider
the deterministic dynamic behavior of the reconstruction error. In this sec-
tion, we briefly discuss observer error linearization and extended Luenberger-
type observers. Additional approaches are mentioned in the summary.

6.6.1 Observer Error Linearization

Analogous to feedback linearization for nonlinear control presented in Chap-
ter 5, observer error linearization attempts to find a local coordinate trans-
formation such that the corresponding transformed system is linear in the
reconstruction error dynamics. An estimate of the state of the transformed
system is then obtained using a linear observer. The advantage to this ap-
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Figure 6.1: First order and linearized extended Kalman filter estimated con-
centrations at the nominal initial temperature of 20 °C.

proach is that the linearized model is an exact representation of the nonlin-
ear system within a neighborhood of a given nominal state. Therefore, this
technique does not introduce the linearization errors present in the recur-
sive filter approaches. The disadvantage is that a coordinate transformation
must exist which imposes a restriction on the nonlinear systems that can be
considered. This technique was independently introduced using scalar sys-
tems by Bestle and Zeitz [6] and Krener and Isidori [32]. It was extended to
multivariable systems by Krener and Respondek [33] and Xia and Gao [66].
Consider a nonlinear system described by Eq. 6.34 that is the result of
a nonlinear change of coordinates, z(t) = F (2(¢)), on the reference system

2(t) = Az(t) +y(u),y(t) = h(z(t),u(t)) (6.85)
y() = Cz(b)

in which the matrices A and C are in Brunovsky canonical form. This
canonical form results in the following relation for each output y; in which k;
the corresponding observability index. The observability index is discussed
in Section 6.4.2.

i . i R S = i
2y TRy R T RYy ey B = Zp 15 Yo R (6.86)
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Figure 6.2: First order and linearized extended Kalman filter estimated con-
centrations at an initial temperature of 10 °C.
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Figure 6.3: First order and linearized extended Kalman filter estimated con-
centrations at an initial temperature of 30 °C.
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The reference system, which is in observer form, is linear in the transformed
state z with the addition of a nonlinear function of the input and output. An
estimate of the state of this system can be obtained using a linear observer
as discussed in Section 6.3.4.

2(t) = Az(t)+ L(y(t) — C2(t)) + v(u,y) (6.87)

Note that the reconstruction error of the reference system, z — 2, satisfies the
linear differential equation in Eq. 6.29. The state estimate for the original
nonlinear system is obtained using the nonlinear coordinate transformation.

3t = F(() (6.88)

Let us consider the autonomous system. If a coordinate transformation
F that transforms Eq. 6.85 into Eq. 6.34 exists, the following expressions
must hold in which Cj is the 3>7_, k; row of C.

) = %—‘:h(z) (6.89)

In this method, the observer problem consists of determining whether a
solution to these equations exists and, if so, finding this solution. Performing
the indicated differentiation and rearranging Eq. 6.89 results in a system of

differential equations for 7 = 1,...,p that must be solved.
OF  O0f0F 0 [(OF g ‘
OF 0y  Of OF 0 ([ OF
8z 8z, Oz oz, Oz <8z§ci> f iy

Eq. 6.90 results in a system of linear algebraic equations for 8.F/8zi with
gL me s,

. OF .
LJf l(dgk)azi = 6i,k5ki,j ] = 1, “e ,ki; k= 1, Y 2 (6.93)
1

The original nonlinear system in Eq. 6.34 can be expressed in observer form
if and only if there is a F and «y that satisfy Eqgs. 6.91 through 6.93. Since
the nonlinear system must be observable for a transformation to exist, the



350 CHAPTER 6. NONLINEAR STATE ESTIMATION

relationship in Eq. 6.93 can be expressed using the observability matrix in
Eq. 6.38 as follows.

aF OF oF

st eee — ot =1, %
8—2:% 52 " 9P o—C (6.94)

The necessary and sufficient conditions for the existence of a linearizing
transformation along with a detailed computational procedure to determine
the transformation is provided in Xia and Gao [66]. For systems with inputs,
it can be shown that the conditions are similar to those presented for au-
tonomous systems and must hold for all admissible inputs [66]. In practice,
analytical solutions for F and v are not obtainable and numerical solutions
are used. The formulation presented here considers a continuous output mea-
surement for the estimated state calculation in Eq. 6.87. A corresponding
observer for autonomous discrete-time nonlinear systems is discussed in Lee
and Nam [35] and Chung and Grizzle [11]. The existence of a continuous-
time linearizing transformation for a given nonlinear system does not imply
the existence of a discrete linearizing transformation [11]. An excellent pre-
sentation of the application of this technique to a continuous-time stirred
tank reactor is provided in Kantor [27].

6.6.2 Extended Luenberger Observer

Application of observer error linearization involves the determination of a
coordinate transformation. This transformation exists only for a limited
class of nonlinear systems and requires the solution of a system of partial
differential equations. The observer in Birk and Zeitz [7] does not require the
integration of these equations. This formulation is referred to as an extended
Luenberger observer because the nonlinear observer gain is determined by
linearizing these partial differential equations. Consider the following non-
linear observer.

3(t) = £(&u,1)+L(&,u) (y(t) — 8(&,1)) (6.95)

In this approach, an extended linearization of the partial differential equa-
tions in Eqgs. 6.91 and 6.92 about the estimated state is used to obtain the
nonlinear observer gain L(&,u). After specifying the characteristic equation
or observer poles for the transformed system in Eq. 6.86, the observer gain
in Eq. 6.95 becomes

L(¢,u) = [(lu +hoLy+... + b L8 + LE)sy, (6.96)
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og(#)]™"
5
in which /;; are the observer poles for the linearized reconstruction error,
k; are the observability indices, and L; is the Lie derivative operator. The
vectors s; are determined from the following relationship in which e’ are the

standard unit basis vectors and dgj /8zij # 0 can be freely specified such
that the calculation of the Lie derivatives in Eq. 6.96 is made as simple as
possible.

- k
(pt +lpoLg + - bk, LY ™+ L)y [

gl (6.97)

A complete derivation of this observer can be found in Birk and Zeitz [7].
The approach is restricted to systems observable for every input with f and
g smooth analytic functions.

Ciccarella et al. [13] present a discrete-time nonlinear Luenberger-type
observer that considers single output systems. Let U}’ represent the series
of n past inputs at sample time k and @(m,Uﬂ‘l) represent the series of
n predicted outputs generated by the discrete nonlinear system in Eq. 6.35
from an initial state = and input sequence U'. We define F/(z,U’) as the
jth composite of the system function f with input sequence U’ and n is the
dimension of the state vector.

Uk—n+1 g(an(m’ U]?__f))
Uk o Fn—2 :L', Uﬂ:2
ur = k .n+2 ’ @(m,Ug_l) _ g( (. k—2))
Uk g(z)

The filtered state estimate is computed from the following discrete system
in which L is the observer gain and zj_, 4 = FJ_I(zk_n+1|k, U,g:}l_i_j_l).

Zk—n+2lk+1 = Zk—n+2lk T @_1(zk—n+1|kaU/?__11)
X [B (yk+1 = g(zk+1|k)) + L (yk—n+1 - g(zk—n+1|k))] (6.98)

Zoe = P g Up 1) (6.99)

In this system, O is the discrete nonlinear observability matrix at sample
time k£ computed from the partial derivative of ®(z, U,?_l).

0% (z, U ™)

O up ) = &

(6.100)
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The observer gain is selected such that the eigenvalues of the perturbed
linear system for the reconstruction error in z is locally stable.

ek—ni2kt1 = (A—LC)ep_pip+O (Hek—n+1|ku2) (6.101)

This linear system, which is in Brunovsky canonical form, is determined
from a nonlinear transformation on z. The approach is restricted to sys-
tems observable for every input with g and F*(® !(z,U™!)) uniformly
Lipschitz continuous functions of the state. Convergence is guaranteed only
for a neighborhood of initial state estimates around the true initial state.
This neighborhood may be small. A detailed derivation of this observer is
contained in [13].

6.6.3 Summary of Nonlinear Observers

In addition to the techniques discussed in this section, there have been a
number of other nonlinear observer formulations proposed in the literature.
A review of several of these observers for continuous-time systems can be
found in Walcott et al. [63]. Sliding mode observers for continuous-time
systems are discussed in Slotine et al. [56]. The conditions under which ex-
ponentially convergent nonlinear observers exist for continuous-time systems
are presented in Xia and Gao [65]. A Lyapunov function based approach for
continuous-time systems is discussed in Tsinias [60]. A Luenberger-type
observer that considers single-output nonlinear systems of the form

z = f(z)+h(z)u (6.102)
y = g()

is presented in Gauthier et al. [20], Ciccarella et al. [12], and Deza et al. [18].
Deza et al. [18] also consider discrete output measurements. Implementation
of this observer on a free radical polymerization CSTR is discussed in Van
Dootingh et al. [61].

The advantage of nonlinear observers is that the calculation of the state
estimate generally involves a gain multiplying the difference between the es-
timated and measured outputs. After the initial construction of the observer,
this calculation can be performed quickly and relatively easily for most of
these techniques. The disadvantage is the limitations on the systems that
can be considered. Many of these approaches have further restrictions on
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the system and measurement functions in addition to the observability re-
quirement. The continuous-time formulations are also not appropriate for
applications in which the output measurements are available at discrete sam-
pling periods. Another consideration with observer error linearization is the
calculations required to construct the observer.

6.7 Nonlinear Moving Horizon Estimator

In this section, the moving horizon state estimator presented previously for
linear systems is extended to nonlinear systems. The objective is a deter-
ministic least squares estimator for the discrete nonlinear system in Eq. 6.35
with state and measurement disturbances. In this presentation, we assume
that these disturbances are additive in which v € R? is the measurement
disturbance vector and w € R" is the process or state disturbance vector.

Trt1 = Flok, ur, k) + wy (6.103)
Yo = 8(zk, k) + vk
We also require uniform observability of the nonlinear system as discussed
in Section 6.4.2.

6.7.1 Estimated State Disturbance Approach

Because it is not possible to obtain a general closed-form recursive solution
to the nonlinear batch state estimation problem, it is difficult to develop a
moving horizon estimator equivalent to the batch problem in the nonlinear
case. Therefore, a moving horizon estimator similar to that for linear systems
is usually constructed.

k—1 k
) “min Y Qe+ Y R0 (6.104)
{Ik—le7wk—N|ky"'7wk—1|k} j=k—N j=k—N
. i = FEjpous,d) + ok
Subject to: i+ ik %357 T ] (6.105)
Vjlk = Y5 — g(afjuc,J)

This nonlinear moving horizon estimator does not penalize the initial state
disturbance in the horizon allowing the initial state estimate in the horizon,
Zk_ Nk, to be chosen freely. The advantage of this approach is that nominal
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convergence of the estimated state to the true state is achieved [46]. How-
ever, this choice ignores information from the output measurements prior to
sample time k — N. Robertson et al. [53] suggest penalizing the initial state
disturbance by the inverse of an approximate covariance matrix of the state
estimate at time k — N. This approach attempts to take prior information
into account, but does not have a convergence guarantee. As the horizon
length is increased, these two approaches yield similar estimates.
We consider estimated process disturbance and state constraints in which
h is the estimated state constraint function.
hoin < ﬁ(:i'jlk) < Dsns j=k-N+1,...,k (6.106)

wmins uA)JIk: Swmaxa ]:k_Na’k_l (6107)

The constraints are chosen to define a convex region in the @ space containing
the origin. For systems forced by an input, the state constraints are shifted
by the nominal trajectory due to the input. With the first state estimate
unconstrained, these constraints form a feasible set at each sampling time.

Since the process model is nonlinear, this estimator requires the solution
to a general nonlinear optimization problem. The techniques required to
solve this optimization problem are discussed in Section 6.7.4. The state
estimate at sample time n + 7, in which n = k — N, is computed from the
optimal solution using the following recursion.

Entjrie = E@nijies Unagon +J) + g (6.108)
Tnk = @Z;k

A moving horizon estimator for the continuous-time nonlinear system
with discrete output measurements presented in Eq. 6.36 is constructed by
assuming discrete state and measurement disturbances.

#lr) = Haln),wlr),r); z (kAt) = zp, (6.109)
Zr+1 = ((k+1)At) + wyg (6.110)
e = 8k, k) +ug

This model is used for the equality constraint of the moving horizon esti-
mator in Eqgs. 6.104 and 6.105. The state estimates are computed from the
optimal solution using the recursion in Eqs. 6.109 and 6.110.
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6.7.2 Initial State Estimate Approach

A simpler moving horizon estimator can be constructed by not considering
estimated state disturbances in the optimization problem and estimating
only the initial state in the horizon. This approach is well motivated if the
state disturbances are negligible and the measurement is corrupted by zero
mean noise [21]. The objective is to determine an initial state estimate that
minimizes the difference between the measured and predicted outputs in a
least squares sense.

k

_ min > bk (6.111)
Tk—N-1lk j=k—N
- = i. e o
Subject to: Titilk I (6.112)
Ojie = Y5 — B(Zjk,J)

Nominal convergence of this approach for continuous-time systems is shown
by Michalska and Mayne [44]. Nominal convergence for discrete systems
follows in the same manner as the moving horizon estimator presented in
the previous section. Continuous-time systems with discrete output mea-
surements can also be considered with this approach. In this case, the state
disturbance in Eq. 6.110 is removed and this model is used for the equality
constraint in Eq. 6.112.

The implementation of this estimator on continuous-time chemical pro-
cess systems with discrete output measurements is discussed in Jang et
al. [24], Bequette [5], Kim et al. [30], Liebman et al. [37], and Ramamurthi et
al. [51]. The implementation in Jang et al. [24], however, is not a moving
horizon approach. The observer horizon is completely replaced with N new
output measurements before an estimate is made. Kozub and McGregor [31]
compare this approach with extended Kalman filtering techniques. The im-
plementation in Ramamurthi et al. [51] linearizes the nonlinear model equa-
tions about a nominal trajectory within the observer horizon to estimate the
initial state. The filtered state estimate is then obtained using the nonlinear
model from this initial state. This approach reduces the computational re-
quirements since a quadratic program is solved at each sample time. If the
nominal trajectory is close to the estimated trajectory and the system is not
highly nonlinear, this implementation can be a reasonable approximation.

The advantage to the initial state estimate approach is a smaller number
of decision variables for a given horizon length. This reduction in decision
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variables results in less computational time to solve the optimization prob-
lem. In addition, the horizon length is the only tuning parameter. However,
the assumption of negligible process disturbances is not realistic for many
applications. Issues such as unmeasured or unmodeled disturbances, process
modeling error, and variation in the model parameters cannot be addressed
adequately when only the initial state in the horizon is estimated.

6.7.3 Input Observation Error

We have assumed that the input variables of the process are known exactly.
However, there is uncertainty in these values in many applications. For
example, a control valve may stick and not attain the position indicated by
the signal sent to the valve. Errors in the observation of the input values
can be taken into account by assuming that there are disturbances to the
input. Kim et al. [29] and Tjoa and Biegler [59] refer to this technique as an
error-in-variables method.

A moving horizon estimator for input observation error is obtained by
solving a modification of the least squares problem in Eq. 6.104 in which
© € R™ is the assumed input disturbance.

k—1 k
. T AT q—1p T p—1a
~ min W QWi + B3 Pt ) + 0, R0
{m’“‘le’“’ﬂk’“J’lk}j:%;N( Jlk il jlk Jl ) j:;N Jlk Jl
(6.113)
Bipye = B(&jie Bjes 5) + Djp
Subject to: aj]k = uj +ﬂj|k (6.114)
Wk = ¥j —E8Ejk,J)

A corresponding moving horizon estimator for continuous-time systems with
discrete output measurements is constructed by using the model in Eq. 6.109
for the equality constraint in Eq. 6.114. Removing the estimated state dis-
turbances, as in the initial state estimate approach, results in an estimator
that assumes the process disturbances enter the system only through the
input.

6.7.4 Solution Techniques

The nonlinear moving horizon estimator problem formulation requires the
minimization of a least squares objective function subject to nonlinear dif-
ferential and algebraic constraints. There are two basic solution strategies
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that can be employed. The first is referred to as sequential solution [30].
In this method, a nonlinear optimization technique is used to determine
the estimated state disturbances that are the decision variables of the least
squares problem. At each iteration of the optimizer, the objective func-
tion is computed by either integrating the nonlinear modeling equations for
continuous-time systems or iterating for discrete systems. For gradient based
optimizers used with continuous-time systems, the gradient of the objective
function can be computed by integration of the sensitivity equations at the
same time the model equations are solved [9]. The sequential solution has
the advantage of being relatively straightforward to implement and having
a small number of decision variables in the optimization problem. However,
the computation time required by this method for continuous-time systems
may be excessive since the model equations must be integrated at each it-
eration of the optimizer. This method also does not readily admit algebraic
inequality constraints on the states of the system.

The second method is referred to as simultaneous solution [37]. In this
method, the state variables at each sample time are included as decision vari-
ables in an optimization problem that is solved only once. For continuous-
time systems, the model equations are discretized in time to convert the
differential equation equality constraints into algebraic equality constraints.
The discretization is normally performed using orthogonal collocation on fi-
nite elements. This strategy easily handles constraints on the states of the
system at each sample time. The major drawback is the large number of
decision variables and constraint functions that result in a very large order
optimization problem that must be solved. The solution normally requires
a large-scale, sparse nonlinear optimization technique [37]. A reduced space
nonlinear optimization strategy in which the collocation equations are solved
inexactly is presented in Logsdon and Biegler [39].

6.7.5 Moving Horizon Algebraic Estimator

Instead of using nonlinear optimization techniques to determine the initial
state in the horizon as discussed in Section 6.7.2, Moraal and Grizzle [45]
employ Newton’s method to solve the system of nonlinear equations gen-
erated by the state estimation problem. Let YkN represent the series of NV
past measured outputs, U,ﬁv the series of IV past inputs, and ®(z, U,iv ) the
series of N predicted outputs generated by the discrete nonlinear system in
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Eq. 6.35 from an initial state z and input sequence Uév .

Yit+1 Uit1 g(x)
~ U; g(Fl(z,UL,))
Yk_N _ yl?—? , Ulév _ 1,.-}—2 , @(w’ Uév) _ ( ( . ’L+1)
Yk uk §F e, U3

In this expression, F/(z,U7) is the jth composite of the system function f
with input sequence U7 and i = k— N. Similar to the linear algebraic system
in Eq. 6.7, a nonlinear system of equations in Z;_y4+1 can be constructed
using the known inputs and output measurements.

Y - ®(@p-n11, UY) = 0 (6.115)

The state estimate £;_ny1jx is then determined iteratively using Newton’s
method in which it is assumed that the Jacobian is square.

O (&—N-+1/k,i> Up')
oz

|
] (6.116)

Th-N41kitl = Tk—N+1jki+

X (YkN = Sy v Ly U/ﬁv))

If there are more equations than states, the inverse is replaced by a pseudo
inverse. An initial estimate is obtained from the solution at the previous
sample time. This approach does not consider constraints.

The observability requirement for this technique is the existence of a
bounded N such that the nonlinear system of equations in Eq. 6.115 has
a unique solution for all admissible UY. Sufficient conditions for nominal
convergence are provided in [45]. This formulation may fail to converge if not
properly initialized and the region of convergence may be small. Modified
Newton methods, in which the Jacobian is not explicitly evaluated at each
iteration, can be used to reduce the computational requirements. However,
these modified methods can effect the rate of convergence. It can be shown
that a single iteration of this estimator is equivalent to the extended Kalman
filter with R = €I in the limit as ¢ — 0. Application of this observer on a
continuous stirred tank bioreactor is presented in [45].

6.7.6 Summary of Nonlinear Moving Horizon Estimation

Moving horizon estimation can be applied to a very general class of prob-
lems since there are few restrictions on the systems that can be considered.
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Nominal convergence of the estimator can also be guaranteed. This approach
easily incorporates constraints on the estimates and very general disturbance
modeling. It is not restricted to the additive process and measurement dis-
turbances presented in this discussion. Since the nonlinear system is solved
exactly, the performance does not suffer from the use of an approximate
model. However, this approach requires more computational effort than
most of the other nonlinear filters and observers. The additional computa-
tional effort can become substantial and prohibit the use of this technique
for large-scale systems or systems with short sampling periods.

The solution methods required for an efficient implementation are also
more complex. The choice of solution strategy to be employed depends on
the application. The sequential approach is normally considered for sim-
ple problems due to its relative ease of implementation. This technique is
also considered for systems with a large number of states since a prohibitive
number of decision variables may be required by the simultaneous approach.
However, the sequential approach will normally not be as efficient as the si-
multaneous approach. The sequential approach may also fail in applications
in which there are constraints on the estimated states.

Ezample 6.4

We demonstrate the performance of the moving horizon estimators presented
in Sections 6.7.1 and 6.7.2 on a simple linear integrating process with A =1
and C' = 1 and no constraints on the estimator. We consider the case of
zero mean measurement noise with no process disturbances and the case of
random process disturbances with no measurement noise. When only mea-
surement noise is present in the system, the true state is stationary at zero.
When only process disturbances are present, the measurement is the true
state. The performance of the estimator with state disturbances in Sec-
tion 6.7.1 is shown in Figures 6.4 and 6.5. For the measurement noise case,
this estimator is tuned to reflect that the measurement is unreliable using a
horizon length N = 20, @ = 1, and R = 100. The deviations between the
estimated output and measured output are not heavily penalized in compar-
ison to the estimated state disturbances which results in state estimates that
are very close to the true zero state. For the process disturbance case, the
estimator is tuned with = 1 and R = 0.1 to reflect that the measurements
are relatively reliable. With a horizon length N = 20, the estimated state
essentially tracks the true state.

The performance of the initial state estimator in Section 6.7.2 with the
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same horizon length, N = 20, is shown in Figures 6.6 and 6.7. This estima-
tor is essentially identical to the previous approach when only measurement
noise is present. However, when process disturbances are present, this es-
timator does a very poor job of estimating the true state. The estimate of
an initial state at the beginning of the horizon cannot take into account the
state disturbances that enter the system within the observer horizon.

When the horizon length is shortened to N = 2, the performance with
process disturbances present improves, as shown in Figure 6.8, but the es-
timate still lags the true state. With the shorter horizon, however, the
performance of this estimator with measurement noise degrades consider-
ably as shown in Figure 6.9. This example clearly shows that initial state
estimate approaches are not suitable when significant process disturbances
are present.

6.8 Combined State and Parameter Estimation

The assumption of constant model parameters made throughout this discus-
sion may not be realistic in many practical applications. Parameters, such
as heat transfer coefficients, can change during the operation of chemical
processes. In these cases, a more accurate determination of the state can be
made by allowing one or more model parameters to vary. The parameter
values are then estimated along with the state. This technique is referred to
as combined state and parameter estimation. A brief summary of this topic
is presented in this section. Further information on parameter estimation
for nonlinear systems is available in Bard [4].

Combined state and parameter estimation typically is performed by aug-
menting the state of the system to include those parameters to be estimated.
The most common assumption made to describe the dynamic behavior of
these parameters is an integrated white noise process. Using this assumption,
the continuous-time nonlinear model in Eq. 6.34 and the discrete nonlinear
model in Eq. 6.35 are augmented as follows in which © is the vector of
parameters to be estimated.

S} 0 7 Ok+1 O '
y:g(m,@,t) ; Yk :g(.’L‘k,@k,k)

Observability of the augmented system is not implied by observability
of the original system and must be verified using the techniques discussed
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Figure 6.4: Filtered state estimate for the estimated state disturbance mov-

ing horizon estimator with measurement noise, N = 20.
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Figure 6.5: Filtered state estimate for the estimated state disturbance mov-

ing horizon estimator with process disturbances, N = 20.
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Figure 6.6: Filtered state estimate for the initial state estimate moving hori-
zon estimator with measurement noise, N = 20.

T T T T ¥ T T T T T

Filtered State -x---
45 True State -o--

Y R
25 | '

Wl . R
xeRise TS ; 3 §§"X P
2 EXseie X X*"é' © QX ; o s %
§ A T A R 1

15 F L : ¥R / 5% o L -

o ¢

0.5 | i Vg

0 5 10 15 20 25 30 35 40 45 50
Sample Period (k)

Figure 6.7: Filtered state estimate for the initial state estimate moving hori-
zon estimator with process disturbances, N = 20.
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Figure 6.8: Filtered state estimate for the initial state estimate moving hori-
zon estimator with process disturbances, N = 2.

in Section 6.4.2. Observability may impose restrictions on the parameters
that can be estimated for a given system. Application of the nonlinear state
estimation techniques discussed in this chapter on the augmented system is

used to provide an estimate of both the state and parameters. In practice,
only a small number of the model parameters are estimated.

Parameter estimation using the extended Kalman filter is discussed in
Cox [14], Ljung [38], and DeValliere and Bonvin [16]. The extended Schmidt—
Kalman filter is discussed in Jazwinski [25]. This filter accounts for the effect
of parameter variation on the state, but does not compute an estimate of the
parameter values. A discussion of modeling techniques that can improve the
estimation of parameter values is presented in DeValliere and Bonvin [17].
Agarwal and Bonvin [1] recommend a decoupled estimator in which the

states and parameters are computed separately to reduce the nonlinearity
due to parameter-state interactions.

Much of the research in the area of moving horizon estimation has been
related to data reconciliation in which parameter estimation is routinely
performed. In the moving horizon data reconciliation problem, the model
parameters are also included as decision variables in the least squares ob-
jective. The optimization problem can be set up to either directly compute
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Figure 6.9: Filtered state estimate for the initial state estimate moving hori-
zon estimator with measurement noise, N = 2.

the parameter values or compute deviations from nominal values. Com-
bined state and parameter estimation using a moving horizon approach is

discussed in Kim et al. [30], Liebman et al. [37], Tjoa and Biegler [59], and
Ramamurthi et al. [51].

6.9 Nonlinear State Estimation Summary

The selection of an appropriate nonlinear state estimation technique depends
on several factors. A significant consideration is the computational require-
ment. In order to implement an estimator, it must be able to determine the
state estimate within the sampling period of the application. Computation-
ally intensive techniques, such as moving horizon estimation and globally
iterated extended Kalman filtering, may not be appropriate for applications
with short sampling periods because of the computational time required.
Large-scale systems can also restrict the techniques that can be considered
since the computational requirement generally increases with the number of
states that must be estimated.

Modeling error and unmeasured disturbances are other considerations
in the selection of a nonlinear estimator. In essentially every application,
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there will be a difference between the process and the process model. This
difference is referred to as model error or mismatch. There will also be
disturbances entering the system that are not accounted for in the model.
In most cases, it is not possible to completely eliminate these sources of error
that can impose limitations on the performance of the estimator. With a
poor or uncertain model, it may not be worthwhile to implement a complex
estimation technique since the achievable performance may be no better than
simpler approaches. Unfortunately, no general guidelines exist regarding
the effect of model error on the selection of a nonlinear state estimation
technique.

Simulation studies in which a given technique performs very well for
an application may not be a reliable indication of how that technique will
perform in practice on similar applications. Slight structural errors in the
model, mismatch in the parameter values, and unmeasured disturbances
can seriously impact the performance of these techniques. A comprehensive
simulation study that includes variation in the model parameters and dis-
turbances to the process and measurements should be carried out before a
technique is implemented. The selection of these perturbations is based on
engineering judgment of what reasonably can be expected to occur in the
process.

The proper nonlinear state estimation technique depends on the applica-
tion being considered and the computational constraints. For some applica-
tions, several attempts at selecting and tuning an estimator may be required
before a suitable approach is found. In many cases, however, more than
one technique will be appropriate and the choice generally will be based on
ease of implementation. The intent here is to present sufficient background
information on the selection of nonlinear state estimation techniques for the
process control engineer and to provide references for those requiring more
detail.
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