
CSE Qualifying Exam, Spring 2025

CSCE 513-Computer Architecture

1. Given the below latencies for the dependant Floating-Point (FP) and Integer operations

in a processor:

Instruction Producing
Results

Instruction Using
Results

Latency in clock cycles

FP ALU operation FP ALU operation 4

FP ALU operation Store double 3

Load double FP ALU operation 2

Load double Store/Load double 0

Load integer Integer ALU operation 1

Integer ALU operation Integer ALU operation 0

(a) What is the CPI (Clock per Instruction) of a scalar processor when executing the below

loop? Find the CPI without any optimization such as scheduling and loop-unrolling.

(b) What is the minimum unrolling factor required to achieve at least a 1.5× speedup

when running the loop on a 2-way superscalar processor? You can use register-

renaming, and scheduling to speed up the execution.

Loop: l.d $f0,0($s1) #FP Load

 add.d $f4,$f0,$f2 #FP Add

 sub.d $f6,$f4,$f0 #FP sub

 s.d $f6,0($s1) #FP Store

 addi $s1,s1,-8 #integer add

 bne $s1,$zero,Loop #Branch

2. A processor has a clock rate of 2 GHz and a base CPI of 1. The instruction mix of a benchmark

program consists of 20% load and store instructions. The memory hierarchy of the processor

is as follows:

• L1 cache: Hit time = 1 cycle, miss rate = 5%
• L2 cache: Hit time = 5 cycles, miss rate = 10%
• Main memory: Access time = 100 cycles

To improve performance, an architect proposes adding an L3 cache with a hit time of
4 cycles and a miss rate of 10%.

(a) Compute the effective CPI for the original system (without L3 cache).

(b) Analyze the impact of adding the L3 cache. Compute the new CPI and determine
the speedup achieved by this modification.

(c) Suppose that instead of adding the L3 cache, the base processor frequency is
increased from 2 GHz to 2.5 GHz, but the base CPI increases to 1.2 due to additional
pipeline stages. Would this alternative approach yield better performance than adding
the L3 cache? Justify your answer with calculations.

3. You are a research scientist working on optimizing a high-performance computing
system designed for real-time space simulations. The system has the following
characteristics:

• Main memory bandwidth: 8 GB/s
• Peak computational throughput: 5 GFlops/s
• No on-chip cache

To test its efficiency, you run an adaptive force computation kernel used in a space
physics simulation:

Here, force, mass, dist, and acc are single-precision floating-point (float) arrays,

and G is a gravitational constant.

(a) What is the expected performance of this system when executing the above kernel for

n=5? Determine if the system is compute-bound or memory-bound, and justify your

answer with calculations.

(b) To boost performance, engineers propose the following optimizations:

1. Increase the main memory bandwidth to 32 GB/s
2. Introduce an on-chip cache large enough to store the entire mass and acc arrays

What is the overall speedup achieved with these enhancements? Discuss whether the
optimizations shift the system’s bottleneck (compute-bound or memory-bound).

for (int i = 0; i < n; i++) {

 force[i] = mass[i] * acc[i];

 for (int j = 0; j < n; j++)

 force[i] += G * (mass[j] / (dist[i][j] * dist[i][j]));

}

Spring 2025 Qualifying Exam—Algorithms (750)

Question 1 (A Recurrence). Find tight asymptotic bounds on any positive function T (n)
satisfying the following recurrence for all sufficiently large n:

T (n) = 2T (n/2) + T (
√
n) +

√
n .

You may assume that any implicit floors and ceilings are of no consequence.
Prove your upper bound by the substitution method. (You do not need to prove the matching

lower bound, but if your upper bound is not tight, you will not receive credit even for a correct
substitution proof.)

Question 2 (Optimal Change-Making). You are the cashier at a bodega, and your cash
register has an unlimited supply of coins of various denominations d1, . . . , dk (in cents, say, but the
currency unit is not important). A customer comes in and pays cash for a purchase, handing you
a large bill. After subtracting the price of the purchased item, you need to give exact change back
to the customer, say N cents, and you want to do this using as few coins as possible.

For example, let k = 3 and ⟨d1, d2, d3⟩ = ⟨5, 10, 25⟩. If N = 45, then three coins suffice
(45 = 25 + 10 + 10); if N = 17, then you cannot make exact change.

Describe an algorithm that takes as input an integer N ≥ 0 (the amount of change required)
and an array d[1 . . . k] of positive integers (the coin denominations; assumed pairwise distinct), and
returns the least possible number of coins whose denominations add up to N . If making exact
change for N is not possible, your algorithm should return some (any) number greater than N
(including ∞).

Describe your algorithm in enough detail so that someone who did well in CSCE 750 can
implement it without specific knowledge of the problem.

(Formally, your algorithm returns the least possible value of
∑k

j=1 cj subject to the constraints

that c1, . . . , ck ≥ 0 are integers and
∑k

j=1 cjd[j] = N . Here, each cj is the number of coins of
denomination d[j] used for the change. If no such c1, . . . , ck exist, then some number greater than
N is returned.)

Your algorithm only needs to return the total number of coins used, not the number of each
denomination used.

For full credit, your algorithm must run in time O(kN).

Question 3 (Single-Source Shortest Paths). You are given a directed graph G with weight
function w : G.E → R such that w(e) is an integer between 1 and 10 for all e ∈ G.E. You are also
given a source vertex s ∈ G.V .

Show how to compute, in linear time, shortest distances (d-attributes) and shortest path infor-
mation (π-attributes) to every vertex from s. Linear time means time O(|G.V | + |G.E|) with the
usual adjacency-list representation of G. Your explanation should be clear enough so that someone
who did well in CSCE 750 can implement it.

1

