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4.1 Introduction

In this chapter, the basic theory of feedback linearization is presented and issues of particular relevance
to process control applications are discussed. Two fundamental nonlinear controller design techniques
— input-output linearization and state-space linearization — are discussed in detail. The theory also is
presented for linear systems to facilitate understanding of the nonlinear results. Extensions are presented
for disturbances and multivariable processes. Advanced topics such as dynamic feedback linearization,
time delay compensation, constraint handling, robustness, and sampled-data systems are also discussed.

A survey of process control strategies and applications shows that: (1) a variety of nonlinear controller
design techniques are based on input-output linearization; (2) few experimental studies of these techniques
have been presented; and (3) many important problems remain unsolved. To illustrate design and im-
plementation issues, feedback linearizing controllers are developed for three representative processes: a
continuous stirred tank reactor, a continuous fermentor, and a pH neutralization system. This chapter
differs from existing reviews [69, 83, 90, 95, 99, 100, 126, 134] of feedback linearization by providing a
balanced discussion of theoretical and practical issues of interest to process control engineers.

Nonlinear Process Model

As discussed in previous chapters, there are several types of finite-dimensional, nonlinear process models.
In this chapter, we will focus on continuous-time, state-space models of the form,
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ẋ = f(x) + g(x)u (4.1)

y = h(x)

where: x is an n-dimensional vector of state variables; u is an m-dimensional vector of manipulated input
variables; y is an m-dimensional vector of controlled output variables; f(x) is an n-dimensional vector
of nonlinear functions; g(x) is an (nxm)-dimensional matrix of nonlinear functions; and h(x) is an m-
dimensional vector of nonlinear functions. The single-input, single-output (SISO) case where m = 1 will
be emphasized to facilitate understanding of the basic concepts. The model (4.1) will be modified as
necessary to describe more complex nonlinear processes, such as those with measured disturbances or time
delays.

Feedback Linearization vs. Jacobian Linearization

Consider the Jacobian linearization of the nonlinear model (4.1) about an equilibrium point (u0, x0, y0):

ẋ =

[

∂f(x0)

∂x
+

∂g(x0)

∂x
u0

]

(x − x0) + g(x0)(u − u0) (4.2)

y − y0 =
∂h(x0)

∂x
(x − x0)

Using deviation variables, the Jacobian model can be written as a linear state-space system,

ẋ = Ax + Bu (4.3)

y = Cx

with obvious definitions for the matrices A, B, and C. It is important to note that the Jacobian model is
an exact representation of the nonlinear model only at the point (x0, u0). As a result, a control strategy
based on a linearized model may yield unsatisfactoy performance and robustness at other operating points.

In this chapter, we present a class of nonlinear control techniques that can produce a linear model that
is an exact representation of the original nonlinear model over a large set of operating conditions. The
general approach — typically called feedback linearization — is based on two operations: (1) nonlinear
change of coordinates; and (2) nonlinear state feedback. We focus on local feedback linearization (i.e. the
coordinate transformation and control law may be only locally defined) to avoid complications associated
with the global problem.

After feedback linearization, the input-output model is linear,

ξ̇ = Aξ + Bv (4.4)

w = Cξ

where: ξ is an r-dimensional vector of transformed state variables; v is an m-dimensional vector of trans-
formed input variables; w is an m-dimensional vector of transformed output variables; and the matrices
A, B, and C have a very simple canonical structure. If r < n, an additional n–r state variables must be
introduced to complete the coordinate transformation. The integer r is called the relative degree and is a
fundamental characteristic of a nonlinear system.
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Feedback Linearization Approaches

Most feedback linearization approaches are based on input-output linearization or state-space linearization.
In the input-output linearization approach, the objective is to linearize the map between the transformed
inputs (v) and the actual outputs (y). A linear controller is then designed for the linearized input-output
model, which can be represented by (4.4) with r ≤ n and w = y. However, there is an (n–r)-dimensional
subsystem that typically is not linearized,

η̇ = q(η, ξ) (4.5)

where η is an (n–r)-dimensional vector of transformed state variables and q is a (n–r)-dimensional vector
of nonlinear functions. Input-output linearization techniques are restricted to processes in which these
so-called zero dynamics are stable.

In the state-space linearization approach, the goal is to linearize the map between the transformed
inputs and the entire vector of transformed state variables. This objective is achieved by deriving artificial
outputs (w) that yield a feedback linearized model with state dimension r = n. A linear controller is then
synthesized for the linear input-state model. However, this approach may fail to simplify the controller
design task because the map between the transformed inputs and the original outputs (y) generally is
nonlinear. As a result, input-output linearization is preferable to state-space linearization for most process
control applications. For some processes, it is possible to simultaneously linearize the input-state and
input-output maps because the original outputs yield a linear model with dimension r = n.

Static and Dynamic State Feedback

Feedback linearization produces a linear model by the use of nonlinear coordinate transformations and
nonlinear state feedback. Coordinate transformations are described in Chapter 3; nonlinear state feedback
is discussed below. In some applications, the control objectives can be achieved with a nonlinear static
state feedback control law of the form,

u = α(x) + β(x)v (4.6)

where α is an m-dimensional vector of nonlinear functions and β is an m x m matrix of nonlinear functions.
For some processes, it is not possible to satisfy the control objective with a static controller and a dynamic
state feedback control law must be employed,

ζ̇ = γ(x, ζ) + δ(x, ζ)v (4.7)

u = α(x, ζ) + β(x, ζ)v

where: ζ is a q-dimensional vector of controller state variables; γ is a q-dimensional vector of nonlinear
functions; and δ is a q x m matrix of nonlinear functions. Specific forms for the nonlinear controller
functions (α, β, γ, δ) will be presented thoughout the chapter.

4.2 Input-Output Linearization

4.2.1 Linear System

An input-output linearizing controller is designed for the SISO version of the linear system (4.3). This
exercise illustrates the basic controller design procedure employed in the nonlinear case. Recall from
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Chapter 3 that the system can be transformed into the following normal form via a linear change of
coordinates [ξT , ηT ]T = Tx,

ξ̇1 = ξ2

ξ̇2 = ξ3

... (4.8)

ξ̇r = Rξ + Sη + ku

η̇ = Pξ + Qη

y = ξ1

where r is the relative degree. The static state feedback control law,

u =
v − Rξ − Sη

k
(4.9)

changes the r-th equation in (4.8) to: ξ̇r = v. The transformed input v is designed to stabilize the ξ

subsystem,

v = −αrξr − αr−1ξr−1 − · · · − α1ξ1 (4.10)

In the original coordinates, the complete control law has the form,

u =
−CArx − αrCAr−1x − · · · − α1Cx

CAr−1b
(4.11)

The proposed control law yields the following characteristic equation for the ξ subsystem:

sr + αrs
r−1 + · · · + α2s + α1 = 0 (4.12)

Nominal stability of the ξ subsystem, and therefore boundedness of the output, is ensured if the controller
tuning parameters αi are chosen such that (4.12) is a Hurwitz polynomial. As discussed in Chapter 3, the
closed-loop system is internally stable (i.e. the η variables are bounded) if and only if the eigenvalues of
the matrix Q are in the open left-half plane. Hence, the proposed controller design technique is restricted
to linear systems which are minimum phase.

4.2.2 Controller Design

In this section, an input-output linearizing controller is designed for the SISO version of the nonlinear sys-
tem (4.1). Extensions of the basic controller design procedure for disturbances and multivariable processes
are discussed in subsequent sections.

Illustrative Example

In order to illustrate the basic concepts, we first consider the following two-dimensional nonlinear system:

ẋ1 = f1(x1, x2) + g1(x1, x2)u

ẋ2 = f2(x1, x2) (4.13)

y = x1
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This model form can describe, for example, an irreversible reaction occuring in a constant volume, stirred
tank reactor where x1 is the reactor temperature, x2 is the reactor concentration, and u is the coolant
temperature [162].

If the nonlinear function g1 is non-zero in the operating region of interest, the static state feedback
control law,

u =
v − f1(x1, x2)

g1(x1, x2)
(4.14)

changes the first equation of (4.13) to: ẋ1 = v. Thus, the control law exactly linearizes the map between
the transformed input v and the output y. Consequently, a linear controller can be designed to satisfy
control objectives such as setpoint tracking. It is important to note that the x2 dynamics remain nonlinear.
As discussed in the next section, asymptotic stability of the these zero dynamics is a necessary condition
for nominal closed-loop stability.

General Design Procedure

We now consider the design of an input-output linearizing controller for the n-th order nonlinear system
(4.1). This problem was originally posed and solved by Isidori and Krener [85, 106]. Recall from Chapter
3 that the system (4.1) can be transformed into normal form via a diffeomorphism [ξT , ηT ]T = Φ(x) if the
relative degree r is well defined. The ξ coordinates are defined as,

ξk = Φk(x) = Lk−1
f h(x), 1 ≤ k ≤ r (4.15)

and ηk = Φr+k(x), 1 ≤ k ≤ n − r, where LgΦk(x) = 0. The normal form can be written as:

ξ̇1 = ξ2

ξ̇2 = ξ3

... (4.16)

ξ̇r = b(ξ, η) + a(ξ, η)u

η̇ = q(ξ, η)

y = ξ1

The static state feedback control law,

u =
v − b(ξ, η)

a(ξ, η)
(4.17)

changes the r-th equation of (4.16) to: ξ̇r = v. As a result, the map between the transformed input v and
the output y is exactly linear. Thus, a linear state feedback controller can be synthesized to stabilize the
ξ subsystem. For instance, the pole placement design (4.10) yields the characteristic polynomial (4.12) for
the linear subsystem. When expressed in the original coordinates, the two control laws have the following
form:

u =
v − Lr

fh(x)

LgL
r−1
f h(x)

(4.18)

v = −αrL
r−1
f h(x) − αr−1L

r−2
f h(x) − · · · − α1h(x) (4.19)
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Hence, the complete static state feedback control law can be written as:

u =
−Lr

fh(x) − αrL
r−1
f h(x) − · · · − α1h(x)

LgL
r−1
f h(x)

(4.20)

Integral Control

In most process control applications, the objective is to maintain the output at a non-zero setpoint despite
unmeasured disturbances and plant/model mismatch. Consequently, the nonlinear controller (4.20) should
contain an integral term that penalizes deviations between the output (y) and its setpoint (ysp). The
modified input-output linearizing controller can be written as,

u =
−Lr

fh(x) − αrL
r−1
f h(x) − · · · + α1 [ysp − h(x)] + α0

∫ t
0 [ysp − h(x)] dτ

LgL
r−1
f h(x)

(4.21)

where α0 is an additional controller tuning parameter associated with the integral term. The integral
control law (4.21) yields the following characteristic equation for the ξ subsystem:

sr+1 + αrs
r + · · · + α1s + α0 = 0 (4.22)

By choosing the controller parameters αi in terms of a single tuning parameter ǫ, the following closed-loop
transfer function is obtained for setpoint changes if y(0) = ysp(0) [68]:

y(s)

ysp(s)
=

r+1
ǫr s + 1

(ǫs + 1)r+1 (4.23)

4.2.3 Nominal Stability

In this section, nominal stability of the closed-loop system resulting from input-output linearization is
discussed. For simplicity, we focus on asymptotic stabilization rather than the more difficult problem of
asymptotic setpoint tracking [83]. We will assume, without loss of generality, that x0 = 0 is an equilibrium
point. The objective is to find conditions which ensure that the origin is a locally or globally asymptotically
stable equilbrium point of the input-output linearized system.

Consider the closed-loop system comprised of the nonlinear system (4.1) and the input-output lin-
earizing controller (4.20). The closed-loop system has the following representation in the transformed
coordinates,

ξ̇ = Aξ

η̇ = q(ξ, η) (4.24)

y = ξ1

If the controller tuning parameters αi are chosen such that the characteristic polynomial (4.12) is Hurwitz,
then the linear state variables ξ converge exponentially to the origin for any initial state ξ(0) for which the
control law (4.17) remains well defined (i.e. a 6= 0).

For the moment, assume the nonlinear state variables η converge asymptotically to the origin. Recall
that the original state variables are related to the transformed state variables as [ξT , ηT ]T = Φ(x). Further
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assume that the diffeomorphism Φ is well defined in the region of interest. In this case, Φ is smooth and
invertible, and can be chosen such that Φ(0) = 0. As a result, asymptotic convergence of ξ and η to the
origin implies asymptotic convergence of x to the origin. Thus, the origin is a locally asymptotically stable
equilibrium point if: (1) the η state variables are locally asymptotically stable; and (2) the diffeomorphism
and input-output linearizing control law are locally defined. The origin is a globally asymptotically stable
equilibrium point if these conditions hold globally. Hence, the stabilization problem is effectively reduced
to finding conditions which guarantee that the η state variables converge asymptotically to the origin.

Local Stability

We first present a necessary and sufficient condition for the input-output linearized system to be locally
asymptotically stable. Because the ξ state variables converge to zero, the second equation of (4.24) becomes,

η̇ = q(0, η) (4.25)

in the limit as t → ∞. Equation (4.25) is known as the zero dynamics and is the nonlinear analog of
linear system zeros. Nonlinear systems with asymptotically stable zero dynamics are said to be “minimum
phase.” Local asymptotic stability of the zero dynamics is clearly a necessary condition for the feedback
linearized system (4.24) to be locally asymptotically stable. It has been shown that this condition also is
sufficient [27, 123].

Global Stability

It is tempting to conjecture that global asymptotic stability of the zero dynamics is a sufficient condition for
the feedback linearized system (4.24) to be globally asymptotically stable. The argument for this proposi-
tion proceeds as follows. The ξ state variables can be forced to zero arbitrarily fast by approriate selection
of the controller tuning parameters αi. Once the ξ variables converge to zero, the closed-loop trajectories
are described by the zero dynamics (4.25). Because the zero dynamics are globally asymptotically stable
by assumption, the η state variables converge to zero and the closed-loop system is globally asymptotically
stable.

In fact, this argument is correct if the relative degree r = 1 [26, 27]. However, the argument does not
hold in general if r ≥ 2 due to the so-called “peaking phenomenon” [159, 160]. A high gain linear feedback
can cause the linear state variables ξ to become very large before they decay to zero. These “peaking”
variables act as destabilizing inputs to the zero dynamics. As a result, considerably more restrictive
sufficient conditions are required to ensure that the system (4.24) is globally asymptotically stable if r ≥ 2.
Peaking cannot occur — and the closed-loop system therefore is globally asymptotically stable — if either
of the following conditions are satisfied:

1. The only linear state variable entering the zero dynamics is the output y = ξ1 [118, 148].

2. The zero dynamic satisfy a Lipschitz growth condition [27, 160].

Although neither condition may hold in practice, the authors have not encountered any process models
with stable zero dynamics that cannot be asymptotically stabilized via input-output linearization.
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4.2.4 Disturbance Decoupling

The input-output linearization technique presented above does not explicitly address process disturbances.
In this section, conditions under which the output can be completely decoupled from disturbance variables
are presented. This problem was originally posed and solved by several investigators using differential
geometric analysis tools [37, 76, 86]. For simplicity, we employ an alternative formulation based on relative
degrees [40]. Consider an SISO nonlinear system with a single disturbance d,

ẋ = f(x) + g(x)u + p(x)d (4.26)

y = h(x)

where p(x) is an n-dimensional vector of nonlinear functions. The controller design technique presented
below is easily extended to processes with multiple disturbances [40].

The disturbance decoupling problem is to find (if possible) a diffeomorphism and a nonlinear static state
feedback control law such that: (1) the map between the transformed input and the output is linear; and
(2) the output is completely unaffected by the disturbance. It is useful to define a relative degree for
the disturbance that is analogous to the relative degree r associated with the manipulated input u. The
disturbance d is said to have relative degree ρ at the point x0 if:

1. LpL
k
fh(x) = 0 for all x in a neighborhood of x0 and all k < ρ − 1.

2. LpL
ρ−1
f h(x0) 6= 0.

If ρ < r, the disturbance affects the output more directly than does the manipulated input and distur-
bance decoupling cannot be achieved with a static state feedback control law. Consequently, a necessary
condition for the solution of the disturbance decoupling problem is that ρ ≥ r. Under this condition, the
diffeomorphism in Section 5.2.2 transforms (4.26) into the normal form,

ξ̇1 = ξ2

ξ̇2 = ξ3

... (4.27)

ξ̇r = b(ξ, η) + a(ξ, η)u + s(ξ, η)d

η̇ = q(ξ, η) + t(ξ, η)d

y = ξ1

where: s(ξ, η) = LpL
ρ−1
f h

[

Φ−1(ξ, η)
]

and ti(ξ, η) = LpΦr+k

[

Φ−1(ξ, η)
]

, 1 ≤ k ≤ n − r.

Assume that an on-line measurement of the disturbance is not available. If ρ > r, the function
s = 0 and the linearizing control law (4.17) completely decouples the output from the disturbance. The
transformed input v can be designed as usual. The requirement that ρ > r is often called the disturbance
matching condition. Because the disturbance acts as an input to the zero dynamics, stability analysis is
more difficult than in the disturbance-free case. Sufficient conditions for local asymptotic stabilization have
been presented [25, 164].

Note that the control law (4.17) does not decouple the output from the disturbance if ρ = r. It is possible
to achieve disturbance decoupling in this case if the disturbance d is measured and a feedforward/feedback
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control law is employed. The so-called disturbance decoupling problem with measurement is solved by the
following nonlinear control law:

u =
v − b(ξ, η) − s(ξ, η)d

a(ξ, η)
(4.28)

This feedforward/feedback control law changes the r-th equation in (4.27) to: ξ̇r = v. As a result, the
input-output map is linear and the output is decoupled from the disturbance. When expressed in the
original coordinates, the decoupling control law has the form:

u =
v − Lr

fh(x) − LpL
r−1
f h(x)d

LgL
r−1
f h(x)

(4.29)

The transformed input v is designed as before. A more general solution to the disturbance decoupling
problem with measurement has been proposed for the case ρ < r [40]. However, the resulting control
law contains derivatives of the disturbance up to order r − ρ. Because process measurements usually are
corrupted with high frequency noise, this approach is difficult to successfully implement in practice.

4.2.5 Input-Output Decoupling

The input-output linearization approach is extended to multiple-input, multiple-output (MIMO) processes.
This extension is often called input-output decoupling because the input-output response is both linearized
and decoupled. More precisely, the input-output decoupling problem is to find (if possible) a diffeomorphism
and a state feedback control law such that: (1) the map between the transformed inputs v and controlled
outputs y is linear; and (2) the i-th output yi is decoupled from all inputs vj for i 6= j. In this section, we
will only consider static state feedback control laws [53, 86, 133, 138]; input-output decoupling based on
dynamic state feedback is discussed elsewhere [44, 132].

The Decoupling Matrix

It is useful to represent the MIMO nonlinear system (4.1) as,

ẋ = f(x) +
m
∑

j=1

gj(x)uj (4.30)

yi = hi(x) i = 1, 2, . . . , m

The nonlinear system is said to have vector relative degree {r1, r2, . . . , rm} at the point x0 if:

1. Lgj
Lk

fhi(x) = 0 for all 1 ≤ i, j ≤ m, for all k < ri − 1, and for all x in a neighborhood of x0.

2. The m x m decoupling matrix

A(x) =









Lg1
Lr1−1

f h1(x) · · · LgmLr1−1
f h1(x)

...
. . .

...

Lg1
Lrm−1

f hm(x) · · · LgmLrm−1
f hm(x)









(4.31)

is nonsingular at the point x0.
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The integer ri represents the smallest relative degree of the i-th output with respect to any of the m inputs.
Nonsingularity of the decoupling matrix A(x) may be viewed as the MIMO generalization of the condition
that LgL

r−1
f h(x0) 6= 0. It is a necessary and sufficient condition for the solution of the input-output

decoupling control problem with static state feedback. A constructive proof of sufficiency is provided
below; necessity is proven elsewhere [83, 133].

Normal Form

We develop a MIMO generalization of the normal form introduced in Chapter 3. The sum of the individual
relative degrees is defined to be: r = r1 + · · · + rm. Because A(x) is nonsingular, the diffeomorphism
[ξT , ηT ] = Φ(x) can be constructed by choosing the first r coordinates as,

ξi
k = Φi

k(x) = Lk−1
f hi(x) (4.32)

where 1 ≤ k ≤ ri and 1 ≤ i ≤ m. It is always possible to find n − r additional coordinates ηT =
[Φr+1(x), . . . ,Φn(x)] such that,

ΦT (x) =
[

Φ1
1(x), . . . ,Φ1

r1
(x), . . . ,Φm

1 (x), . . . ,Φm
rm

(x), Φr+1(x), . . . ,Φn(x)
]

(4.33)

is invertible at the point x0 [83]. If the vector fields g1(x), g2(x), . . . , gm(x) are involutive (see Section
3.2.6), it is possible to choose the additional coordinates such that Lgj

Φr+i(x) = 0 for all 1 ≤ i ≤ n − r

and for all 1 ≤ j ≤ m.
In general, the involutivity condition is not satisfied and the normal form is,

ξ̇i
1 = ξi

2

ξ̇i
2 = ξi

3

... (4.34)

ξ̇i
ri

= bi(ξ, η) +
m
∑

j=1

aij(ξ, η)uj

η̇ = q(ξ, η) +
m
∑

j=1

pj(ξ, η)uj

yi = ξi
1

where 1 ≤ i ≤ m. The functions aij(ξ, η) are elements of the decoupling matrix A expressed in terms of
the transformed coordinates; the functions bi are defined as,

bi(ξ, η) = Lri

f hi

[

Φ−1(ξ, η)
]

(4.35)

the vector q is defined as in the SISO case; and the vectors pj(ξ, η) are defined as,

pj(ξ, η) =







Lgj
Φr+1

[

Φ−1(ξ, η)
]

...
Lgj

Φn
[

Φ−1(ξ, η)
]






(4.36)

The ri-th equations in the normal form can be collected and written as:
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ξ̇1
r1

...

ξ̇m
rm









= b(ξ, η) + A(ξ, η)u (4.37)

Controller Design

Because the decoupling matrix is nonsingular by assumption, the static state feedback control law which
achieves input-output decoupling can be derived directly from (4.37),

u = A−1(ξ, η) [v − b(ξ, η)] (4.38)

where v is an m-dimensional vector of transformed input variables. This control law — which can be
interpreted as the MIMO generalization of the input-output linearizing control law (4.17) — changes
(4.37) to:









ξ̇1
r1

...

ξ̇m
rm









=







v1
...

vm






(4.39)

As a result, the input-output response is both linear and decoupled ,

ξ̇i
1 = ξi

2

ξ̇i
2 = ξi

3

... (4.40)

ξ̇i
ri

= vi

yi = ξi
1

where 1 ≤ i ≤ m. Each input vi can be chosen as in the SISO case:

vi = −αi
ri

ξi
ri
− αi

ri−1ξ
i
ri−1 − · · · − αi

1ξ
i
1 (4.41)

When expressed in the original coordinates, the decoupling control law (4.38) has the form,

u = −A−1(x)b(x) + A−1(x)v (4.42)

where A(x) is the decoupling matrix (4.31) and the m-dimensional vector b(x) has elements Lri

f hi(x).

Nominal Stability

The input-output decoupling control law generally provides only partial linearization of the closed-loop
system. An expression for the remaining (n–r)-dimensional nonlinear subsystem can be derived from
(4.34) and (4.38),

η̇ = q(ξ, η) − P (ξ, η)A−1(ξ, η)b(ξ, η) + P (ξ, η)A−1(ξ, η)v (4.43)
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where the definition of the matrix P follows directly from (4.34). If each input vi is designed as (4.41), the
nonlinear subsystem can be written as η̇ = q̃(ξ, η). The zero dynamics are obtained by setting ξ(t) = 0 for
all t ≥ 0:

η̇ = q̃(0, η) (4.44)

As in the SISO case, local asymptotic stability of the zero dynamics is a sufficient condition for local
asymptotic stability of the closed-loop system [27]. By contrast, this condition is not necessary for MIMO
systems [84]. Sufficient conditions for an input-output decoupled system to be globally asymptotically
stable are presented elsewhere [27, 148, 160].

4.3 State-Space Linearization

4.3.1 Linear System

The state-space linearization approach is applied to the SISO linear system (4.3). Although feedback
linearization obviously is unnecessary in the linear case, this exercise illustrates the basic concepts of the
nonlinear design procedure. First, we attempt to determined an output function,

ŷ = Ĉx (4.45)

such that the relative degree with respect to ŷ is equal to the system order: r = n. The variable ŷ is called
an artificial output because it generally is different than the controlled output y in (4.3). The artificial
output can be derived by solving the following set of n linear equations for the vector Ĉ,

Ĉ
[

B AB · · · An−2B An−1B
]

=
[

0 0 · · · 0 β
]

(4.46)

where β is a non-zero value. A solution exists if and only if the matrix
[

B AB · · · An−1B
]

is full rank; i.e.

if and only if (A, B) are a controllable pair [28]. In this case, the solution is not unique because ĈAn−1B

can be any non-zero value.
We now derive the control law assuming that an artificial output has been determined. Consider the

following change of coordinates:

ξ = Tx =













Ĉ

ĈA
...

ĈAn−1













x (4.47)

It is easy to show that the linear system has the following normal form representation in the transformed
coordinates,

ξ̇1 = ξ2

ξ̇2 = ξ3

... (4.48)

ξ̇n = Rξ + ku

y = ξ1



4.3. STATE-SPACE LINEARIZATION 13

where R = ĈAnT−1 and k = CAn−1B. The static state feedback control law,

u =
v − Rξ

k
(4.49)

changes the last equation in (4.48) to: ξ̇n = v. The input v is designed to stabilize the transformed system:

v = −αnξn − αn−1ξn−1 − · · · − α1ξ1 (4.50)

In the original coordinates, the controller has the following form,

u =
−ĈAnx − αnĈAn−1x − · · · − α1Ĉx

ĈAn−1B
(4.51)

The transformed system has the following closed-loop characteristic equation:

sn + αnsn−1 + · · · + α2s + α1 = 0 (4.52)

Nominal stability of the transformed system — and therefore the original system — is guaranteed by
choosing the controller tuning parameters αi such that the characteristic polynomial is Hurwitz. recall
that nominal stability for the input-output linearization approach is ensured only if the linear system is
minimum phase. On the other hand, the state-space linearization approach has the following disadvantages:
(1) the linear system must be controllable; and (2) it may be difficult to satisfy output tracking objectives
since the relationship between the actual output and the transformed state variables is: y = CT−1ξ. We
will see that these distinctions also hold in the nonlinear case.

4.3.2 Controller Design

The state-space linearization problem is to find (if possible) a diffeomorphism and a static state feedback
control law such that the map between the transformed input and entire vector of transformed state
variable is linear. This problem was orginally posed by Korobov [93]; a complete solution for the single-
input case was provided by Brockett [24]. An alternative solution that facilitates the construction of the
linearizing transformations also has been developed [82, 157]. In this section, the solution of the state-space
linearization problem for single-input systems is presented; the multivariable case is discussed elsewhere
[81, 87, 88]. An extension of the controller design procedure for disturbances is discussed in a later section.

Illustrative Example

For simplicity, we first consider the two-dimensional nonlinear system (4.13). In this case, an artificial
output which yields a relative degree r = 2 can be determined by inspection: ŷ = ĥ(x) = x2. If the
diffeomorphism ξ = Φ(x) is chosen as,

ξ1 = ĥ(x) = x2 (4.53)

ξ2 = Lf ĥ(x) = f2(x1, x2)

the system has the following normal form representation:
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ξ̇1 = ξ2

ξ̇2 = L2
f ĥ[Φ−1(ξ)] + LgLf ĥ[Φ−1(ξ)]u (4.54)

ŷ = ξ1

Assuming LgLf ĥ is non-zero in the region of interest, the static state feedback control law,

u =
v − L2

f ĥ[Φ−1(ξ)]

LgLf ĥ[Φ−1(ξ)]
(4.55)

yields: ξ̇2 = v. Thus, the map between the transformed input v and the transformed state vector ξ is linear.
The input v can be used to design a linear controller for the feedback linearized system. It is important to
note that the map between ξ and the actual output y generally is nonlinear .

General Design Procedure

We now consider the n-dimensional nonlinear system (4.1). For the moment, assume that an artificial
output ŷ = ĥ(x) that yields r = n has been determined. The existence and construction of such an output
are discussed below. Consider the coordinate transformation:

ξk = Φk(x) = Lk−1
f ĥ(x), 1 ≤ k ≤ n (4.56)

In the new coordinates, the system has the following normal form representation:

ξ̇1 = ξ2

ξ̇2 = ξ3

... (4.57)

ξ̇n = b(ξ) + a(ξ)u

ŷ = ξ1

where a(ξ) = LgL
n−1
f ĥ[Φ−1(ξ)] and b(ξ) = Ln

f ĥ[Φ−1(ξ)]. If the function a 6= 0 throughout the region of
operation, the static state feedback control law,

u =
v − b(ξ)

a(ξ)
(4.58)

changes the n-th equation of the normal form to: ξ̇n = v. As a result, the map between the transformed
input and each of the transformed state variables is linear. A linear state feedback controller can be
synthesized for the state-space linearized system. For instance, the pole-placement design (4.50) yields
the closed-loop characteristic polynomial (4.52). When expressed in the original coordinates, the complete
control law is:

u =
−Ln

f ĥ(x) − αnLn−1
f ĥ(x) − · · · − α1ĥ(x)

LgL
n−1
f ĥ(x)

(4.59)
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Artificial Output Determination

The controller design procedure presented above demonstrates that the existence of an artificial output
that yields a maximal relative degree (r = n) is a sufficient condition for the solution of the state-space
linearization problem. Although not shown here, this condition is also necessary [83]. We now present
necessary and sufficient conditions for the existence of such an output. The proof of sufficiency provides a
constructive procedure for determining a suitable output function.

Because the relative degree must equal the system order, it follows that the output function ĥ(x) must
satisfy:

LgL
k−1
f ĥ(x) = 0, 1 ≤ k ≤ n − 1 (4.60)

LgL
n−1
f ĥ(x) 6= 0

The determination of ĥ(x) from these conditions requires the solution of a set of partial differential equations
that include derivatives up to order n− 1. However, the conditions can be rewritten as a set of first-order
partial differential equations using the Lie bracket operator introduced in Chapter 3 [83]:

Ladk−1

f
gĥ(x) = 0, 1 ≤ k ≤ n − 1 (4.61)

Ladn−1

f
gĥ(x) 6= 0

Using the Frobenius theorem (see Chapter 3), it can be shown that a solution to these equations exists
— and therefore the state-space linearization problem is solvable — if and only if the nonlinear systems is
[157]:

1. Controllable – the matrix
[

g(x) adfg(x) · · · adn−1
f g(x)

]

has rank n.

2. Integrable – the vector fields g(x), adfg(x), . . . , adn−2
f g(x) are involutive.

Note that a set of vector fields {X1(x), . . . , Xp(x)} is involutive if there exists scalar functions δijk(x) such
that:

adXi
Xj(x) =

p
∑

k=1

δijk(x)Xk(x), 1 ≤ i, j ≤ p, i 6= j (4.62)

If the system is two-dimensional, the integrability condition is always satisfied [83] and only the control-
lability condition must be checked. Using the theory discussed in Chapter 3, it is easy to show that the
two-dimensional system (4.13) is controllable if LgLf ĥ(x) 6= 0.

Practical Issues

A potential disadvantage of the state-space linearization approach is that the artificial output ŷ generally
is different than the controlled output y. As a result, y usually is a nonlinear function of the transformed
state variables: y = h[Φ−1(ξ)]. In this case, it is difficult to design a state-space linearizing controller
to satisfy output tracking objectives because desirable ŷ behavior does not necessarily imply desirable y

behavior. State-space linearization therefore is most appropriate for stabilization problems in which the
controlled output is not specified a priori .
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For instance, consider the incorporation of integral action into the state-space linearizing control law
(4.59). By analogy to the input-output linearization approach, the following control law is proposed:

u =
−Ln

f ĥ(x) − αnLr−1
f ĥ(x) − · · · + α1

[

ysp − ĥ(x)
]

+ α0
∫ t
0

[

ysp − ĥ(x)
]

dτ

LgL
n−1
f ĥ(x)

(4.63)

This control law guarantees that ŷ → ysp as long as the closed-loop system is asymptotically stable. How-

ever, offset-free tracking of y will be achieved if and only if h(x0) = ĥ(x0), where x0 is the equilibrium point
corresponding to ysp. A linear state/output map can be ensured by reformulating the control objectives in
terms of an output that is a linear combination of the ξ state variables. However, this approach is difficult
or even impossible to employ in practice. In general, the state-space linearizing controller must provide
simultaneous linearization of the input/state and state/output maps to have output tracking capabilities.
Unfortunately, the necessary and sufficient conditions for complete linearization are considerably more
restrictive than those for state-space linearization [35, 121].

Additional disadvantages of the state-space linearization approach are that the existence conditions may
be difficult to verify and the partial differential equations (4.61) may be difficult to solve analytically. It is
not possible to achieve complete linearization of the input/state map if either of the existence conditions
is not satisfied. However, some degree of partial linearization usually can be achieved. For example, in the
input-output linearization approach an r-dimensional subsystem is linearized. In some applications, it may
be desirable to maximize the dimension of the linear subsystem. Maximal linearization can be achieved by
constructing an output function which yields the highest possible relative degree. Necessary and sufficient
conditions for the solution of this problem are available [106, 122].

4.3.3 Nominal Stability

Nominal stability analysis for the input-output linearization approach is complex due to the presence
of a nonlinear subsystem (the zero dynamics) in the closed-loop system. By contrast, the state-space
linearization approach yields complete linearization of the state equations. As a result, zero dynamics are
not present and nominal stability analysis is much simpler. This is the single most important advantage
of state-space linearization as compared to input-output linearization.

Consider the closed-loop system comprised of the nonlinear system (4.1) and the state-space linearizing
controller (4.59). In the transformed coordinates, the closed-loop system can be written as,

ξ̇ = Aξ (4.64)

ŷ = ξ1

where the matrix A has the characteristic equation (4.52). If the control law is well defined (i.e. LgL
n−1
f ĥ 6=

0), then the state variables ξ converge exponentially to the origin for any initial condition ξ(0) as long
as the controller tuning parameters αi are chosen such that (4.52) is a Hurwitz polynomial. Because the
diffeomorphism Φ(x) is invertible and satisfies Φ(0) = 0, exponential convergence of ξ to the origin implies
asymptotic convergence of the actual state variables x to the origin.

4.3.4 Disturbances

An extension of the state-space linearization approach for nonlinear systems with disturbances is presented
below. This problem is discussed in a series of papers by Calvet and Arkun [29, 30, 32, 33]. For simplicity,
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we consider the SISO nonlinear system (4.26) with a single disturbance. However, similar results are
available for processes with multiple disturbances [30].

As in the disturbance-free case, we attempt to find an artificial output ŷ = ĥ(x) which yields a relative
degree r equal to the system order n. Such an output exists if and only if the controllability and integrability
conditions in Section 5.3.2 are satisfied. If an artificial output can be constructed, the relative degree ρ for
the disturbance d can be defined as in the input-output linearization approach (Section 5.2.4). Note that
the relative degrees will always satisfy ρ ≤ r. The artificial output function ĥ(x) is used to construct the
diffeomorphism (4.56). For a general value of ρ, the nonlinear system (4.26) will have the following normal
form,

ξ̇1 = ξ2

...

ξ̇ρ−1 = ξρ

ξ̇ρ = ξρ+1 + ζρ(ξ)d (4.65)

...

ξ̇n−1 = ξn + ζn−1(ξ)d

ξ̇n = b(ξ) + a(ξ)u + ζn(ξ)d

ŷ = ξ1

where a(ξ) and b(ξ) are defined as in the disturbance-free case, and ζk(ξ) = LpΦk

[

Φ−1(ξ)
]

.

Disturbance Decoupling

The normal form shows that the disturbance cannot be completely decoupled from the artificial output
ŷ with a state feedback control law. In fact, it is easy to prove that the disturbance decoupling problem
(without measurement) cannot be solved for any output that is a linear combination of the transformed
state variables. Most importantly, the state-space approach does not provide a systematic framework for
deriving decoupling control laws for the actual output y. This is a significant disadvantage of state-space
linearization as compared to input-output linearization, which yields disturbance decoupling if the relative
degree of the actual output is less than ρ.

However, the disturbance decoupling problem with measurement can be solved if the matching condition
ρ = n holds. In this case, the following feedforward/state feedback control law is employed:

u =
v − b(ξ) − ζn(ξ)d

a(ξ)
(4.66)

This control law changes the final equation in the normal form (4.65) to: ξ̇n = v. Hence, the transformed
system is completely linear and the input v can be designed as usual. When expressed in the original
coordinates, the feedforward/feedback controller is:

u =
v − Ln

f ĥ(x) − LpL
n−1
f ĥ(x)d

LgL
n−1
f ĥ(x)

(4.67)

However, this control law generally does not provide disturbance decoupling with respect to the actual
output.
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Stabilization of the Quasi-Linear System

In most process applications, the disturbance is unmeasured and/or the matching assumption ρ = n does
not hold. In this case, the state-space linearizing control law (4.58) yields a quasi-linear system,

ξ̇ = Aξ + Bv + ζ(ξ)d (4.68)

ŷ = Cξ

where the definitions of A, B, C, and ζ follow directly from the feedback linearized version of the normal
form (4.65). The objective is to design a linear controller that stabilizes the quasi-linear system (and
therefore stabilizes the original nonlinear system). A controller synthesis procedure based on Lyapunov
stability theory has been proposed [32, 33]. The technique is based on two rather restrictive assumptions:
(1) the disturbance matching condition ρ = n holds; and (2) the nonlinear vector function ζ satisfies
a nonlinear growth condition. The first assumption can be relaxed, but this generally results in poor
performance. The interested reader is referred to the original papers [32, 33] for further details.

4.4 Advanced Topics

In this section, several advanced topics on feedback linearizing controller design are discussed. We focus
on the input-output linearization approach because it usually is more useful for process applications.
Results are presented for the state-space linearization appproach as appropriate. For the sake of brevity,
we omit several important topics such as approximate feedback linearization [63, 105], adaptive feedback
linearization [89, 149], and non-minimum phase compensation [64, 161].

4.4.1 General Nonlinear Systems

We extend the input-output linearization approach to general nonlinear systems that are not necessarily
affine in the manipulated input:

ẋ = f(x, u) (4.69)

y = h(x)

This problem is important because some processes are naturally described by non-affine models. Two
alternative controller design strategies are presented [68, 163]. The first technique employs the non-affine
nonlinear system (4.69) directly, while the second approach is based on an extended system that is control
affine. Although not discussed here, similar results are available for the state-space linearization approach
[134, 157].

Controller Design Based on the Original System

In this case, the input-output linearizing controller design is based directly on the non-affine system (4.69).
We define the Lie derivative of the scalar function h(x) with respect to the vector function f(x, u) as:

Lfh(x, u) =
∂h(x)

∂x
f(x, u) (4.70)
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Higher-order Lie derivatives are defined as,

Lk
fh(x, u) =

∂Lk−1
f h(x, u)

∂x
f(x, u) (4.71)

where: L0
fh(x, u) = h(x). The system is said to have relative degree r at the point (x0, u0) if:

1. ∂
∂uLk

fh(x, u) = 0 for all x in a neighborhood of x0, all u in a neighborhood of u0, and all k < r.

2. ∂
∂uLr

fh(x0, u0) 6= 0.

It follows that the first r Lie derivatives do not depend explicitly on the input: Lk
fh(x, u) = Lk

fh(x), 0 ≤
k ≤ r − 1.

The diffeormorphism [ξT , ηT ]T = Φ(x) that places the nonlinear system (4.69) in normal form is
constructed as follows. The ξ variables are chosen as,

ξk = Φk(x) = Lk−1
f h(x) (4.72)

where 1 ≤ k ≤ r. The η variables can be chosen as,

ηk = Φr+k(x), 1 ≤ k ≤ n − r (4.73)

such that their time derivatives are independent of u: LfΦr+k(x, u) = LfΦr+k(x). When expressed in the
new coordinates, the nonlinear system has the following normal form representation,

ξ̇1 = ξ2

ξ̇2 = ξ3

... (4.74)

ξ̇r = r(ξ, η, u)

η̇ = q(ξ, η)

y = ξ1

where r(ξ, η, u) = Lr
fh
[

Φ−1(ξ, η), u
]

and the (n–r)-dimensional vector q has components qk(ξ, η) = LfΦr+k

[

Φ−1(ξ, η
The input-output linearizing control law is obtained by solving the following nonlinear algebraic equa-

tion for the input u:

r(ξ, η, u) = v (4.75)

If this equation is solvable, the input-output response is linearized as the r-th equation in the normal form
(4.74) becomes: ξ̇r = v. The transformed input v is designed as in the control affine case. When expressed
in terms of the original state variables, the controller equation is:

Lr
fh(x, u) = v (4.76)

In most cases, this equation will not have an analytical solution and therefore it must be solved on-line
at each sampling point. For a solution to exist at the point (x0, v0), the following two conditions must be
satisfied:
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1. There exists a u0 such that Lr
fh(x0, u0) = v0.

2. ∂
∂uLr

fh(x0, u0) 6= 0.

The second condition holds since the system is assumed to have a well defined relative degree; the first
condition may not hold. If both conditions are satisfied, the implicit function theorem [83] guarantees the
existence of a locally defined static state feedback control law,

u = Ψ(x, v) (4.77)

where the implicit function Ψ satisfies Lr
fh [x,Ψ(x, v)] = v.

Controller Design Based on an Affine System

In this case, the input-output linearizing controller design is based on an extended system that is control
affine. A new manipulated input w is defined as w = u̇, and u is viewed as a state variable. By defining
the extended state vector as x̄ = [xT u]T , the nonlinear system (4.69) can be represented as,

˙̄x = f̄(x̄) + ḡ(x̄)w (4.78)

y = h̄(x̄)

where:

f̂(x̄) =

[

f(x, u)
0

]

, g(x̄) =

[

0
1

]

, h̄(x̄) = h(x) (4.79)

Due to the introduction of the integrator, the relative degree of the extended system is equal to r + 1,
where r is the relative degree of the original non-affine system.

Because the extended system (4.78) is control affine, the input-output linearizing controller can be
designed in the usual manner. The resulting control law has the following form when expressed in terms
of the actual input u:

u̇ =
v − Lr+1

f̄
h̄(x, u)

LḡL
r
f̄
h̄(x, u)

(4.80)

A dynamic state feedback control law of the form (4.7) can be obtained by defining the controller state
variable as ζ = u:

ζ̇ = −
Lr+1

f̄
h̄(x, ζ)

Lr+1
f̄

h̄(x, ζ)
+

1

Lr+1
f̄

h̄(x, ζ)
v (4.81)

u = ζ

The transformed input v can be designed to place the closed-loop poles:

v = −αr+1L
r
f̄ h̄(x, u) − αrL

r−1
f̄

h̄(x) − · · · − α1h̄(x) (4.82)
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4.4.2 Time Delay Compensation

Many nonlinear processes contain time delays due to transportation lags and measurement delays. In
this section, an extension of the basic input-output linearizing design strategy for time delay systems is
presented [74, 103]. A similar technique has been developed for the state-space linearization approach [80].
The SISO nonlinear system is assumed to have the form,

ẋ = f(x) + g(x)u(t − θ) (4.83)

y = h(x)

where θ is the time delay associated with the manipulated input. Note that a time delay in the output can
be handled simply by combining an input-output linearizing controller and a linear output predictor (e.g.
Smith predictor) [74].

Motivation

We demonstrate that an input-output linearizing controller for the time delay system (4.83) requires future
values of the process state variables. The system can be placed in the following normal form using the
standard change of coordinates:

ξ̇1 = ξ2

ξ̇2 = ξ3

... (4.84)

ξ̇r = b(ξ, η) + a(ξ, η)u(t − θ)

η̇ = q(ξ, η)

y = ξ1

The input-output linearizing control law is:

u(t − θ) =
v(t) − b(ξ, η)

a(ξ, η)
(4.85)

Hence, the current input u(t) must be computed as:

u(t) =
v(t + θ) − b[ξ(t + θ), η(t + θ)]

a[ξ(t + θ), η(t + θ)]
(4.86)

When expressed in the original coordinates, the linearizing control law has the form:

u(t) =
v(t + θ) − Lr

fh[x(t + θ)]

LgL
r−1
f h[x(t + θ)]

(4.87)

This control law cannot be implemented directly because x(t + θ) and v(t + θ) are not known at time t.
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Controller Design

The following strategy is employed to make the linearizing control law (4.87) implementable. First, the
future state vector x(t + θ) is replaced by the estimate x̂(t + θ|t). The calculation of x̂(t + θ|t) is discussed
below. In addition, the future input v(t + θ) is replaced by the estimate v̂(t + θ|t), which is computed as:

v̂(t + θ|t) = −αrL
r−1
f h[x̂(t + θ|t)] − · · · − α1h[x̂(t + θ|t)] + w(t) (4.88)

Note that (4.88) is identical to (4.19) except that x̂(t + θ|t) has been substituted for x(t) and the signal
w(t) has been introduced. As discussed below, w(t) is the output of a linear time delay compensator. The
overall control law can be written as,

u(t) =
w(t) −

∑r+1
k=1 αkL

k−1
f h[x̂(t + θ|t)]

LgL
r−1
f h[x̂(t + θ|t)]

(4.89)

where αr+1 = 1.
Under the assumption that x̂(t + θ|t) = x(t + θ) for all t ≥ 0, it can be shown that the controller

tuning parameters αk can be chosen to yield the following closed-loop transfer function in the absence of
plant/model mismatch [74]:

y(s)

w(s)
=

ǫre−θs

(ǫs + 1)r (4.90)

A linear controller is designed for the transfer function (4.90) by considering w as the manipulated input.
The following control law provides time delay compensation and integral action:

w(s)

ysp(s) − y(s)
=

ǫ−r (ǫs + 1)r

(ǫs + 1)r e−θs
(4.91)

This controller can be implemented as a linear Smith predictor [150]. By combining (4.90) and (4.91), it
is easy to show that the overall transfer function for setpoint changes is,

y(s)

ysp(s)
=

e−θs

(ǫs + 1)r (4.92)

where ǫ is the controller tuning parameter.

Predictor Design

The remaining task is to compute the one-time-delay-ahead estimate of the process state vector x̂(t + θ|t).
The following prediction formula has been proposed [74],

x̂(t + θ|t) = x(t) +

∫ t+θ

t
[f [x̂(τ |t)] + g[x̂(τ |t)]u(τ − θ)] dτ + (4.93)

λ [x(t) − x̂(t|t − Td)]

where λ and Td are tuning parameters and the predictor is initialized with the plant state x̂(t|t) = x(t).
The filter parameter λ accounts for modeling errors; it should be maintained in the range 0 ≤ λ < θ

Td
. It

is chosen near the upper limit if there is little plant/model mismatch and near zero if significant modeling
errors are present. The term x̂(t|t − Td) in the prediction (4.93) is calculated as,
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x̂(t|t − Td) = x(t − Td) +

∫ t

t−Td

[f [x̂(τ |t − Td)] + g[x̂(τ |t − Td)]u(τ − θ)] dτ (4.94)

where x̂(t − Td|t − Td) = x(t − Td). If the model is perfect and the predictor is initialized as x̂(0) = x(θ),
it can be shown that perfect state predictions are obtained when λ = 1 [74].

4.4.3 Constrained Nonlinear Systems

Many processes have constraints on input and output variables. In this section, we present an input-
output linearization strategy for constrained nonlinear systems [67]. The basic idea is to map the original
constraints into constraints on the feedback linearized system. The resulting linear system is controlled
with a linear model predictive controller with explicit constraint handling capability. For the sake of
brevity, we do not discuss alternative constraint compensation schemes based on feedback linearization
[30, 92, 131, 152].

Constraint Mapping

The controller design is based on the SISO nonlinear model (4.1) with the following constraints:

umin ≤ u ≤ umax, ∆umin ≤ ∆u ≤ ∆umax, ymin ≤ y ≤ ymax (4.95)

The objective is to transform these constraints into constraints on the feedback linearized system. First,
the linear subsystem is discretized to facilitate the linear model predictive controller design,

ξ(k + 1) = Adξ(k) + Bdv(k) (4.96)

y(k) = Cξ(k)

where Ad is an r x r matrix, Bd is an r x 1 vector, and C is an 1 x r vector. The eigenvalues of Ad are on
the unit circle, but the pair (Ad,Bd) is controllable.

The next step is to map the constraints on the original nonlinear system into constraints on the
discretized linear system (4.96). The output constraints for the two systems are identical since the output
is not transformed as part of the controller design. By contrast, the constraints on the actual input u must
be mapped into constraints on the transformed input v. This transformation must be performed at each
sampling instant because the mapping is state dependent (shown below). Moreover, the transformation
must be performed for the entire control horizon N of the predictive controller. The constraint mapping
is performed using the feedback linearizing control law (4.18) and the current measurement of the process
state vector x(k):

v(k) = Lr
fh[x(k)] + LgL

r−1
f h[x(k)]u(k) = b[x(k)] + a[x(k)]u(k) (4.97)

The constraints on the first input in the control horizon, v(k|k), are calculated as,

vmin(k|k) = min
u(k)

b[x(k)] + a[x(k)]u(k) (4.98)

vmax(k|k) = max
u(k)

b[x(k)] + a[x(k)]u(k)

where:
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umin ≤ u(k) ≤ umax (4.99)

∆umin + u(k − 1) ≤ u(k) ≤ ∆umax + u(k − 1)

This optimization problem is trivial to solve since the objective function is affine in u(k).
By contrast, computing the constraints for future inputs in the control horizon, v(k + 1|k), . . . , v(k +

N − 1|k), is problematic. This difficulty occurs because future values of the input and state variables are
needed to compute the future constraints, as indicated by the mapping (4.97). A simple way to overcome
this problem is to extend the constraints calculated for v(k|k) over the entire control horizon. An important
property of this technique is that the implemented input,

u(k) =
v(k|k) − Lr

fh[x(k)]

LgL
r−1
f h[x(k)]

(4.100)

is guaranteed to satisfy the actual input constraints. On the other hand, the constraints calculated for
the future inputs (which are not implemented) generally will not agree with the actual constraints. This
is a serious disadvantage since incorrect future constraints may lead to implemented control moves that
are overly conservative or aggressive. More accurate constraints can be obtained by utilizing the control
moves calculated at the previous iteration of the predictive controller [67].

Linear Model Predictive Controller Design

The constrained linear model used for model predictive controller design has the form,

ξ(k + 1) = Adξ(k) + Bdv(k), vmin(k) ≤ v(k) ≤ vmax(k) (4.101)

y(k) = Cξ(k), ymin ≤ y(k) ≤ ymax

It is important to note that the input constraints are time varying . The linear model is used to predict
the effects of future control moves on future values of the output. To obtain improved predictions in the
presence of plant/model mismatch, at each time step the linear model state is initialized with the current
plant state:

ξ(k|k) =













h[x(k)]
Lfh[x(k)]

...

Lr−1
f h[x(k)]













(4.102)

The matrix Ad is unstable because all its eigenvalues are located on the unit circle. Consequently, a
model predictive controller design technique specifically developed for unstable linear system is employed
[130]. At each time step, the manipulated input is generated by solving the following open-loop optimal
control problem [130],

min
V (k)

s [v(k + N − 1|k) − vs]
2 +

N−1
∑

j=0

[ξ(k + j|k) − ξs]
T Q [ξ(k + j|k) − ξs] +

r [v(k + j|k) − vs]
2 + s [v(k + j|k) − v(k + j − 1|k)]2 (4.103)
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where: ξ̂(k + j|k) is the predicted value of ξ(k + j); ξs and vs are target values for ξ and v, respectively;
r > 0 and s ≥ 0 are scalar tuning parameters; and Q is a positive semidefinite tuning matrix. The decision
vector V (k) contains N values of the manipulated input: V (k) = [v(k|k), v(k + 1|k), . . . , v(k + N − 1|k)]T .
Inputs beyond the control horizon are set equal to the target value: v(k + j|k) = vs, j ≥ N .

The targets ξs and vs are calculated from the steady-state form of (4.101) under the condition that
y = ysp. The target values must lie within the feasible region defined by the input and output constraints
for the optimal control problem to have a solution. In practice, a disturbance model is used to shift the
targets in order to eliminate offset [67]. Because all the eigenvalues of Ad are located on the unit circle, a
necessary condition for the optimization problem to have a solution is that the state variables are driven
to their target values by the end of the control horizon: ξ(k + N |k) = ξs. Thus, the optimization problem
must be solved subject to the following constraints:

vmin(k) ≤ v(k + j|k) ≤ vmax(k), 0 ≤ j ≤ N − 1

ymin ≤ Cξ(k + j|k) ≤ ymax, j ≥ 1 (4.104)

ξ(k + N |k) = ξs

If necessary, input and /or output constraints can be relaxed to ensure that the optimization problem is
feasible [67, 145]. The optimal control problem (4.103) can be manipulated to yield a quadratic program
that can be solved with standard software [130].

4.4.4 Robust Controller Design

We discuss robust controller design techniques based on the input-output and state-space linearization
approaches. This is a very important topic because modeling errors usually preclude exact cancellation of
nonlinear terms. The SISO nonlinear system is assumed to be described by the nominal nonlinear model
(4.1) with state dependent perturbations:

ẋ = f(x) + ∆f(x) + [g(x) + ∆g(x)] u (4.105)

y = h(x)

Note that the perturbations ∆f(x) and ∆g(x) are not known. Available controller design techniques differ
according to the structure matching conditions and growth conditions imposed on the perturbations. Less
restrictive matching conditions generally require more restrictive bounds to be placed on the perturbations.

Input-Output Linearization Techniques

First we define relative degrees for the state dependent perturbations. The perturbation ∆f(x) is said to
have relative degree γf at the point x0 if:

1. L∆fLk
fh(x) = 0 for all x in a neighborhood of x0 and all k < γf − 1.

2. L∆fL
γf−1
f h(x0) 6= 0.

The relative degree γg for the pertubation ∆g(x) is defined analogously. For the moment, assume that the
structure matching conditions γf ≥ r and γg ≥ r are satisfied. Using the standard change of coordinates,
the uncertain system (4.105) has the following normal form representation,
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ξ̇1 = ξ2

ξ̇2 = ξ3

... (4.106)

ξ̇r = b(ξ, η) + ∆b(ξ, η) + [a(ξ, η) + ∆a(ξ, η)] u

η̇ = q(ξ, η) + r(ξ, η) + s(ξ, η)u

y = ξ1

where the functions a, b, and q are defined as usual and:

∆a(ξ, η) = L∆gL
r−1
f h

[

Φ−1(ξ, η)
]

∆b(ξ, η) = L∆fLr−1
f h

[

Φ−1(ξ, η)
]

(4.107)

rk(ξ, η) = L∆fΦr+k

[

Φ−1(ξ, η)
]

, 1 ≤ k ≤ n − r

sk(ξ, η) = L∆gΦr+k

[

Φ−1(ξ, η)
]

, 1 ≤ k ≤ n − r

Under the more restrictive matching conditions that γf > r and γg > r, the perturbations do not appear
in the r-th equation in the normal form. As a result, the standard input-output linearizing control law
(4.20) yields a stable closed-loop system if the perturbed zero dynamics are asymptotically stable [119].

On the other hand, plant/model mismatch should be considered explicitly in the controller design if
γf ≤ r and/or γg ≤ r. Several Lyapunov-based design techniques have been proposed for this important
case. Kravaris and Palanki [101] assume the existence of scalar functions ∆f∗(x) and ∆g∗(x) that satisfy
the matching conditions:

L∆fLr−1
f (x) = g(x)∆f∗(x), ∆g(x) = g(x)∆g∗(x) (4.108)

These conditions are rather restrictive as they require that the peturbations be expressed in terms of the
input vector g(x). Behtash [22] considers similar, but slightly less restrictive, matching conditions. Arkun
and Calvet employ the following matching conditions,

∆f(x) = ∆f1(x) + ∆f2(x), ∆g(x) = g(x)∆g∗(x) (4.109)

where ∆f1(x) is a matched uncertainty and ∆f2(x) is an unmatched uncertainty with relative degree
γf2

= r. A stabilizing input-output linearizing controller is design by solving an algebraic Riccati equation.
Liao et al. decompose both perturbations into matched and unmatched parts:

∆f(x) = g(x)∆f1(x) + ∆f2(x), ∆g(x) = g(x)∆g1(x) + ∆g2(x) (4.110)

Restrictive bounds must be placed on the unmatched uncertainties ∆f2(x) and ∆g2(x) to guarantee closed-
loop stability.
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State-Space Linearization Techniques

Su et al. [158] have shown that the state-space linearization approach possesses some degree of robustness
to modeling errors. The analysis does not require matching conditions, but it is assumed that the plant and
model are “close” in a topological sense. Controller design techniques that explicitly address plant/model
mismatch usually employ: (1) matching conditions on both ∆f(x) and ∆g(x); or (2) no matching condition
on ∆f(x), but ∆g(x) = 0. The first group of robust controller design techniques are based on the following
matching conditions:

∆f(x) = g(x)∆f∗(x), ∆g(x) = g(x)∆g∗(x) (4.111)

In this case, the standard change of coordinates places the nonlinear system (4.1) in the normal form,

ξ̇1 = ξ2

ξ̇2 = ξ3

... (4.112)

ξ̇n = b(ξ, η) + ∆b(ξ, η) + [a(ξ, η) + ∆a(ξ, η)] u

ŷ = ξ1

where the nonlinear functions ∆a and ∆b are defined as in (4.107) with r = n. Spong [155] uses L2 control
theory to synthesize a stabilizing controller for the feedback linearized system, while Ha and Gilbert [59]
employ a Lyapunov-based design strategy.

Several robust controller design techniques are based on the alternative matching condition ∆g(x) = 0.
In this case, the perturbation ∆f(x) is allowed to be arbitrary at the expense of assuming exact knowledge
of the input vector g(x). Spong and Vidyasagar [156] have proposed a design strategy in which the stable
factorization approach is applied to the feedback linearized system. A Lyapunov design technique based
on the solution of a algebraic Riccati equation has been developed by Calvet and Arkun [31]. Doyle and
Morari [49] have proposed a robust controller design strategy based on conic sector bounds and approximate
state-space linearization.

4.4.5 Discrete-Time and Sampled-Data Systems

Feedback linearizing controller design for discrete-time and sampled-data nonlinear systems is discussed
below. In many ways, the results parallel the continuous-time results presented throughout this chapter.
However, the operations used to construct the discrete-time controllers are quite different. In addition,
discrete-time and sampled-data systems offer unique possibilities (e.g. deadbeat control) and complexities
(e.g. sampling) not encountered in the continuous-time case. For simplicity, we focus on SISO models of
the form:

x(k + 1) = F [x(k), u(k)] (4.113)

y(k) = h[x(k)]

Because most processes are inherently continous, the function F is obtained by discretizing a continuous-
time model or identified directly from process data. The discrete-time model is not assumed to be control
affine because: (1) exact sampling generally does not yield an affine model; and (2) an affine model usually
does not simplify the controller design task.
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Discrete-Time Systems

For the moment, we neglect the effects of sampling and discuss the feedback linearization of inherently
discrete-time systems. Sampled-data systems are considered below. For the sake of brevity, we focus on
the input-output linearization problem [110, 127]. Similar results are available for disturbance decoupling
[55, 134], input-output decoupling [56, 134], and state-space linearization [110, 134].

The composition of the scalar function h(x) and the vector function F (x) is defined as: h◦F (x) =
h[F (x)]. Higher order compositions are defined recursively: h◦F i(x) = h◦F i−1[F (x)], where h◦F 0(x) =
h(x). The composition operator plays the same role as does the Lie derivative in the continuous-time case.
The discrete-time system (4.113) is said to have relative degree r at the point (x0, u0) if:

1. ∂
∂u(k)h◦F

i[x(k), u(k)] = 0 for all (x, u) in a neighborhood of (x0, u0) and all i ≤ r − 1.

2. ∂
∂u(k)h◦F

r[x0, u0] 6= 0.

By definition of the relative degree we can write,

h◦F i[x(k), u(k)] = h◦F i
0[x(k)], 1 ≤ k ≤ r − 1 (4.114)

since these functions do not depend explicitly on the input u(k).
If the relative degree is well defined, a diffeomorphism [ξT (k), ηT (k)]T = Φ[x(k)] that places the system

in normal form is constructed as follows. The ξ vaiables are chosen as,

ξi(k) = h◦F i−1
0 [x(k)], 1 ≤ i ≤ r (4.115)

The remaining variables ηi(k) = Φr+i[x(k)], 1 ≤ i ≤ n − r, can be chosen such that Φ is invertible and
∂

∂u(k)Φi◦F [x(k), u(k)] = 0. As a result, the normal form is,

ξ1(k + 1) = ξ2(k)

ξ2(k + 1) = ξ3(k)

... (4.116)

ξr(k + 1) = a[ξ(k), η(k), u(k)]

η(k + 1) = q[ξ(k), η(k)]

y(k) = ξ1(k)

where:

a[ξ(k), η(k), u(k)] = h◦F r[Φ−1(ξ(k), η(k)), u(k)] (4.117)

qi[ξ(k), η(k)] = Φr+i◦F [Φ−1(ξ(k), η(k))], 1 ≤ i ≤ n − r

Note that the functions qi do not depend on u(k) by construction.
The input-output linearizing control law is obtained by solving the following nonlinear algebraic equa-

tion for u(k),

a[ξ(k), η(k), u(k)] = v(k) (4.118)
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where v(k) is the transformed input. This equation can be solved locally if the conditions of the implicit
function theorem are satisfied (see Section 5.4.1). When expressed in terms of the original state variables,
the linearizing control law is:

h◦F r[x(k), u(k)] = v(k) (4.119)

If the transformed input is chosen as v(k) = ysp(k), output deadbeat control is obtained [120]: y(k + r) =
ysp(k). Alternatively, the linear controller can be designed as,

v(z) =
gd(z)

1 − z−rgd(z)
[ysp(z) − y(z)] (4.120)

where gd(z) is the desired closed-loop transfer function. A simple choice for gd is,

gd(z) =
1 − α

1 − αz−1
(4.121)

where the tuning parameter α represents the closed-loop pole. Note that the linear control law has integral
action. For this design, the nominal closed-loop transfer function for setpoint changes is:

y(z)

ysp(z)
= z−r 1 − α

1 − αz−1
(4.122)

As in the continuous-time case, closed-loop stability can be ensured only if the zero dynamics,

η(k + 1) = q[0, η(k)] (4.123)

are asymptotically stable.

Sampled-Data Systems

Feedback linearizing controller design becomes considerably more complex if the effects of sampling are
considered. We briefly describe the potential difficulties and proposed solutions. Monaco and Normand-
Cyrot [128] demonstrate that exact sampling always produces a discrete-time system of relative degree
one. They also show that if the continuous-time system is minimum phase and has relative degree r,
sufficiently fast sampling always yields a discrete-time system with: (1) stable zero dynamics if r = 1; and
(2) unstable zero dynamics if r ≥ 3. As a result, a discretized input-output linearizing controller is likely
to provide satisfactory performance if r = 1, but it may produce unexpected results if r ≥ 2. Glad [54] also
considered sampling effects in developing output deadbeat controllers for sampled-data systems. The r ≥ 3
case is handled by employing a multi-rate sampling strategy in which the control move is implemented
each sampling period but the state is only measured every r sampling periods.

It has been shown that state-space linearizability of a continuous-time system can be destroyed by
sampling [57]. Arapostathis et al. [14] demonstrate that sampling can impose severe restrictions — in
addition to the standard controllability and involutivity conditions — on the structure of the continuous-
time system. For two-dimensional systems, state-space linearizability of the sampled-data system implies
that the continuous-time system can be completely linearized by coordinate transformations alone. To
overcome these difficulties, several state-space linearization techniques based on multi-rate sampling have
been proposed. Grizzle and Kokotovic [57] consider implementing the control move each sampling period
while measuring the state every N sampling periods, where N ≥ 2.
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4.5 Process Control Strategies and Applications

A variety of nonlinear controller design strategies have been developed for process applications. Many
of these techniques are based, either implicitly or explicitly, on exact linearization of the input-output
response. In this section, these linearizing control strategies are reviewed and critically evaluated. Appli-
cations of feedback linearizing control techniques to process systems also are discussed. The applications
are categorized in terms of the unit operations involved; a representative list of references is provided in
each case. Additional applications are described in other review articles on feedback linearizing control
[69, 90, 95, 100, 126].

4.5.1 Process Control Techniques

Techniques for Processes of Relative Degree One

Generic model control [111, 113], internal decoupling [16, 17] and reference system synthesis [19] are
nonlinear controller design techniques developed specifically for process control applications. We outline
the generic model control (GMC) design strategy and show that GMC is an input-output linearization
technique for processes of relative degree one. Similar analyses of the internal decoupling and reference
system synthesis techniques are omitted for the sake of brevity.

Consider the SISO nonlinear system (4.1) The rate-of-change of the output can be written as:

ẏ = Lfh(x) + Lgh(x)u (4.124)

Assume that the desired rate-of-change is,

ẏd = k1(ysp − y) + k2

∫ t

0
(ysp − y) dτ (4.125)

where k1 and k2 are controller tuning parameters. The goal is to determine a control law such that ẏ = ẏd

for all t ≥ 0. If the relative degree r = 1, then the function Lgh(x) 6= 0 and the following state feedback
control law achieves the control objective:

u =
k1(ysp − y) + k2

∫ t
0 (ysp − y) dτ − Lfh(x)

Lgh(x)
(4.126)

The closed-loop system is input-output linearized,

ẏ = k1(ysp − y) + k2

∫ t

0
(ysp − y) dτ (4.127)

and has the following transfer function for setpoint changes if y(0) = ysp(0):

y(s)

ysp(s)
=

k1s + k2

s2 + k1s + k2
(4.128)

The tuning parameters k1 and k2 are used to place the closed-loop poles. Note that the GMC control law
(4.126) and the input-output linearizing control law (4.21) are identical when r = 1.
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Globally Linearizing Control

Globally linearizing control (GLC) [96] is a controller design strategy developed for nonlinear process
applications. We show that GLC is an input-output linearization technique for processes of arbitrary
relative degree. Consider the SISO nonlinear system (4.1). By definition of the relative degree, the first r

derviative of the output are:

y(k) = Lk
fh(x), 1 ≤ k ≤ r − 1 (4.129)

y(r) = Lr
fh(x) + LgL

r−1
f h(x)u

The state feedback control law is chosen as,

u =
v̄ − βrL

r
fh(x) − βr−1L

r−1
f h(x) − · · · − β0h(x)

βrLgL
r−1
f h(x)

(4.130)

where v̄ is a new input and βk are controller tuning parameters.

It follows from (4.129) that the proposed control law yields a linearized input-output response:

βry
(r) + βr−1y

(r−1) + · · · + β0y = v̄ (4.131)

A proportional-integral controller is designed for the feedback linearized system,

v̄ = kc

[

(ysp − y) +
1

τI

∫ t

0
(ysp − y) dτ

]

(4.132)

where the gain kc and integral time τI are additional controller tuning parameters. The complete GLC
control law obtained by combining (4.130) and (4.132) yields the following closed-loop transfer function
for setpoint changes if y(0) = ysp(0):

y(s)

ysp(s)
=

kcs + kc

τI

βrsr+1 + βr−1sr + · · · + (β0 + kc)s + kc

τI

(4.133)

The tuning parameters βk, kc, and τI are used to place the closed-loop poles.

The GLC control law is closely related to the input-output linearizing control law (4.21). In fact, the
two control laws are identical if βr = 1 and the tuning parameters of the input-output linearizing controller
are chosen as:

α0 =
kc

τI
, α1 = β0 + kc, αk = βk−1, 2 ≤ k ≤ r (4.134)

Although not discussed here, extensions of the GLC technique for measured disturbances [40], multivari-
able processes [102], and discrete-time systems [151] parallel those presented earlier for the input-output
linearization approach.
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Nonlinear Internal Model Control Techniques

Internal model control (IMC) is a powerful controller design strategy for linear process models [129]. Two
distinctive characteristics of IMC are: (1) the controller design is based on the inverse of the process model;
and (2) the error between the plant and model outputs is used as a feedback signal. Several nonlinear
controller design techniques which include these two features have been proposed for process applications
[51, 70, 137]. In this section, we discuss a particular nonlinear IMC technique [70] and provide comparisons
with the input-output linearization approach.

As in the linear case, the nonlinear IMC control law is comprised of a model inverse controller C and a
robustness filter F . For the moment, we assume F = 1 and design the controller C to optimize the nominal
performance measure,

min
C

‖ ysp(t) − y(t) ‖ (4.135)

where ‖ · ‖ represents a desired norm. The feedback signal to C is e = ysp − y + ỹ, where y is the plant
output and ỹ is the model output. In the absence of modeling errors, e = ysp and the plant output can be
written as y = MCysp, where M represents the process model. As a result, the controller design problem
can be reformulated as:

min
C

‖ (1 − MC)ysp(t) ‖ (4.136)

If the system is initially at rest and y(0) = ysp(0), the performance criterion is identically zero for any
norm and setpoint trajectory when C is chosen to be the right-inverse of the model (see Chapter 3),

u =
y

(r)
sp − Lr

fh(x̃)

LgL
r−1
f h(x̃)

(4.137)

where x̃ are the model state variables.
The model inverse controller C is not suitable for implementation because: (1) “perfect” control requires

unreasonably large control moves; (2) the controller is not “proper” in the sense that it requires derivatives
of the setpoint; and (3) the perfect model assumption is not satisfied in practice. As a result, C is
augmented with the following nonlinear filter F :

v(r) = −αrL
r−1
f h(x̃) − αr−1L

r−2
f h(x̃) − · · · − α1h(x̃) + α1e (4.138)

The filter output v(r) replaces the signal y
(r)
sp in the nonlinear control law (4.137). If the system is initially

at rest and y(0) = ysp(0), the controller parameters αk can be chosen to yield the nominal closed-loop
transfer function:

y(s)

ysp(s)
=

1

(ǫs + 1)r (4.139)

The controller tuning parameter ǫ can take values in the range 0 < ǫ < ∞. The nonlinear IMC technique
possesses similar stability, perfect control, and zero offset properties as linear IMC [129]. In fact, the linear
and nonlinear IMC design strategies yield identical controllers when applied to a stable, minimum-phase
linear model.

The nonlinear IMC controller can be interpreted as a variant of the input-output linearizing controller
(4.21). Despite the similarities, the nonlinear IMC technique offers several unique features including:
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1. A control structure in which the difference between the plant and model outputs is used as a feedback
signal for the nonlinear controller.

2. Implicit integral action that is a result of the IMC control structure.

3. An output feedback controller implementation because the nonlinear controller uses state variables
generated by the model.

The third feature represents a significant advantage of the nonlinear IMC strategy as compared to the
input-output linearization approach, which is based on full-state feedback. However, the nonlinear IMC
technique employs the model as an open-loop observer and therefore it is restricted to open-loop stable
processes.

4.5.2 Process Control Applications

Chemical Reactors

Feedback linearizing control strategies have been applied to a wide variety of chemical reactor models. The
most commonly used model describes the irreversible, exothermic reaction A → B, occurring in a constant
volume, continuously stirred tank reactor [66]:

ĊA =
q

V
(CAf − CA) − k0exp

(

−
E

RT

)

CA (4.140)

Ṫ =
q

V
(Tf − T ) +

(−∆H)

ρCp
k0exp

(

−
E

RT

)

CA +
UA

V ρCp
(Tc − T )

The severe static and dynamic nonlinear behavior of this model are well documented [162]. The coolant
temperature Tc or feed flowrate q is usually employed as the manipulated input, while either the reactor
concentration CA or temperature T is chosen as the controlled output. Other commonly used reactors
models differ from (4.140) by including coolant jacket dynamics and/or by considering more complex
reactions. A summary of applications of feedback linearization to chemical reactors is presented in Table 4.1.
For each reference, the table contains the controller design approach employed (input-output linearization
(IOL) or state-space linearization (SSL)) and the major focus of the paper.

Biological Reactors

Feedback linearizing controllers have been developed for several types of biological reactor models. The
most commonly used model describes the growth of a single cell population from a single, rate-limiting
substrate in a continuous stirred tank reactor [4]:

Ẋ = µ(X, S)X − DX (4.141)

Ṡ = −σ(X, S)X − D(Sf − S)

Typically, the specific growth rate µ is modeled by a Monod relation,

µ(X, S) = µ(S) =
µm

Km + S
(4.142)

and a constant yield expression is used to describe the specific substrate consumption rate σ:
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Table 4.1: Applications to Chemical Reactors

References Approach Focus

[96] IOL basic controller design

[1] IOL global feedback stabilization

[19, 40] IOL disturbance decoupling

[42] IOL input-output decoupling

[68] IOL general nonlinear processes

[74, 103] IOL time delay compensation

[8, 67, 92] IOL constrained processes

[3, 12, 15, 101] IOL robust controller design

[151, 154] IOL discrete-time models

[23, 51, 72, 136] IOL internal model control

[50, 143] IOL approximate feedback linearization

[48, 97, 169] IOL non-minimum phase compensation

[13, 21] IOL adaptive feedback linearization

[108, 125] IOL differential/algebraic models

[41, 98, 109, 170] IOL output feedback control

[11, 77, 90] SSL basic controller design

[7] SSL global feedback stabilization

[30, 32, 33] SSL feedforward/feedback control

[80] SSL time delay compensation

[49, 91] SSL robust controller design

[50] SSL approximate feedback linearization

[117] SSL output feedback control

σ(X, S) =
1

YX/S
µ(S) (4.143)

Bioreactor models of this form can exhibit significant static and dynamic nonlinear behavior [70]. The
dilution rate D or feed substrate concentration Sf is usually employed as the manipulated input, while the
cell concentration X or substrate concentration S is often chosen as the controlled output. A summary of
applications of feedback linearization to bioreactor models is presented in Table 4.2.

Other Processes

Several other types of processes can benefit from feedback linearizing control as a result of their strongly
nonlinear behavior. Important examples of such processes include polymerization reactors, high purity
distillation columns, and weakly buffered pH neutralization systems. A summary of applications of feedback
linearization to models of these processes is shown in Table 4.3.

Experimental Studies

As compared to simulation studies, relatively few experimental applications of feedback linearizing control
have been presented. However, the number of experimental studies has increased significantly over the past
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Table 4.2: Applications to Biological Reactors

References Approach Focus

[20, 38, 71] IOL basic controller design

[140] IOL input-output decoupling

[70] IOL internal model control

[71, 116] IOL approximate feedback linearization

[45] IOL non-minimum phase compensation

[46] IOL adaptive feedback linearization

[52, 71, 79] SSL basic controller design

[78] SSL multiple-input processes

Table 4.3: Applications to Other Processes

References Process Approach

[34, 36, 61, 126, 144] distillation column IOL

[6] distillation column SSL

[62, 112] evaporator IOL

[147] heat exchanger IOL

[5] heat exchanger SSL

[69, 75, 107, 137, 166, 168] pH neutralization IOL

[2, 43, 94, 102, 104, 124, 165] polymerization reactor IOL

[9, 10] polymerization reactor SSL

[114, 135] storage tank IOL

[141] supercritical extractor IOL

several years. As shown in Table 4.4, input-output linearization techniques have been applied to a variety of
processes including biological reactors, distillation columns, pH neutralization systems, and polymerization
reactors. By contrast, we have found no experimental applications of the state-space linearization approach.

4.6 Case Studies

4.6.1 Continuous Stirred Tank Reactors in Series

Process Model

The process consists of two constant volume reactors in which an irreversible, exothermic reaction A → B
occurs. The effluent stream from the first reactor serves as the feed stream for the second reactor. The
reactors are cooled by a single coolant stream flowing cocurrently with the reaction stream. Neglecting
coolant dynamics, the process model consists of four nonlinear ordinary differential equations [68]:

ĊA1 =
q

V1
(CAf − CA1) − k0CA1exp

(

−
E

RT1

)

Ṫ1 =
q

V1
(Tf − T1) +

(−∆H)k0CA1

ρCp
exp

(

−
E

RT1

)
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Table 4.4: Experimental Studies

Reference Process Focus

[139] bioreactor input-output decoupling

[142, 146] bioreactor adaptive input-output linearization

[18, 39] distillation column input-output linearization

[115] distillation column disturbance decoupling

[47] distillation column input-output decoupling

[167, 171] pH neutralization input-output linearization

[58, 73] pH neutralization adaptive input-output linearization

[152] polymerization reactor input-output linearization

[153] polymerization reactor input-output decoupling

Table 4.5: Nominal Parameters for the CSTR Model

Variable Value Variable Value

q 100 L/min k0 7.2 × 1010 min−1

CAf 1 mol/L E
R 1 × 104 K

Tf 350 K −∆H 4.78 × 104 J/mol

Tcf 350 K ρ, ρc 1000 g/L

V1, V2 100 L Cp, Cpc 0.239 J/g·K

hA1, hA2 1.67 × 105 J/min·K

+
ρcCpc

ρCpV1
qc

[

1 − exp

(

−
UA1

qcρcCpc

)]

(Tcf − T1) (4.144)

ĊA2 =
q

V2
(CA1 − CA2) − k0CA2exp

(

−
E

RT2

)

Ṫ2 =
q

V2
(T1 − T2) +

(−∆H)k0CA2

ρCp
exp

(

−
E

RT2

)

+
ρcCpc

ρCpV2
qc

×

[

1 − exp

(

−
UA2

qcρcCpc

)][

T1 − T2 + exp

(

−
UA1

qcρcCpc

)

(Tcf − T1)

]

We have used standard notation [162] where the subscripts 1, 2, c, and f denote the first reactor, second
reactor, coolant stream, and feed stream, respectively. Nominal parameters for the model are shown in
Table 4.5. The objective is to control the effluent composition from the second tank (CA2) by manipulating
the coolant flow rate (qc). Note that the model is not control affine when u = qc. If the state variables and
controlled output are defined as,

xT =
[

CA1 T1 CA2 T2

]

, y = CA2 (4.145)

the model has the form of the general nonlinear system (4.69). As a result, the nonlinear controller design
is based on the input-output linearization techniques discussed in Section 5.4.1.
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Figure 4.1: Open-loop response for ± 10% change in qc [68].

Controller Design

For the purpose of comparison, three controllers are designed: a conventional proportional-integral (PI)
controller; a static input-output linearizing controller; and a dynamic input-output linearizing controller.
The PI controller is tuned for setpoint changes, yielding kc = 350 L2/mol·min and τI = 0.25 min. The
nonlinear controllers are designed by assuming that all four state variables are available for feedback. The
static nonlinear controller design is based on the original nonlinear model (4.144), which has relative degree
r = 2. The control moves of the static controller are generated by solving a nonlinear algebraic equation of
the form (4.76) at each sampling instant. The dynamic nonlinear controller is designed using an extended
model of the form (4.78), which has relative degree r = 3 in this case. For both nonlinear controllers, the
transformed input v is chosen to yield a nominal closed-loop transfer function of the form (4.23) where ǫ

= 0.25 min. The expressions for the two nonlinear controllers are rather complicated, and therefore they
are not presented here.

Simulation Results

The open-loop composition responses in Figure 5.1 demonstrate that the model exhibits highly nonlinear
behavior. The disturbance rejection performance of the three controllers for ± 5% unmeasured disturbances
in the feed composition (CAf ) is shown in Figure 5.2. The nonlinear controllers cannot completely decouple
the disturbance from the output because CAf has relative degree ρ = 1. The static nonlinear controller
provides excellent performance and is clearly superior to the other controllers for both disturbances. Note
that the PI controller provides more effective rejection of the + 5% disturbance than does the dynamic
nonlinear controller.

The controllers are compared for unmeasured feed temperature (Tf ) disturbances of ± 25 K in Figure
5.3. Because Tf has relative degree ρ = 3, the static nonlinear controller provides perfect disturbance
decoupling and therefore it outperforms the other controllers. The dynamic nonlinear controller provides
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Figure 4.2: Closed-loop response for ± 5% CAf disturbance [68].
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Figure 4.3: Closed-loop response for ± 25% q disturbance [68].
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Table 4.6: Nominal Operating Conditions for the Fermentor Model

Variable Value Variable Value

YX/S 0.4 g/g α 2.2 g/g

β 0.2 h−1 µm 0.48 h−1

Pm 50 g/L Km 1.2 g/L

Ki 22 g/L Sf 20 g/L

D 0.202 h−1 X 6.0 g/L

S 5.0 g/L P 19.14 g/L

vastly superior performance as compared to the PI controller for the – 25 K disturbance. The responses of
the two controllers are comparable for the + 25 K disturbance. These results indicate that a disturbance
can be rejected most effectively if the difference between the relative degrees of the manipulated input and
the disturbance is small. This difference is always smaller for the static controller than for the dynamic
controller. Consequently, we propose that the manipulated input and controlled output of an input-output
linearizing controller should be chosen such that the relative degree r is minimized . This proposition
provides another argument against the state-space linearization approach, which results in a maximal
relative degree.

4.6.2 Continuous Fermentor

Process Model

The process consists of a constant volume reactor in which a single, rate limiting substrate promotes biomass
growth and product formation. By assuming constant yields, a process model with three nonlinear ordinary
differential equations can be obtained [4],

Ẋ = −DX + µ(S, P )X

Ṡ = D(Sf − S) −
1

YX/S
µ(S, P )X (4.146)

Ṗ = −DP + [αµ(S, P ) + β]X

where: X, S, and P are the biomass, substrate, and product concentrations, respectively; D is the dilution
rate; Sf is the feed substrate concentration; and YX/S , α, and β are yield parameters. The specific growth
rate µ is modeled as,

µ(S, P ) =
µm

(

1 − P
Pm

)

S

Km + S + S2

Ki

(4.147)

where: µm is the maximum specific growth rate; and Pm, Km, and Ki are constant parameters. Nominal
operating conditions are shown in Table 4.6.

The control objective in many continuous fermentations is to maximize the steady-state biomass pro-
duction. This can be a difficult task since parameters such as the maximum specific growth rate µm and
cell-mass yield YX/S may exhibit significant time-varying behavior. It can be shown [70] that near optimal
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steady-state performance can be achieved by manipulating the dilution rate D and regulating the biomass
concentration X at a constant value. A nonlinear model of the form (4.1) can be obtained by choosing:

u = D, xT =
[

X S P
]

, y = X (4.148)

Controller Design

Three controllers are designed: a PI controller; an input-output linearizing controller based on full state
feedback; and a nonlinear IMC controller that requires only a biomass concentration measurement. The
PI controller parameters are determined initially by applying IMC tuning rules [129] to a first-order linear
model obtained from the open-loop responses in Figure 5.4. The IMC closed-loop time constant is chosen
as one-third the open-loop time constant. The controller parameters are fine-tuned for setpoint responses,
yielding kc = 0.07 L/g·h and τI = 4.5 h.

The nonlinear controllers are designed by noting that the relative degree r = 1 since Lgh(x) = −x1.
The input output linearizing controller is synthesized as described in Section 5.2.2:

u =
v − µ(x2, x3)x1

−x1
(4.149)

v =
2

ǫ
[ysp − x1] +

1

ǫ2

∫ t

0
[ysp − x1] dτ

Using the design procedure in Section 5.5.1, the following nonlinear IMC controller is obtained,

u =
v̇ − µ(x̃2, x̃3)x̃1

−x̃1
(4.150)

v̇ = −
1

ǫ
x̃1 +

1

ǫ
(ysp − x1 + x̃1)

where the tilde represents a variable obtained from the process model. Both nonlinear controllers are tuned
with ǫ = 1 h, which is approximately one-third the open-loop time constant for the – 10% dilution rate
change in Figure 5.4.

Simulation Results

The open-loop biomass concentration response shown in Figure 5.4 demonstrate that the fermentor exhibits
significant static and dynamic nonlinear behavior. In Figure 5.5, the three controllers are compared for
an unmeasured step disturbance of – 12.5% in the maximum specific growth rate (µm). The input-output
linearizing cannot provide complete decoupling because the disturbance relative degree ρ = 1 and µm is
unmeasured. However, the linearizing controller yields superior regulatory performance as compared to the
PI and nonlinear IMC controllers. This result is expected since the linearizing controller has access to the
entire state vector. On the other hand, the nonlinear IMC controller yields vastly improved disturbance
rejection as compared to the PI controller despite the fact that both controllers only use a measurement
of the biomass concentration.

The controllers are compared for a – 20% step disturbance in the cell-mass yield (YX/S) in Figure 5.6.
The input-output linearizing controller yields perfect disturbance decoupling because it has access to the
entire state vector and ρ = 2. By contrast, the nonlinear IMC controller uses state estimates from the
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Figure 4.4: Open-loop response for ± 10% change in D [70].

Figure 4.5: Closed-loop response for – 12.5% disturbance in µm [70].
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model and therefore it cannot provide exacte decoupling. However, the IMC controller yields superior
performance as compared to the PI controller. The estimated state variables used by the IMC controller
also are shown in Figure 5.6. Despite the significant errors caused by the unmeasured disturbance, the
IMC controller provides satisfactory control.

Figure 5.7 shows the responses of the controllers responses for the same YX/S disturbance when there
is a stuctural error in the specific growth rate. The growth rate used for nonlinear controller design is a
simple Monod expression:

µ =
µm

Km + S
(4.151)

The PI controller response is identical to that shown in Figure 5.6 since the modeling error does not affect
the process. By contrast, the nonlinear controller responses are changed significantly. The response of the
nonlinear IMC controller is actually improved, while the input-output linearizing controller is no longer
able to provide complete decoupling. In fact, the IMC controller outperforms the linearizing controller in
this case. Additional simulation results [70] show that the nonlinear IMC controller is superior to the PI
controller and compares favorably to the input-output linearizing controller based on full-state feedback.

4.6.3 pH Neutralization System

Process Model

The process consists of an acid (HNO3) stream, buffer (NaHCO3) stream, and base (NaOH) stream that
are mixed in a stirred tank. The chemical equilibria is modeled by introducing two reaction invariants [58]
for each inlet stream,

Wai = [H+]i − [OH−]i − [HCO−

3 ]i − 2[CO=
3 ]i (4.152)

Wbi = [H2CO3]i + [HCO−

3 ]i + [CO=
3 ]i

where i = 1 for the acid stream, i = 2 for the buffer stream, and i = 3 for the base stream. By combining
mass balances on each of the ionic species in the system, the following differential equations for the effluent
reaction invariants can be derived [60]:

Ẇa4 =
1

Ah
(Wa1 − Wa4)q1 +

1

Ah
(Wa2 − Wa4)q2 +

1

Ah
(Wa3 − Wa4)q3

(4.153)

Ẇb4 =
1

Ah
(Wb1 − Wb4)q1 +

1

Ah
(Wb2 − Wb4)q2 +

1

Ah
(Wb3 − Wb4)q3

where: q1, q2, and q3 are the volumetric flow rates of the acid, buffer, and base streams, respectively; A is
the cross-sectional area of the mixing tank; and h is the liquid level.

The effluent pH is determined from Wa4 and Wb4 using the following relation,

Wa4 + 10pH−14 − 10−pH + Wb4
1 + 2 × 10pH−pK2

1 + 10pK1−pH + 10pH−pH2

= 0 (4.154)

where pK1 and pK2 are the base-10 logarithms of the equilibrium constants associated with H2CO3 and
HCO−

3 disassociation, respectively. Because the pH probe is located downstream from the mixing tank,
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Figure 4.6: Closed-loop response for ± 20% YX/S disturbance [70].
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Figure 4.7: Closed-loop response with modeling error for ± 20% YX/S disturbance [70].

Table 4.7: Nominal Operating Conditions for the pH System

Variable Value Variable Value

Wa1 0.003 M Wb1 0 M

Wa2 - 0.03 M Wb2 0.03 M

Wa3 - 3.05 × 10−3 M Wb3 5 × 10−5 M

Ka1 4.47 × 10−7 Ka2 5.62 × 10−11

A 207 cm2 n 0.607

z 11.5 cm q1 16.6 ml/s

q2 0.55 ml/s q3 15.6 ml/s

Wa4 - 4.32 × 10−4 M Wb4 5.28 × 10−4 M

h 14.0 cm pH 7.0

there is an unmodeled time delay of approximately 10 s associated with the pH measurement. The liquid
level is modeled as,

ḣ =
1

A
[q1 + q2 + q3 − Cv(h + z)n] (4.155)

where Cv is the valve coefficient, n is the valve exponent, and z is the vertical distance between the bottom
of the mixing tank and the outlet of the effluent stream. On-line measurements of the liquid level and
effluent pH are available, while the reaction invariants must be estimated. Nominal operating conditions
are shown in Table 4.7.

The objective is to control the pH despite unmeasured acid and buffer flow rate disturbances by ma-
nipulating the base flow rate. It is important to have an accurate estimate of the buffer flow rate because
it determines the buffering capacity of the systems. A nonlinear state-space model is obtained by defining:
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xT =
[

Wa4 Wb4 h
]

, u = q3, y = pH, d = q2 (4.156)

The resulting model has the form,

ẋ = f(x) + g(x)u + p(x)d (4.157)

c(x, y) = 0

where the definitions of the functions f(x), g(x), p(x), and c(x, y) follow directly from the process model.
Note that the output equation is an implicit function of the output (y); that is, a closed form representation
y = h(x) cannot be determined. As a result, a modified technique is proposed for the design of the input-
output linearizing controller.

Input-Output Linearizing Controller Design

The input-output linearizing controller is designed by taking the time derivative of the output equation
and rearranging,

ẏ = −c−1
y (x, y)cx(y)[f(x) + g(x)u + p(x)d] (4.158)

where:

cT
x (y) =

[

1 1+2×10y−pK2

1+10pK1−y+10y−pK2
0
]

cy(x, y) = ln 10
[

10y−14 + 10−y
]

+ (4.159)

ln 10



x2

10pK1−y + 10y−pK2 + 4
(

10pK1−y
) (

10y−pK2

)

(1 + 10pK1−y + 10y−pK2)2





Because the term c−1
y (x, y)cx(y)g(x) that multiplies u is non-zero for all operating points of interest, the

model is said to have relative degree r = 1. The input-output linearizing control law is:

u =
v + c−1

y (x, y)cx(y)[f(x) + p(x)d]

−c−1
y (x, y)cx(y)g(x)

(4.160)

The transformed input v is chosen as,

v = 2ǫ−1[ysp − y] + ǫ−2
∫ t

0
[ysp − y]dτ (4.161)

where ǫ is the controller tuning parameter. In the absence of plant/model mismatch, the control law
yields the closed-loop transfer function (4.23) with r = 1. The controller is tuned with ǫ = 1 min,
which is approximately one-half the time constant for the open-loop responses in Figure 5.8. To facilitate
experimental implementation, the control law is discretized with ∆t = 15s [73].
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Table 4.8: Standard Inlet Flow Changes

Time (min) q1 (ml/s) q2 (ml/s) q3 (ml/s)

0 16.6 0.55 15.6

30 15.1 1.2 13.6

60 18.1 2.0 17.6

90 16.6 1.0 15.6

120 – 0 –

150 – 0.55 –

State and Parameter Estimation

The input-output linearizing controller requires full state feedback. In practice, the reaction invariants
cannot be measured and therefore they must be estimated from available on-line measurements. A closed-
loop nonlinear observer with exponentially stable error dynamics (see Chapter 7) does not exist since the
Jacobian linearization of the model is unobservable at every equilibrium point [73]. As an alternative,
an open-loop nonlinear observer that does not require observability is employed. Because the differential
equations for the reaction invariants are decoupled, the invariants can be estimated sequentially [73].
Invariant Wb4 is estimated in an open-loop fashion. An estimate of Wa4 is generated from the estimated
Wb4 and the measured pH using the output equation.

The proposed controller does not explicitly account for buffering changes. As shown below, unstable
behavior is obtained if the buffer flow rate drops significantly below the nominal value. Under these
conditions, the process gain increases dramatically and some type of on-line adaptation is necessary to
achieve satisfactory performance. A straightforward approach is to treat the buffer flow rate as an unknown
parameter that is estimated with a recursive least-squares algorithm. The parameter estimator receives
measurements of the pH and level, as well as reaction invariant estimates from the open-loop observer. A
detailed derivation of the estimator is presented elsewhere [73].

Experimental Results

Open-loop pH responses for the sequence of base and buffer flow rate changes in Table 4.8 are shown
in Figure 5.8. Note that the actual run time is plotted and therefore the plots do not begin with zero
time. The response in Figure 5.8(a) shows that the system exhibits significant static nonlinearities with
respect to manipulated input changes. The pH response for buffer flow rate changes is shown in Figure
5.8(b). Significant static nonlinear behavior is observed, especially when q2 → 0 ml/s. The pH response
for base flow rate changes is similar to that obtained from the process model, while significant deviations
are observed between the simulated and experimental responses for buffer flow rate changes [65].

As discussed in [73], non-adaptive and adaptive versions of the input-output linearizing controller easily
outperform a PI controller. However, Figure 5.9 shows that the non-adaptive controller exhibits unstable
behavior for low buffering conditions. The sequence of buffer flow rate disturbances is the same as that in
Table 4.8 except that the flow rate is only reduced to 0.2 ml/s at t = 120 min. The non-adaptive controller
produces a highly oscillatory response as a result of the q2 = 0.2 ml/s disturbance at t = 215 min. This
unstable behavior is attributable to poor estimates of the reaction invariants at low buffering conditions.

The performance of the adaptive nonlinear controller for the same sequence of buffer flow rate distur-
bances is shown in Figure 5.10. The controller is able to provide excellent control over a wide range of
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buffering conditions. Unlike the non-adaptive controller (Figure 5.9), the adaptive controller is able to
maintain the system at the setpoint even when q2 → 0.2 ml/s. The estimated buffer flow rate produced by
the adaptive controller also is shown in Figure 5.10. At steady-state conditions, the estimation error is less
than 15% of the actual value. Improved knowledge of the buffering capacity results in more accurate esti-
mates of the reaction invariants, which ultimately leads to superior closed-loop performance as compared
to the non-adaptive case.

The performance of the adaptive nonlinear controller for the sequence of acid flow rate disturbances
in Table 4.8 is shown in Figure 5.11. Acid flow rate disturbances represent a robustness test since the
parameter estimator is designed only to account for buffering changes. Note that the estimated buffer
flow rate used by the controller is set equal to the nominal value (0.55 ml/s) if the value produced by the
estimator is sufficiently negative. Despite using poor estimates of the buffer flow rate and the reaction
invariants, the adaptive controller provides superior pH responses as compared to the PI and non-adaptive
nonlinear controllers (not shown).
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