Errata

Robust Process Control

Manfred Morari & Evanghelos Zafiriou Prentice Hall, 1989 October 11, 1989

p. i

"Department of Chemical and Nuclear Engineering" should be "Chemical Engineering"

p. 55 Line-3

"Frank (1984)" should be "Frank (1974)"

p. 58 Thm. 4.1-2 and all of p. 59

Theorem 4.1-2. The H₂-optimal complementary sensitivity function

$$\bar{\eta} = \tilde{p}\tilde{q} = \tilde{p}_A v_M^{-1} \{ \tilde{p}_A^{-1} v_M \}_* \tag{4.1 - 8}$$

has the following properties:

- 1. The poles of $\bar{\eta}$ are among the mirror images of the plant RHP zeros and among the zeros of v_M .
- 2. $\bar{\eta}$ has RHP zeros at the plant RHP zeros. $\bar{\eta}$ can have additional RHP zeros.

Proof.

- 1. The potential poles of $\bar{\eta}$ are the poles of \tilde{p}_A , the zeros of v_M and the poles of $\{\tilde{p}_A^{-1}v_M\}_*$, which are the poles of v_M . However, the poles of v_M are cancelled by zeros of v_M^{-1} premultiplying $\{\cdot\}_*$.
- 2. $\bar{\eta}$ has RHP zeros at \tilde{p}_A . Additional RHP zeros can arise from $\{\tilde{p}_A^{-1}v_M\}_*$.

RHP zeros are generally considered as "bad" for performance. However, 2. implies that depending on the input v_M the optimal controller \tilde{q} can sometimes add RHP zeros.

Example 4.4-1.

$$\tilde{p} = \tilde{p}_A = \frac{-s+2}{s+2}, v_M = \frac{s+1}{s}$$
 (4.1 – 9)

$$\bar{q} = \frac{s}{s+1} \left\{ \frac{s+2}{-s+2} \frac{s+1}{s} \right\}_* = \frac{s}{s+1} \left\{ -1 + \frac{1}{s} + \frac{6}{-s+2} \right\}_* = \frac{-s+1}{s+1} \quad (4.1-10)$$

$$\tilde{\eta} = \frac{(-s+2)(-s+1)}{(s+2)(s+1)} \tag{4.1-11}$$

The controller \tilde{q} added a RHP zero at (+1,0).

p. 64 Proof.

Proof. Assume
$$p_A = \frac{-s+\zeta}{s+\zeta^H} \cdot \frac{-s+\zeta^H}{s+\zeta}$$
.

$$\begin{split} \|e\|_2^2 &= \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} |(1-p_A)s^{-1}|^2 \, ds \\ &= \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} \left[2 - \frac{-s+\zeta}{s+\zeta^H} \cdot \frac{-s+\zeta^H}{s+\zeta} - \frac{s+\zeta^H}{-s+\zeta} \cdot \frac{s+\zeta}{-s+\zeta^H} \right] |s^{-1}|^2 ds \\ &= \operatorname{Res}_{s=\zeta} \left[- \frac{s+\zeta^H}{-s+\zeta} \cdot \frac{s+\zeta}{-s+\zeta^H} \cdot \frac{1}{s^2} \right] + \operatorname{Res}_{s=\zeta^H} \left[- \frac{s+\zeta^H}{-s+\zeta} \cdot \frac{s+\zeta}{-s+\zeta^H} \cdot \frac{1}{s^2} \right] \\ &= \frac{4\operatorname{Re}(\zeta)}{|\zeta|^2} & \Box \end{split}$$

"1:
$$\lambda = 10$$
" should be "1: $\lambda = 0.1$ " "3: $\lambda = 0.1$ " should be "3: $\lambda = 10$ "

p. 75 (4.5-1) "
$$|\tilde{p}\tilde{q}f\bar{\ell}_m|$$
" should read " $|\tilde{p}\tilde{q}\bar{\ell}_m|$ "

p. 91 Middle "
$$\|(1 - p\tilde{q}v\|_2^2$$
" should be " $\|(1 - p\tilde{q}v)\|_2^2$ "

p. 122 Fig. 6.1-4 "
$$\lambda$$
" should be " λ/Θ " "TIME" should be "TIME/ Θ "

p. 206
$$\pi(s) = \prod_{i=1}^{n_p} (s - \pi_i) = \det(sI - A)$$

p. 220 Line-2 "Let the number of open-loop unstable poles of
$$PC$$
" should read "Let the total number of open-loop unstable poles of P and C "

p. 225 (10.3-13) "=
$$\int_{-\infty}^{\infty}$$
" should be "= $\frac{1}{2\pi} \int_{-\infty}^{\infty}$ "

p. 239 2nd par. from bottom replace all "|| ||" by "||
$$\parallel_{\nu}$$
"

p. 240	Middle	"frequencies where $\ell_O(\omega) \geq 1$ " should be "frequencies where $\bar{\ell}_O(\omega) \geq 1$ "
p. 241	Eqn. above (11.1-15)	" $\sigma(\tilde{P})$ " should be " $\bar{\sigma}(\tilde{P})$ "
p. 244	Last line	" $W_2 = \tilde{P}\ell_I$ " should be " $W_2 = \tilde{P}\bar{\ell}_I$ "
p. 250	Line-5	"that the optimization problem is convex" should be "that after a nonlinear variable transformation the optimization problem is convex"
p. 272	Table 11.3-1	"-538.2" should be "-583.8"
p. 280	(11.4-12)	$G = \begin{pmatrix} 0 & 0 & -I \\ P & 0 & -P \\ P & I & -P \end{pmatrix}$
		should be $G = \begin{pmatrix} 0 & 0 & -I \\ \tilde{P} & 0 & -\tilde{P} \\ \tilde{P} & I & -\tilde{P} \end{pmatrix}$
p. 280	Example 11.4-1	With the exception of (11.4-11) we assume $w = 1$.
p. 283	Last line of Proof	"=" should be "<"
p. 284	Table 11.4-1 Case 1	" $\bar{\sigma}B$ " should be " $\bar{\sigma}(B)$ "
p. 284	(11.4-23) (11.4-24) Eq. after (11.4-24)	"≤" should be "<" second "<" should be "≤" "≤" should be "<"
p. 285	Proof on top half of page	for consistency with the rest of the other theorems replace " k " by " $1/k$ "

p. 286	Тор	"(ii) $H = hI : \mu^2 \begin{pmatrix} 0 & P^{-1} \\ P & P \end{pmatrix} = 1$ " should read "(ii) $H = hI : \mu^2 \begin{pmatrix} 0 & \tilde{P}^{-1} \\ \tilde{P} & \tilde{P} \end{pmatrix} = 1$ "
p. 286	Just before (11.4-32)	"Theorem 12.4-1" should be "Theorem 11.4-1"
p. 346	par. preceding (13.3-8)	"P" should be " \tilde{P} "
p. 357	Line-4	"Palozoglu" should be "Palazoglu"
p. 365	Middle (14.3-2)	"Corollary 14.3-4" should be "Corollary 14.3-5" " $sd(s)$ " should be " $s^nd^n(s)$ "
p. 366	top part of page	

Because G(s) is stable the closed-loop system will be stable only if all the coefficients of

$$\det(sd(s)I + kN(s)) = s^n d^n(s) + \dots + k^n \det N(0) = 0$$
 (14.3 - 3)

are positive. If G(s) is proper, the coefficient of the highest power of s in (14.3-3) will be the coefficient of the highest power of s in d(s). This coefficient will be positive because of the stability assumption. The constant coefficient is $\det(kN(0))$ and therefore for closed-loop stability it is required that $\det(N(0)) > 0$ and $\det(G(0)) > 0$.

p. 371	Corollary 14.4-2	"The stable system P is DIC if" should read "The stable system P is IC if"
p. 377	Table 14.4-1	p_{12} " $e^{-3.70s}$ " should be " $e^{-3.79s}$ " $p_{23}(0)$ "5.94" should be "5.984" $p_{31}(0)$ "0.204" should be "0.0204" $p_{32}(0)$ "0.33" should be "-0.33"
p. 377	Fig. 14.4-2	"E" should be " L_H "
p. 385	(14.5-22)	"= I " should be "= 1"
p. 397	Line 5	"Let the number of open-loop unstable poles of P_{γ}^*C " should read "Let the total number of open-loop

unstable poles of P_{γ}^{\star} and C"

p. 466 Table A.4-1,

Column "C", 2nd row

"16.023" should be "-16.023"

p. 473

Line 5

"M. Latchman" should be "H. Latchman"

Back cover

" H_{∞} optional" should be " H_{∞} optimal"