Model Predictive Control

I. Model representations for the dynamic system:

1. Impulse response model :

By using the convolution computation, a linear dynamic system can be represented by
using its impulse response sequence and is known as the impulse response model:

Ye = > hug; (1)
i=1
For practical computation, the so call finite impulse response (FIR) representation is
used, i. e.:
Nm,
Ye = > hiug; (2)
i=1
2. Step response model :
The impulse response train {hq, ho, -+, ho} is related to the step reponse sequence
{a1,as, -, as} in the following manner:
aq = h1
Ay = hl + hg
Gy = hithytethy

Thus, the impulse response model can be written in terms of step response sequence and
is called step response model

Y = 01 AU + AU + - -+ + Qoo AUp_oo (3)
But, for practical computation, only finite terms in the above equation are adopted.
During trancation, IV, should be able to take into account most steady state conditions.
The resulting trancated finite step response model is known as the (FSR) model, i.e.:

Yk = a1Aug_1 + asAug_9 + - - - + an,, Aug_n,, + an,, Uk—nN,,—1 (4)

3. _Remark : Quite often, it is very easy to drop the last term of equation(4) and result an
erroneous representation for the FSR model.



II. Models for Predicting Future outputs:

The output of the system in the future time horizon is computed using prediction models.
Usually, there are two kinds of prediction models: the uncorrected and corrected ones. The
uncorrected model is also referred as open-loop prediction model in literature. In order to
clarify different predictive estimations, the following notations will be used in the text that
follows.

e y, = the output at the present moment.

e i,= the model output at present moment.

e y.; = the output at j step ahead into the future.

® Ui1; = estimation of yi.;

® y;.; = uncorrected form for g,

® §i.; = corrected form for J;

® §(ktjlk) = estimation of y,1; by assuming Auy,; = 0 for j > 0
° yfk k) = uncorrected form for g jx)

o @(Ckﬂ-“g): corrected form for Q(kﬂ‘\k)

1. Uncorrected Prediction Models:

The uncorrected prediction models use inputs in the past to compute the future outputs:

(a) Uncorrected Prediction using FIR :

Nm
@Zﬂ- = Z hiuk—i—j—i (5)
i=1
(b) Uncorrected Prediction using FSR :
ngrj = alAukﬂ_l + CEQAU]H_]‘_Q + -+ aNmAuk+j_Nm +
+an,, Uk+j—N,,—1 (6)

2. Corrected Prediction Models:

In general, the corrected prediction for the output is given as follows:
Uisj = Upey + 0L yr — U1 | (7)

where, |y — 95, | is a function of prediction error that is detected at this present moment.
In many predictive control systems, the function ) is taken as:

Y ye — 90 | = yr — Uk



so that
ngﬂ‘ =Yk + [ glg+j ./ ] (8)

ITI. Long-Range Prediction Models ( LRPM )

In literature, there are various representations for long-range output prediction. However,
they are equivalent in the sense of Eq.(8). They all consist of two parts: the part related to the
future input moves and the part related to past input moves. In the following, we shall provide
two definitions for future input moves:

OUpyj = Upyj — Up—1 9)

Auprj = Uptj — Ukgj1 (10)

1. LRPM based on FIR representation :
By successively applying Eq.(8) and the FIR, we have:

Uopr1 = Yk + hioug + hoAug_1 + hsAup_o + -+ - + by, Aug_p,,+1
Upso = Yre+ hidups + hoduy,
+hoAug_y 4 h3(Aug_1 + Aug_s) + ha(Aug_g + Aug_z) + - -
+hn,, (Aug_n,,+2 + Atg_n,,+1)
Uprs = Yr+ hi0ugio + hodugyr + haduy
FhoAug_y + ha(Aup_y + Auy_s)
+hy(Aug_1 + Aug_o + Aug_3) + hs(Aug_o + Aug_3 + Aug_y) + - - -
+hn,, —o(Aug_n, 15+ Aug_n, 14+ Aug_n,, +3)
Fhn, o (AUg—N, 44 + AN, +3 + AN, +2)
+hn,, (Aug_N,, 13+ Aug_N,, 10 + Aug_pN,,+1)

etc. (11)

Let,

N . ) ) T

Y(k+1)= { Uk+1, Yk+2s "> Yktp }
so that,

9 ~C ~C ~C T

Y (k + 1) = [ Ye+1o Yo " Ygaps }
and,

¥ ~NO N0 SO0 T

Yo(k + 1) = [ Yer1 Yrro 7 Ygaps }



T

6U (k) = [ OUk, OUpt1,* +, OUpip 1 }
T
AU(k) = [ Aug, Augir, -, Augip }
i} T
AU (k—1) = { Aug_y, Aupg,-++, Aup_n,, 41 }

[1]p><1 - [17 17 17"'71]T

px1

Then,

A

Where,
hi, 0 0 0 ]
ho, hq, 0 0
Hl — h37 h/27 h17 0
L hp hpfl hpr o J
[ ho hs e hn,.—1
hy + hs hs + hy o+ hy, -1+ hn,,
H, = ho +hs+hy hs+hs+hs -+ hy,-1+hn,
S b S o+ hy, -1+ hn,
[ Az —
ag—ay - T aNp—1 — AN, —3
= ags — g +++ an,,-1 —an,,—-4 an,, —an,,-3
| Gp+1 — Q1

The uncorrected LRPM for the output is given as:

N

Yo(k’ + 1) == Hl 5U(k’) + A*AU*(k’ - 1) + [1]p><1aNmUk_Nm

Where,
Q9 as aNm—l an,,
as ay -+ GN,—-1 AN, OGN,
A* = a4 as -+ an,, an, — an,,
an,, an,, an,,
ap +1 Qpyo - an,, an,, an,,

aN,,—1 — aN,,—2
an,, — an,,—2
an,, — an,,—2

an,, — an,,—2

(12)

(13)

an,, — OGN, -1
an,, — an,, -1
an,, — an,, -1

an,, — OGN, -1

(14)

(15)



2. LRPM based on FSR representation :

Since,
1 00 0
suy=| 10 O Apm (16)
1 11 1

Thus, it is straightforward to substitute the above eugation into Eq.(12) to obtain:

N

Ve(k+1) = [Upe1 ye + A AU(K) + Hy AU*(k — 1) (17)
Where,
ap 0 0 0
Qo aq 0 0
A = as (05} aq O (18)
0
ap Qp—1 GQp—2 -~ (1

or, to obtain the following uncorrected LRP from Eq.(14):

A

Vo(k+1)= A AU(k) + A*AU*(k — 1) + [1],x1 an,, ur_n,, (19)

3. LRPM based on state space representation:

Let Y (k + 1|k) is definded as:

Cro ~0 ~0 ~0 T
Yok +1k) = | Goripy Gy > Totalty (20)

Where, y(,. 1 ;) designates the estimation of yx+; using all the information available up to

the instant £ and assuming no input moves in the future time horizon.

By giving the definitions of the following matrices:

[0 1 0 0 0
001 0 0
d = |00 0 0 0
0 1
000 0

r T

F = ap az az -+ Gp_q ap}
- T
L, = [000 -0 1]

and by the following equation:

Yletjik) = Ynrjo—1y) T ajAug;  j = 1,2,--+,p



We can write:

Vo(k+1lk 1) = ®V°(klk— 1)+ 1, 3y (21)
Yo(klk—1) = @Y°(k—1[k —2) + FAug 1+ 1p §sp-15-2) (22)
Yo(k4+1) = ®Y(klk—1)+A AU(K) (23)
where,
Ypaph-1) = Gpr1lug_y + appaAup_s + -+ an, Alpip-n,,
+CLNm Z Auk,j
j=Nm+1-p
Glotp-1k—1) = pAU_1 + apr1Aup_o+ -+ an, Augip1-nN,
—|—CLNm Z Auk,j
Jj=Nm+2-p

Notice that, for a proper value of p,

?)?k+p\k—1) - @?k+p—1\k—1) = (ap+1 - ap)Aqu + (a'p+2 - ap+1)Auk72
om0 (24)

Thus, for, a proper large value of p, Eq.(21) can be written as:
Vo(k+1k—1)=® Y°(k|k — 1) (25)

Where, ® is changed to ® as follows:

010 00
001 00
d=10 0 0 00 (26)
01
000 01
So that Eq.(21) ~ Eq.(23) becomes:
Vo(k+1lk—1) = @ Y°(klk—1) (27)
Vo(klk—1) = ®Y°(k—1k—2)+F Auy, (28)
Yo(k4+1) = ®Y(klk—1)+A AU(K) (29)

In this formulation, Y°(k|k — 1) can then be treated as state variable and Y°(k + 1)
becomes the uncorrected LRPM.

The corrected LRPM can then be formulated by making use of the state representation in
Eq.(27) ~ Eq.(29). In the conventional DMC, the LRPM is simply formulated by adding
a correcting term to Y°(k + 1), i.e.:



YVe(k+1) = & Y°(klk— 1)+ AAU(K) + [yt [Y6 — e (30)
Voklk—1) = ®Y°(k—1k—2)+F Auy_y (31)
@fkw—l) = CY’klk—1)

Recently, Morari and Lee proposed the following LRPM in formulating MPC, i.e.:

e Updated Based on Measurement:

Y*(kk) =Y (k|k — 1) + K [yx — Gaje-v)] (32)
e Model Prediction:
Y(k+1|k) = ® Y*(klk) + F Auy (33)

e Long Range Prediction:
Ve(k+1)=® Y*(k|k) + A AU(k) (34)

The first two steps in the above LRPM can be combined into one, i.e.:

Y(k+1k) = ®Y(klk—1)+F Aup + K [yp — Gepe_1)] (35)

Thus, it resembles a filtering problem of the following linear system and

Zk+1) = ®Z(k)+F Aup,+T Q
y(k) = CZ(Kk)+v (36)

Where, ) and v are white noise disturbances with ()1 and @), as their covariance matrices.
The coefficient matrix Ky in Eq.(35) serves as a filter constant. And, the coefficient matrix
T is determined by the way how disturbance model in the LRPM is considered. Morari
and Lee suggested that the filter constant Ky is taken as:

Ki=K=[1],x1 f (37)

where, f becomes a tuning parameter.

IV. Modeling the output disturbance in the existing LRPM’s

If model is perfect, according to IMC, the disturbance at the output is the difference

between the process output, y, and the model output, 3.

Ye = Yk +dp = Uy +di



So that

[ dyi1 |
di+2
Yk+1) = Yo(k+1)+
L dk-i—p J
= Y°(k+1)+D(k+1) (38)

Where,
D(k+1) = [ diy1, diyay s dprp |©

In this section, we shall show that either LRPM of the conventional DMC or of Morari
and Lee’s MPC, Y¢(k + 1) can be expressed in the form of Eq.(39) with different definition for

A

D(k + 1|k) which is considered as a vector of predicted output disturbance extended into the
prediction horizon, i.e.:

YV(k+1)=Y(k+1)+ D(k +1|k) (39)
Where,
Dk + 1|k) = [ dgsapy, dratnys - dsiy 17
and J(kﬂ-‘ k) measns the estimation of d based on all available information up to the moment k.

1. D(k + 1]k) for LRPM of conventional DMC:

Let us define :

A~

Ay = Y — Yuin-1)
and notice that:

Vo(k4+1)=® Y°(klk — 1) + A AU(k)



Thus, according to Eq.(30), we have:

Uirg + [k — Toe—1)]
= Yy T dGpy; J>0

~C
Yi+j

Thus, we conclude that:

Ye(k+1) =Yk +1) + 1 pe1 digypy (40)
So that
D(k + 1[k) = [U]px1 dfypy (41)

and

d(k+l|k) - d?k;“g)? 1= 17 Y

Therefore, the future values of disturbance at the moment £ in this LRPM are estimated
based on zero-order extrapolation from the value at this current instant, k.

A

2. D(k + 1|k) for LRPM of Morari and Lee:

By the assumption of a perfect model for the process and no disturbance entering at the
output before instant k — 1, we can start with assigning:

V(klk—1)=Y(klk—1) = Y(k)

and

~0

Yk — Yklk-1) = Y& — Y(ui—1) = ki)

By Eq.(32), we have:

?jikkm) = @(klk—l) + f J(()k\k) = g€k|k—1) +f ‘j(()mk)
§?k+1|k) = Yt1le-1) + f J(()k\k) = g?k+1|k—1) + f Ci(()mk)
§?k+2|k) = Ytolk-1) + f J(()k\k) = g?k+2|k—1) + f Ci(()mk)
§?k+3|k) = Y+3le-1) + f J(()k\k) = g?k+3|k—1) + f Ci(()mk)

In other words, we have:

A

V¥ (klk) = Y(klk = 1)+ f [ 1 ]pxa djypy = YO(kIk = 1)+ f [ 1 ]pxa djipny



and, according to Eq.(33), we have:

o) = Teup) + DU = G+ F gy
=4pat+f Ci(()km)

Do) = Do + @2OU = §yo + f Ak

Jors) = sy + 0D = T zpy + F ey

Dty = Ylrrgmy + @A = s jiny T S dlgry

(42)
or,
Y(k+1|k) = ®Y*(k|k) + F Augp = YO(k + 1]k) 4 [1]pn1 f d‘(’k|k>
Therefore,
Ye(k+1) = Yo(k+1lk—1)+[1 ] f dfpy + A AU(k)
= Yok +1)+ [Lpsr f doypy
= YVO(k+1) + [Upxr dpiny (43)
Where,

dwiky = diim)

Similarly, we can move the time origin, which stands for the current moment, from & to
k' =k +1 to give:

U (KNK) = e + F [Wrrr — Jies1p)]
= Yoy +F gy T F [Yrr1 — G0 — [ dry)
= Gty T F Aoy T FO1=F) dipp
(K +UE) = 9o +F dirapeny +F (1= F) dpy
g (K +21K) = Yhuapy + F dippapeny T F (1= F) digpy
(K + 1K) = Joirm +F Aoy +F (1= ) dipy (44)
(45)

ie.,

V(KK = YR K — 1) + [Lpx1 digoppy

10



where,

S

wiey = fdypy + (L= f) dlqp-)
—= f d(()k"k/) + (1 - f) d(k’—l“ﬂ/—l)

Furthermore, we have:
V(K + 1K) = YK + 1K) + [Upa doew)
and

YK +1) = YK + 1K — 1) + [Ups1 dgopy + AAU(K)
— ?O(k/ + 1) + [1]p><1 Cz(k/|k/) (46)

We can proceed the same procedure to obtain d(k'|k') at k' = k + j for any j, i.e.:

dgpy = f do Gy T F(1 =) d(k’ 1k'—1)

+f(1—f)? d(k’—2|k’—2)

+f( = f)® df s

+o+ f(1=f) Al —jiw—j)

- f (K'|k") (1 - f) d(k’—1|k’—1) (47)

where, ' =k+j, j = 1, 2,
Therefore, we can conclude:
1—f -

Ty Gy F=1—1F

diw ey = N

That means the estimated output disturbance, J(k/‘k/) is the output of a first order filter
deriven by di -

As for prediction, i.e. ci(k+j|k), it is found from Eq.(46) that:

D(E +1|K) = [1px1 dgpr) (48)
so that

disaiey = davapy = - = dgo)
and

Ve(k +1) = YOk + 1) + [y d(K'|K) (49)

Notice that Eq.(41) and Eq.(48) become identical, if f is taken as one. On the other
hand, if f =0, Y°(k' 4+ 1) in Eq.(48) becomes Y°(k' + 1).

11



V. Analytical State-space LRPM

By Eq.(41) and Eq.(48), it is found that the future values of the disturbance estimated
at each current moment k is considered by using constant extrapolation. As a result, the
prediction scheme is similar to a Smith predictor of which the output disturbance is considered
unchanged in the future.

To estimate J(kﬂ»‘k) extend into the future time horizon, prediction of the output distur-
bance must be incorporated, i.e.:

~

Ay = pil digpy |

draiky = P2l Ay |
dgrary = sl Ay |

dgersiky = s [ Ay |

The disturbance predictor, p;,© = 1,2, 3, --- has to be formulated according to a dynamic
model that can represent the changing disturbance.

Assume that the output disturbance is given as follows:

A1 =0 di + (1 =) 4,

where, ¢ is a unknown input.

Let
_ . 1]
(0
;z;z 52 10 .0
Sl_ 1/} ) S2: ¢3 (1—1/})7 IA_ 1 1 0 8
: : 11 -1
| PP ] Y1

Assume that a step change of ¢ is introduced at & — 1, and is held constant thereafter. It
is, then, easy to obtain:

D(k + 1|k) = [Upx1 dgegry +Ia { S1Adgr) + S200:} (50)

12



Where,
AL(k) = digpry — Ydg-yp-1) = [1 = g "] diagny
Thus the prediction of Yc(k: + 1) can be obtained according to the following:

e Updated Based on Measurement:
¥ (k|K) = ¥ (klk = 1)+ [y [os — i) (51)
e Model Prediction:
Y (k+1|k) = ®YV*(k|k) + FAu, (52)
e Long Range Prediction:
YVe(k+1)=® Y*(k|k) + A AU(K) +Ia { S1 +S2 (1 — g ™)} [y — dwp_n)] (53)
According to the result in the previous section, we have:

~O

dklr) = d?k\k) =Yk — Yk|k-1)

Yk — Ykjk—1) = Ci?km) - (j?k—uk—l) = Ad?k\k)
and
Y (k+1k) = Y°(k + 1k) + [Upxr diupy
Consequently, Eq.(54) becomes:
YVe(k+1) = Y°(k+1)+ D(k+1|k)
Where D(k + 1|k) is given by Eq.(51). Under the assumption of:

lj=0; j>2 and loj=4l1; j>0

the estimation of D(k+1|k) of Eq.(51) can be shown to be equivalent to the analytical predictor
of Won and Seborg [1986] as follows:

13



By the assumption, we have:

AékH =0 forj>0

diirmy = dgry + VA + (1 — ) Ay
= Y dgr) + [dkir) — ¢ dp-1jp-1)]

Cz(k+2\k) = dA(k|k) + (¢ 4+ *) ACZ iy + (T =) + (1 — )] Al
= dgry + (@ + 02 [dary — dg—1jp—1)]
= ¢° d (k&) + d (klk) — ¥ d (k—1lk—1) T ¢d ki) — ¥° doe—1k-1)
= 9 d(k\k) (1+1) [ (k|k) — 1/}d(k71|k71)]

s

sy = Ay + @+ 92+ 9%) Adggry + [(1— ) + (1 — ) + (1 — )] Al
= dpwy + @ + ¥+ 9°) [dgry) — dgp—1p—n)]
= % dgry + dgry — ¥ dgp—pen) + 0 [y — ¥ dg1jp—)]
% [dgiry — ¥ dgprjp 1)]
= Y dggy + 1+ + ¥ [damy — ¥ dg-1k-1)]

Thus, by the same way, we have:

— v (1 =g ") diw)

digny = " d
(venit) = ¥ dn) + T

which is known as the analytical predictor of Wong and Seborg [1986].

It has to be noticed that Y°(k 4 1) can also be obtained from the FIR, FSR formula, i.e.:

FIR:

14



A~

Yok +1)

FSR:
Yok +1)

H1 5U(k’) + A* U*(k’ - 1) + [1]p><1 an,, Ug—n,,

A AU(]C) + A* U*(k — 1) + [1]p><1 an,, Wk—N,,

15



VI. Model Predictive Control based on the LRPMs

We have shown that the LRPM can generally be expressed as:
Ve(k+1)=Y(k+1)+ D(k+1k)

The major difference between each form of LRPM is the modeling of D(k + 1|k) at each
different moment k. For example, the LRPM of conventional DMC uses:

A ~

D(k+1|k) = [1]px1 dy
while the LRPM of Morari and Lee uses:

R 1—f
D(k +1k) = [1]px 1 Fgt i jx)

And, finally, the Analytical State-space LRPM uses:

[+ (1— )
Y2+ (1— y?) e

D(k+1]k) = : {iir);

| U (1) R

Based on those LRPM, derivation for the model predictive control algorithm is then
straightforward. As has been mentioned, all expressions for Y"(k: + 1) are equivalent, we will
adopt the FSR representation for Y"(k: + 1) in the following, since it is more popular to those
who fimilar with MPC.

N

Vek+1) = Y°(k+1)+ D (k+1]k)
= AAUKk)+A* U (k—1)+ D(k+1|k) + [1]px1 an,, ue—n,, (56)

The control objective is to minimize the performance index of the following:

J = [R(k +1[k) = Yk + )] Qu [R(k + 1]k) — V°(k + 1)] + AUT (k) Qu AU(K)  (57)

16



and subject to the constraints:

Umin S U(k) S Umax
Alj??mz?l S AU(k) S A(]mcwr:
Ymin S Y(k + 1) S Ymax (58)

The R(k-+1|k) designates the reference trajectory generated according to all the information
up to k.

The control law for the above model predictive control system becomes:
Aup=[100 --- 0] AU(k) (59)

For unconstrained case, an explicit form for the control law, Au; can be easily obtained:
Auy=[100---0] [ATQA+Qs] AT Q, E* (60)

Where,

E* = R(k+1k) — A* U*(k — 1) — D(k + 1]k)

17



