State Feedback Control Systems—LQR Problem

System Equation:

The closed-loop system becomes:

A(t)X (t) + Bu(t)
[A(t) — B{t)K (8)]X ()
t)

o

(t)

) —
X(#)
Where, a(t) = A(t) — B(t)K ()

The solution of Eq.(3) can be given as:

X(t, to) = ¢(t, t0) X (to)

Where, ¢(t, ) is a state transition matrix satisfying the following:

bltto) = alt)e(t,to)
d(to,to) = 1
P(t,to)p(to, t) = 1

According to Eq.(7), we have:

d(t,t0)d(to, t) = —(t, to)d(to, 1)



But, by making use of Eq.(5), we have:

B(t, to)$(to, ) = a(t)(t, to)(to, t) (9)
Therefore,

alt)(t,to)plto, 1) = —(t, to)d(to, t) (10)
So that,

a(t) = —¢(t, to)d(to,t), and @(to,t) = —¢(t,to) " a(t) = o(to, t)ar(?) (11)

In other words,

(1, t) = —6(r. t)a(t) o(t,7) = —¢(t, 7)a(r) (12)

Consider a performance for the state feedback control system:

J(t, b1, X (), u(t € [t 1)) = XT()Q:1 X (t) + /:1 (XT(NQX (1) + ul'(7)Ru(r))dr  (13)
Since

ult) = —K(#)X(t) (14)

Tt X ult € [t,0]) = Jitt, X(0), K¢ € [h))
= XT()QX () + [ MXT(1)QX (1) + o (1) Ru(r)]dr
— XT(#)0uX (1) +/“ XT(7)OX (7)]dr
= X700, Q0 )X (1) + [ X7 (087 (7, )06, t)a(e)dr

= XU (0, 0)Qu(t, 1) + [ 167 (r,)Qp(r, )drldT} X (1)
= XTP(t,,t, K(t € [t,t1]))X(t) (15)
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Plta,t K(t € [1.01)) = 67 (00, )Qu0(00) + [ [67(r,0)G6(r, )drlar (16)
Thus,

P(t17t7K(tE[t7t1])) = _'_/ TtQ¢TthdT_Q

+/ (1,t) Q¢ T, t)dr|dr
+0T (t1, )Quo(t1, t) + d(t1, £)Q19(t1, 1) (17)
Plo,t K(t € [60]) = ~Q— [ o’ ()67 (r. Q0 (r, tdr -

- [ 67 0@o(r, Datt)ar
—al (t)¢" (11, 1)Qe(t1, 1) — ¢7 (t1,1)Qb(t1, t)a(t)
= —Q o[ ¢"(rOQa(r, i + 6" (1, )Q0(11,1)}

= —{/ o7 (7, 6)Q¢(T, t)dr + ¢ (t1, 1) Qb(t1, t) }au(t)
o (£)¢" (t1,1)Qe(t1, 1) — ¢7 (t1, 1) Qo(t1, t)ar(t)
+aT(t) T(t1,)Qé(t1, 1) + ¢7 (t1,1)Qd(t1, t)x(t)

= Q- (®)P(ti,t,K(t € [t,t1])) — PT(t1,t, K(t € [t,t1])) ()

If we introduce the definitions of a(t) and Q into Eq.(17), we have:

Pt t,K(teltt]) = —Qt) — kT (ORHK () — [A(t) — B

t HEK TPty t, K(t € [t,t1]))
—P(ty,t, K(t € [t,t1]))[A(t) — B{t)K(¢

N (19)

P(ty,t, K(te [t,t1])) = —Q(t) — A@)" P(ty,t, K(t € [t,t1])) — P(t1, £, K(t € [t, t1])) A(2)
+ KT ()BT (t)P(t1,t) + P(ty, t, K(t € [t, t1]))B(t) K (t) (20)

and the optimal state feedback control is to find an optimal K*(¢) such that :

J*(t, t, X (), K*(t € [t,t1])) = XT()P*(tr,t, K*(t € [t,41])) X (t)
< XU(O)P(h,t K (¢ € [t,0]) X (0);
for any X(t) (21)
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As optimal feedback gain K* must be unique, the avove expression is rewritten as:

J(t,t, X(1)) = XT@)P*(ty,t,)X () < XT(t)P(t,t, K(t € [t, 1)) X (1);
for any X(¢) (22)

glX(®),ult)] = XT(HQX(t) +u’ (t)Ru(t)
A(t) X (t) + Bu(t)
u(t;t € [t,t+ 90]) (23)

=
>

=

>
<

=

=
|

112

Let us define:

fIX(@®), T —t] = Min[u(t;te[t,T])J[t, T —t;X(t),u(t;tet,T])
— LT - X(2)] (24)

In other wards, the optimal value of the quadratic performance, i.e. f, is a continuous function
of C and the control horizon (i.e. T —t¢). Let [¢t,T] = [t,t + 6] U[t + 6, T] and X (¢) = X, then,
according to the Principle of Optimality, we can write:

fIXe, T —t] = Minygep, o 17[Xe, we) + f(Xeys, T —6)} (25)

Where, r[X;, 4] is a return function of the stage at the beginning [¢, t+4] interval. From Eq.(1),
we have:

Xivs = Xe + h[ Xy, u)d (26)
Then,
f(Xt’ T — t) - Minut;tE[t,t-i-é}{g[Xt? ut]é + f(Xt + h[Xt? ut]éa T—t- 5)} (27)

Let 7 =T —t, f(X;, T —t) becomes f(X;, 7). Since f(X;, 7) is a continuous function of X; and
T, we have:

af(Xta T) /

F(Xy+ h[ X, u)d,m—9) = f(Xi+6X,,7—6) = f(Xy,7)+ [TXt]h[Xt’ ()
ey ) (29)



f[Xt, 7_] _ Minu(t);te[t,tJr(ﬂ {g[Xt, Ut]5+f(Xt7 7)4_[%)57—)]};[)(“ Ut]é"‘[af(;if’ T)](_5)}(29)
Or,
ty T : a 67
BICT) — Minascesa (906w + LTI, (30)

By defining the contents in the main parentheses of the right hand side as H, we have:

af(Xh T)

[ 8]0(Xt’ 7')
or

| = Min[ut;te[t,tJré]H[ X, TX}] ] (31)

The equation given above is known as the Hamilton-Jacobin Equation. The necessary
condition of Eq.[32] ,if no constraint is set on ug, is equivalent to :

O xup, P10y (32)

The only variable to be adjusted to obtain Min[H] is u;, we have to differentiate H with
respect to ug,i.e.,

dg, . Ohy OF(Xi7)

[mt]ut [a—ut]u:[TXt]] =0 (33)
By substituting u! into H[X,, v, % (%;i’ﬂ], we have:
Of (X,
(B X 7)) = Moo ] X, 50T )y (34)
t
So that,
Of (X, 7) . Of (X))
e~ i X, 252D -0 (35)

By the definitions of h, g, and H, we have:

M] = E[XtTQXt + ul Ru, + (8—f)T(AXt + Buy)] (36)

Hl X, u*
[ Xeu's, | X, 2 09X,



We can move the origin of time from 0 to t, so that the corresponding state, C, and the
corresponding Uy are replaced by X (¢) and u(t). Then, H becomes:

Of(Xe,7) 1 of
H{ X, w, [TQ]X” b= XTI QX + i Ruy + (557 (AX, + Bu)} (37)
and,
8f(Xt? T) _ . af(Xl‘n T)
L e = Mina ] Xoyu, (L0 ) (38)
If T is fixed, dr = —dt and f(X;,7) = f(X4,t)
Of (X, t , Of (X, t
(O = M H X, D (39)
or,
of (X, t , Of (X, t
[%]X,t + Minpuy H| X, w, f(.tht) ]=0 (40)
Remember that g_Z[Xt’ uy, [%))Z’t)] =0, if H is to be minimized. From Eq.(35), we have:
0f (X4, 1)
* BT ) — 41
Ruj + X, 0 (41)
Thus,
1 0 (X, t)
L 1BT ’ 49
ut R aXt ( )
Then, substitute u; into H:
X, t 1 1
a1, D) — I XTQX 4 LEBR BT, + [5AX, ~ fLBRT By,
¢
1 1
= SX{QX, = Sfx,BR'B" fx, + fx,AX, (43)
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Where,

_ 8f(Xt7t)
th - aXt

Thus, the Jacobin-Hamiltonian equation becomes:

1 1
fi+ 5XtT QX, — 3 fe.BR'Bfx, + f%x,AX, =0 (44)

1
f[XTvo] = §X’I,I:Q1XT

where

8f(Xt7 t)

fe=—"5,

Since f[X;, T —t] is a result of the quadratic performance index and a state feedback control
input, it can be represented as:

1

fIX, T—t] = §XtTP*(T —t, K*()) X,
1
= §XtTP*(T — )X,
1
= < §XtTP(T —t,K(t;t € [t, T — )X, (45)
Noted that:

1 ...
fr = §XtTP(T_t)Xt

fx, = P(T—-t)X;

P(T-t)A = %[P(T — A+ (P(T —t)A)T] + %[P(T —A— (P(T-tA)T]  (46)

and,
1 1
XI'P(T -t)AX, = §XtT[P(T —t)A+ ATPT(T - 1)) X, + §XtT[P(T —t)A — ATPT(T - 1)) X,
1 1
= §XtT P(T — t)AX, + 5X,? ATP(T - )X, (47)



Eq.(44) becomes:
1 .
§XtT {P+Q - PBR'B"P+ PA+ ATP}X,; =0 (48)
Since the above equation holds for any X (¢), we conclud that:
P+Q—-PBR'BTP+PA+ATP=0 ; P(T)=Q, (49)

This equation is known as the Riccati equation for solving the LQ state feedback control
problems. The optimal state feedback control becomes:

U: = —RilBTth
= —R'(t)BT(t)P(t)X;
—K7 (1) X, (50)

In case T' — oo, X and u will converge to zero so that there is no necessary to put
penaulty of X(T') in the objective function. Consequently, the matrix @1 of Eq.(13) can be
given as zero. If the dynamic system in Eq.(1) is a time invariant one, the result of P(oo,t), or
simply P(t), becomes a constant matrix. i.e.,

ut(t) = —K*X(t) (51)

We shall explore some asymptotic properties of such a regulatiory control a little bit further in
the following.



Properties of Time-invariant LQR System

1. Extension of the LQR problem to LQ-Servo Problem

For a constant command input,r, let us define:

U Uoo
X = X—X,
Uy = ¥~ Yo (52)

Where, s, X, and y., are the state steady values of u, X, and y corresponding to . Then,
the system in Eq.(1) can be changed to the following;:

AX + B
= CX (53)

< N*'
|

The performance index of Eq.(13) is rewritten as:

J(t,00) = [TIXT(MQX(r) + @ (r) Ra(r)ldr (54)

t

and the corresponding optimal control law is:

a(t) = —K*X(t)
Thus,

U = U — K'[X(t) — X |
—K*X(t) + o + K* X
—K*'X(t) + v (55)

To determine v/, we start with substituting u(¢) of the above equation into Eq.(1) and let t
approach oo, we have:

Xoo = —[A—BK*|"'Bu



Yoo = —CJ[A— BK*]"'Bu'y

u'oc: = —[C(A—BK*)"'B] 'ys
{ ClsI —(A-BE")| "B } .2 ¥
{ He(0) } s (56)
u = —K*X(t)+ H; ' (0)yso (57)

2. Robustness of LQR loop

According to the block diagram as shown in Fig.[ ], the loop transfer function of a state
feedback system becomes:

Grg=K(sI —A)™'B

[Theorem] Kalman Equality

If G is the loop transfer function of an optimal LQR then:

[+ Gro(=s)]" Rl + Gro(s)] = R+ Gor(—5)Gor(s) (58)
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Gor, = C(SI - A)_lB
Gor=K(sI —A)™'B

[Proof]

Starting with the Riccati equation:
~[PA+ATP+Q - PBR 'B'P|=0
sP—-PA—sP—-ATP-Q+PBR'BTP]=0
Thus,
PlsI—A)+[ —sI-A)"P-Q+—-PBR'B'P|=0
Then, premultiply Eq.(56) by BT (—sI — A)"T, and let ®(s) = (s] — A), we have:
BTo T (—5)P®(s) + BTd T(—5)®(—s)"P - BT® T(—5)Q
+ BY® T(s)PBR'B"P =0
So,
BTe T (—5)P®(s) + BTP - BT® T(—s)Q + B*® T(s)PBR 'BTP =0
Again, postmultiply the both sides of the above equation by ®~!(s)B to give:
BT® T (—s)PB+ B'Pd(s)B — BT T(—5)Q®(s) 'B
+ BT® T (—s)PBR'BTP®(s) 'B=0 (58)
Let @ = CTC, then,

GL,(—5)Gor(s) = BTo T (—s5)CTC® Y (s)B = BY® T(—5)Qd '(s)B

11

(59)

(60)



Also,
BTP® '(s)B=RR 'B"P® !(s)B = RK*® '(s)B = RG g (61)

B'® (s)PB = GL,(s)R

and
PBR'B"P = PBR'RR'B"P = K"RK
Thus, Eq.(58) becomes:
GLo(—s)R + RGo(s) — G5,(~5)Gou(s) + GLQ" (—s)RG1q(s) = 0 (62)
so that
GfQ(—S)R + RGro(s) + GLQT (—5)RGLo(s) = G5, (—5)GoL(s) (63)

and By adding R to the both sides of the above equation, we have:

R+ Gig(—s)R+ RGro(s) + G1Q" (=) RGro(s) = R+ Gr(—s)Gow(s) (64)
namely,

I+ Gro(—=s)I"R[I + Gro(s)] = R+ G1(—5)Gor(s) (65)
[ Theorem |

o[ I+Gol =1 (A)

o[ I+Ci4]>5 (B)

[ Proof | From the Kalman equality:

[+ Gro(=s)]" Rl I+ Grq(s) | = R+ Gor(—5)Gor(s) (66)
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IF we substitute s by jw and R = 1, then:

[+ GroUu)'[ I + Gro(iw) 1 = I + Gor(jw)Gor(jw)

o[ I+Grg] = M[I+Gro|'[I+Grgl}

Mitl + GoGor

= 1+ M{G5Gort

> 1 (  Because, \{G5;Gor} >0 )

Let A = Gpg,

I = (I+A)7'(I+4)
I+A)'+(IT+A4)7"A
= (I+A) T+ {I+4aH!

Thus,
I+A Yt =T-(T+AH
Therefore,

a[(I+A™H)™

(N
Qi

IN

Which implies:
o I+ATM]<2

or,

N | —

=o[I+G5]>

S]

13
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From (A), it shows that the LOR controller has an oo gain margin. On the other hand,
from (B) it shows that the LQR control system guarantees that this system will remain stable
to each modeling error for which |[AG(jw)/G(jw)| = ¢(w) never exceeds 0.5.
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State Feedback Control— Observer and LQG problems

In the LQR problem, it is assumed that all state variables are accessible from the plant.
In practical occasions, such an assumption is far from reality. It is thus necessary to incorporate
state estimations to facilitate the use of state feedback. One of the state estimation can be
accomplished through the use of Luenberger Observer.

Consider a dynamic system:
t=AX+Bu ; X(t) =Xyy=CX (72)
The estimation of state is given as follows:
i=AX+Bu+H(y—X) ; X(t) =Xoy=CX (73)

Where, H is to be designed. The differences between X and X is denoted as the estimation
error and is given, by making use of the above equation, as :

e = (A—HC)@ ) 6(750) :X()—XO (74)

If [A,C] is an observable pair, H can be choosen to give assigned dynamic modes. One of
the question raised, in the use of observer, is: Can we decouple the control problem from the
estimation one? The answer to this question is given by making use of the following: The
dynamic of the system is characterized by :

d X A —BK X

# x1=lrc a-prx-mcllyx (75)
Let us define a transformation for [X, X7

X I 0 X X

=1t = (76)
So that,

d X X A -BK I 0, X

wx =Ty 1=lge a—px-—mcll 1 11z (77)



In other words, we have:

d. X, I 0, A _BK I 0. X

@z =l g a-Br—mcllr 1ll7) (78)
Which turns out to be:

d X, . A-BK BK X

4 Xy AR PR X (79)

Since the characteristic of the system is not affected by any similar transformation, the char-
acteristic equation of the system can be written as:

A—-BK BK

der] A7 P PR =0 (80)
But,
det] A7 PR PP = det A— BK ) det] A HO (81)

Therefore, zeros of Eq.(83) are zeros of either of the following:
detf A— BK| =0
or,
detf A—HC|=0

Thus, design of control and of observer can be fully decoupled. This fact for linear system is
known as Separation Theorem.

In many occasions, it is considered that uncertainties exist both in state dynamics and
in the ouput measuring, the state estimation under such circumstances is more complicated.
If these uncertainties are considered resulting from so called white noise, the whole problem
can be formulated in terms of LQG problem which, conceptually, similar to the LQR excepted
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that the observer is replaced by a so called Kalman Filter. A system dynamic model is given
by:

y(t) = CX(t)+v(t) (82)

Where, w and v are white noise with covariance matrix {2 and V respectively.
The LQG (Linear Quadratic Gaussian) control problem is described as:

given the measure, y(t) for te[0,t] find u(7), Te[t, t1] such that

7= BT ()@ (t) + [ XTQX +u Rudrly(n).0 < n < ) (53)

is minimized

The optimal state estimaor is called Kalman filter,i.e:

i=AX+Bu+Hy—X) ; X(t)) =Xy, §=0CX (84)
Where,
H=pcTy-1

and P is the solution of the Riccati equation:
P(t) = AP(t) + PAT(t) + Q — P(t)CV~ICP(t) ; P(ty) =P, (85)
Py = E{(X — Xo)(X — Xo)T}

The state feedback control law becomes:

u=—-KX
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The system is then augmented as:

d X A —BK X

Zx!=Uge a-Br-pgellx! (86)

Which is almost the same as Eq.(78). It then can be shown also that Separation Theorem
holds,too. The LQG system is shown in FIg| |. It can be shown that the transfer function that
corresponding to the controller in the feedback loop is:

G.(s)=K(sI —A—BK — HC)'H (87)

If G(s) is a minimum phase plant, it has been shown that loop transfer fuction of this
LQG system, i.e. G(s)G.(s) approaches to C[sI — A)~'H which is knon as Gp.i.e,

limp_oC(sI — A)"'BK(s] —A— BK — HC)'H — C(sI — A)™'H = Gp (88)

Thus, one can design H, the filter gain, to achieve a desirable Gr and treat it as a target
loop transfer function. Having the target G, he can proceed to design K, the state feedback
gain, and try to recover this Gy with its loop transfer function, i.e. G(s)G.(s). This design
methodology is known as LQG-LTR design.
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LQR with constant disturbance

The LTI (linear time-invarying) state model:

X=AX+Bu+B;d ; y=CX (89)
L e o T

J=§/ (47 Qy + uT Ru |dt (90)
to

Where, d is a constant disturbance. The solution to this problem starts with finding a control
law in the form of following:

u=—-R'BTPt)t)X(t) — R 'BY¢(t)
Where, P and ¢ are obtained from the following equations:
P+ PA+ATP-PBRBP+CTQC =0 ; P(t;)=0 (91)
£+ [AT — PBR'BT)¢ —PByd=0 ; £(t)=0 (92)
IF t; =2 oo, P and & are steady state solutions:
ATP 4+ PA—-PBR 'BP+CTQC =0 (93)
¢=—( A" - R 'BPBY ) 'PB,d (94)
In other words, the control law contains both feedback states and feedforward disturbance, i.e.:
u=—-KX(t)+ Kppd
with
K=R'B'P

Kpp=R'B[ A" - PBR'BT | 'PB,
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Output Feedback

For the system
X=AX+4+Bu ; y=CX (95)
There are two alternatives to perform the output feedback control:

1. Constant gain output feedback:
u=-Ky=-KCX

The closed loop system becomes:

X =(A-BKC)X
2. Dynamic output feedback:

u=Hz+ Ny

2=Fz+GY

The closed loop system is:

X = A+ BKCX

=[]

SEEEE St e
=159 E=13 1 97)

To minimize the quadratic performance as given in Eq.(13), the approach via the solution of
Riccati equation of LQR problem no longer applies unless KC ( or, KC') is a square matrix. As
a result, finding optimal K, (or K) that minimize J becomes a parametric optimization problem.
Standard computer routines for numerical parameter optimation are often used in these cases.
An alternative way to find KC (or, KC') is to minimize trace[P]. Where, P is the cost matrix
that defines the quadratic performance from the state feedback problem. [ In case of dynamic
matrix, P will be replaced by P such that:

J=-X(0)"PX(0)

N | =

. There are still many other ways to solve this kind of output feedback problem.
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State Space Realization of Transfer Function

In the previous sections, we have learned the LQR problem for designing a state feedback
control system. However, the LQR formulation should based on a model with state space
representation. It is thus necessary to know how to realize a transfer function in terms of
state space variables. Canonical forms Following are some canonical forms that directly
corresponding to linear transfer functions:

1. Controller canonical form:

[, ] [ 0 1 00 0 xrq 0
T 0 0 10 0 T 0
| . . . . el (98)
0 0 00 1
| T | —Qp  —Qp—-1 - —a1 | [ Tn | L 1 J
T
T2
y=1|bn bpa b | (99)
L Tn |

bis®+b b
y(s) —G(s) = 18” + bas + 0y (100)
s34+ a182 + ass + as

or,
§ 4 a1 + asy + agy = byii + byt + bsu (101)

1

102
$3+a182 +axs + as (102)

- (;:[b132+bgs+b1
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Therefore,

Zt+aZ+asz+azz=u

b12+b22'+b32 =Y

Let
T = =z
i’l = z= Lo
i’z = Z I3
I3 = Z
= —a1Z — a9z —agz+u
= —Q1%T3 — GoL9 — Q3T1 + U
y = bizs+ boxs + b3z
so that
T 0 1 0
T = 0 0 1
T3 —a3 —as_1 —ay
I
y=|bs by b T2
T3

2. Observer canonical form:

jjl —aq 1 00
i‘g —Q2 010
—a, 1 0 0 0

| T, | | —a, 0 - -

Z1
T2
x3

I
T2

_ o O

22

(103)

(104)

(105)

(106)



T
T2

. b132+b28+b1
B+ as? 4 ass + as

<
—~

VA
~—

‘@
~—~
¥
~—
I
@
~—~
~—

or,
§+a1§+agy+a3y = b1t + byttt + bsu

The above equation is first rewritten as:

y = s —awy+bul+s —awy+bul+s? —azy+ byu]
= g1 [ st { 3_1(—a3y + b3u) + (—azy + bgu)} + (—a1y + blu)]

Let us define the following:

T = —amy+bhut+z=—a171+bu+ 1y

j72 = —Qy + bgu + I3 = —aox1 + bQU + x5

T3 = —agy+ bsu = —azx + bsu

y = I
or,

il _a/l ]. 0 3}1 bl
i‘g = —Q2 01 T —+ bg u
i3 —as 0 0 T3 bs
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T
y=[10 0]
T3

3. Controllability canonical form:

[ 7 ] [0 0 0 0 - —a,
Ty 1000 —p_1
o100 s

. 0001 0 —a
| T, | o - - 0 1 —a |
[ Gn—1
Gp—2
y=|bp bp1 - - - bl} anig
a

!

Al 1
i) 0
+
| In | L 0

Ap—2

Gn—3 . a
a; 1

1 0 0

0 0 0

a1

T
T2

Tn

(113)

(114)

(115)

Let us define C[A, B] and O[A, (] as the controllability matrix and observability matrix

of the system (A ,B,C). We will use the following definition for formulation:

Cle, o] controllability matrixz constructed by the matrices in the parantheses
Ole, o] Observability matriz constructed by the matrices in the parantheses
Ao, B.,,Cpevv--- for controller canonical form
Ay, By, Copvvvves for observer canonical form
Aoy Beo, Coprovv v for controllability canonical form
Aoy, Bop, Cop oo+ - - for observability canonical form

One important property of this controllability canonical form is that

C[A., Beo| =1

Assume we have adynamic system represented by [A, B, C]. Then we have:

C[A,B) = [B,AB,A’B, A*B, ..., A" ' B]
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If there is a transformation matrix, P, such that:
7 =PX
Then the triplet matrices that represent the system in terms of Z becomes: [4, B, C]:

= PAP7!

Qo
|
)
wy)

(116)

It is easy to show that:
C|[A, B] = PC[A, B]
and
O[A,C] = O[A,Clp™*
Therefore, to contruct the controllabilty form for [A, B, C], we need to set:
P =Cl[A, B (117)

As a special case, if we start with [A., B, C.|, i.e. a controller canonical form, the transformation
that leads [A,, B., C,] to a controllability form is (for example, n=3):

P = C[A,B]™"
= [BcuAchuAch]_l

- -1

0 0 1
= 0 1 -
|1 —a; —apy+a;®
[ as Q1 1
= |a 1 0 (118)
1 0 0
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Thus,

as ap 1 0 1 0 0 0
ag 1 0 0 0 1 0 1
0 —a3 —a; —ap 1 —ay
0 —as
1 0 —ay
01 —a1
as 1 0
ag 1 0 0
1 0 0 1
as a; 1 -
b3 bg b1 ay 1 0
1 0 O

4. Observability canonical form:

2
—Q9 -+ aq

(119)

Similar to the definition of the controllability canonical form, the obseravability canonical
form [Agp, Bop, Cop) has unity O[Ag, Cop]. Since for the trnasformation:

O[4,C] = O[4, )P

so that the required transformation matrix P is given by:

P=0[A,C]

and a general obseravability canonical form is as follows:

I
Ty

[ 0 1 00 0 z1
0 0 10 0 To
. ' _'_
0 0 00 1
| —Gp —Aap—1 - —ap | [ Tn |

1 0 0 0 0 0 by ]|
a1 1 0 0 0 0 by
Ayp—3 ay 1 0 0 U(120)
Ap—2 0p_3 . ai 1 0
Gpn—1 Gp—2 . ' 3] 1 J | bn J



I
T2

Tn

As a special case, ( say, n=3), we have:

e
O[AO,CO] — CYOAAO
C,A>
1 0 O
= — Q) 1 0
af —ax —ap 1
Note that:
1 0o o]
O[AO,CO]_l = —ay 1 0
| af—ay —a1 1
[ 1 0 0
= ay 1 0
| G2 M 1

) 001 1
IO[A,,C)™' = |0 10 —ay
10 0] |al—a
[ as Q1 1 1
= aq 1 0
1 0 0]
= Cl[A, BJ]™!

In other words,

C[A., B] = O[A,,C,) T
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(123)
o 01"
1 0
—aq 1]
(124)



C[Am Bc] j - O[Aoa Co]

We should also note that C[A., B.]~! and O[A,, C,]~! are known as upper triangular and lower
triangular Toeplitz matrices. That is:

[ ap-1 G2 - - a1
p—2 Gp—3 - a1 1
C[AC,BC]fl _ (In.,g ap 1 0 0

ax 1 0 0 0 0
1 0 0 o0
= a+(a17a27”'7an71)

1 0 0 0 0 O

o
o

aq 1 0O 0 0 O
1 . . . . .
O[AO’ Co] N Ayp—3 . ay 1 0 0
Ap—2 QAp_3 . ai 1 0
| a1 G2 - - a1
= af(a17a27”'7an71)
a, = la_ (125)

[****] P for [A’ B’C] — [Ac)Bca Cc]

Given a triplet [A, B, C] in the state space X, the transformation P, i.e. Z = PX, for
[A4, B,C| — [A., B, C] is given by:

P = [a;(h)]"'C[A, B]™

Where,

A

h = [_dna _dnfb T _a2]

and, @; is the i-th element of last column of C[A, B]™' AC[A, B].
[Proof]

The transformation is carried out in the sequence of:

[A7 B7 C] _) [ACO7 BCO7 CYCO] _) [AC7 BC7 CC] (126)
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In the first step, we have:
P, =C[A, B]™!

which will result:
0 a
A,y = “ (127)

Then, according to eauation (116), Py = [a;(—ay, —Gn_2, ", @2)]" " will transform the resulting
[Aco, Beo, Ceo] into [A,, B, C.]. Thus, P = P, P;:

P = a—i—(_&nu _dn—% T &2)]_10[147 B]_l

This proves the theorem.

In the same way, we can also conclude that the transformation P for [A,B,C] —
[4,, B,, C,) is:

P = a,(—dn, —CALn,Q, T, dg)]O[A, B]

Where, @; is the i-th element of last row of O[A, B] AC[A, B]™".

5. Summary

1. [Ac, Be, Cc] = [Aco, Beo, Ceo)
P =C[A,B.,C]™!

2. [As, By, Co] = [Ach, Bob, Cop]
P = C[A,, Bo, Co| ™

3. [Aco, Beoy Ceo) = [Aob, Bob, Cop)

P = O[Acoa Bco7 Cco]
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- [Aob, Bob, Cop] = [Acos Beoy Ceo
P = C[Ag, Boy, Cop]

- [Aco, Beo, Ceo] = [Ac, B, C]
P = ai'(Ac)

- [Asb, Bop, Cop] — [Ao, Bo, Co)
P=a (Ayp)]

. [A, B, C] — [A,, B,,C,]

[A7 B7 C] _) {[ACO7 BCO7 CCO] or [ACO7 BCO7 CCO]} _) [A*7 B*7 C*]
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