
CSE Qualifying Exam, Spring 2023

CSCE 513-Computer Architecture

1. Given the below latencies between the dependent Floating-Point (FP) and Integer
operations in a MIPS processor:

Instruction Producing Results Instruction Using Results Latency in clock cycles
FP ALU operation FP ALU operation 2
FP ALU operation Store/Load double 2
Store/Load double FP ALU operation 3
Store/Load double Store/Load double 3

Load integer Integer ALU operation 1
Branch Integer ALU operation 1

Integer ALU operation Branch 0
Integer ALU operation Integer ALU operation 0

What is the minimum CPI that can be achieved when executing the below loop on a 2-
way out-of-order superscalar processor? Use unrolling with a factor of 3 and register-
renaming and scheduling to speed up the execution. Draw a table to show the scheduled
code for the 2-way superscalar processor.

Loop: l.d $f0,0($s1) #FP Load
 sub.d $f1,$f0,$f2 #FP Sub
 add.d $f3,$f1,$f1 #FP Add
 s.d $f3,0($s1) #FP Store
 addi $s1,s1,+8 #integer add
 bne $s1,$zero,Loop #Branch

2. Assume a processor that has a clock rate of 2GHz and a base CPI of 1.5 is executing
a program with 20% load and stores instructions. If the memory hierarchy for this
processor has the following characteristics:

• L1 hit time = 0 ns, L1 Instruction Cache and L1 Data Cache miss rate = 2%
• L2 hit time = 5 ns, L2 miss rate = 5%
• Main Memory access time = 200 ns

(a) What is the effective CPI for this system?

(b) What is the overall speedup achieved if the L2 hit time is reduced to 1.75 ns, and a
third-level cache (L3) with a hit time of 2 ns and a miss rate of 1.5% is added to the
system?

State any assumptions you make.

3. Assume a computer system with the below characteristics:

• Main Memory bandwidth of 4 GB/s
• A peak computational throughput of 2 GFlops/s
• No cache in the system

(a) What is the expected performance of the system while running the loop below in which
the data type of the res, mat, and vec arrays are float (single-precision floating point)?

(b) What is the overall speedup achieved if the peak memory bandwidth is increased to
16GB/s and the system is equipped with an on-chip cache that fits the entire vec array?
State any assumptions you make.

for (int i=0;i<n;i++){

 for (int j=0;j<m;j++)

 res[i]+= mat[i][j]*vec[j];

}

Spring 2023 CSE Qualifying Exam
CSCE 531, Compilers

1. Syntax-Directed Definition Consider the following grammar for arith-
metic expressions with constants, addition, and multiplication, where S is
the start symbol and c is a numeric constant:

E ::= E + E
E ::= E ∗ E
E ::= c
E ::= (E)

(a) Show that the grammar is ambiguous.

(b) Assume that + and * are associative and that, as usual, * has higher
precedence that +. Rewrite the grammar to eliminate ambiguity,
thus obtaining the standard LR (bottom-up) grammar for arithmetic
expressions with constants, addition, and multiplication. (Use sub-
scripts to indicate different occurrences of the same nonterminal in
the same production.)

(c) Write an attribute grammar by adding semanting rules to the gram-
mar you just obtained that, given an input expression, produces an
equivalent expression with the minimum number of parentheses. So
the rules in effect remove unnecessary parentheses. Your resulting ex-
pression should be passed as a string attribute to S.output. Assume
that the terminal c has a text attribute that contains the string rep-
resenting the constant. Use ‘+’ in your actions to denote string con-
catenation, and please surround string constants with double quotes.
As for the previous part of this question, assume that + and * are
associative operators, and that the usual precedence rules apply (*
before +). Do not rearrange or alter the expression in any way other
than by removing unnecessary parentheses.

Input Output Comment
2 + (3 + 4) 2 + 3 + 4 addition is associative
(2 * 3) * 4 2 * 3 * 4 multiplication is associative
2 + (3 * 4) 2 + 3 * 4 multiplication has precendence over addition
(2 + 3) * 4 (2 + 3) * 4 parenthese needed

1

2. Liveness Analysis and Register Allocation

Consider the following program.

fib(n)1: a := 0
2: b := 1
3: z := 0
4: LABEL loop
5: IF n=z THEN end ELSE body
6: LABEL body
7: t := a + b
8: a := b
9: b := t

10: n := n− 1
11: z := 0
12: GOTO loop
13: LABEL end
14: RETURN a

(a) Compute succ(i), gen(i), and kill(i) for each instruction in the pro-
gram. For your convenience, an example of the table to be filled is
provided next to the program.

fib(n)1: a := 0
2: b := 1
3: z := 0
4: LABEL loop
5: IF n=z THEN end ELSE body
6: LABEL body
7: t := a + b
8: a := b
9: b := t

10: n := n− 1
11: z := 0
12: GOTO loop
13: LABEL end
14: RETURN a

i succ[i] gen[i] kill[i]

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(b) Calculate in and out for every instruction in the program. Show your
work in tabular form. Use of fixed-point iteration is recommended.

(c) Draw the (register-)interference graph for a, b, n, t, and z. Also
show the interference table (with columns for statement number, kill
set, and intereferes with set) that you used to build the interference
graph.

(d) Make a four-coloring of the interference graph.

(e) Explain how one could modify the program to use only three registers.
You do not need to provide a solution; only describe the approach
that you would take.

2

3. Bottom-up (SLR) Parsing Consider the following grammar:

A ::= aAa
A ::= bAb
A ::=

(a) Describe (in English) the language that the grammar defines.

(b) Is the grammar ambiguous? Justify your answer. Hint: use induction
on the length of sentences (in this case, strings) of the grammar.

(c) Construct an SLR parse table for the grammar.

(d) Can the conflicts in the table be eliminated without changing the
grammar?

3

Spring 2023 CSE Qualifying Exam
CSCE 551, Theory

1. Fix an alphabet Σ and let L1 and L2 be languages over Σ. Define

overlap(L1, L2) := {xyz : x, y, z ∈ Σ∗ and xy ∈ L1 and yz ∈ L2} .

So overlap(L1, L2) is like concatenation of L1 with L2, except that if a string in L1 has
a suffix that equals a prefix of a string in L2, then the combined string only needs to
include that common substring once. For example, if L1 = L2 = {abb, bba}, then

overlap(L1, L2) = {abbabb, abba, abbba, abbbba, bbabb, bbaabb, bbabba} .

Note that L1L2 ⊆ overlap(L1, L2), because in the definition, y could just be the empty
string.

Show by construction that if L1 and L2 are regular, then overlap(L1, L2) is regular. If
your construction works, you need not justify it.

2. We assume the TM model given in Sipser with a single 1-way infinite tape with cells
0, 1, 2,

Let f be a function such that, for every TM M and string w over M ’s input alphabet,
f(⟨M,w⟩) outputs a natural number s such that

if M accepts w, then it does so using at most s space (which means M ’s
head never scans any cell i with i ≥ s during its computation on input w).

Show that no such f can be computable.

(In the definition above, if M loops on input w, then we make no assertions about the
value of f(⟨M,w⟩).)

3. The VERTEX-HALF-COVER problem is

Instance: A graph G and an integer k.
Question: Is there a set C of vertices of G such that |C| ≤ k and at least
half of the edges of G have at least one endpoint in C?

Show that VERTEX-HALF-COVER is NP-complete. To show NP-hardness, polyno-
mially reduce from VERTEX-COVER. You need not prove that your reduction is
correct.

1

Spring 2023 Q-exam — CSCE 750 (Algorithms)

1. (Solving a Recurrence) Let T (n) be any positive-valued function defined for all integers
n ≥ 0 by the following recurrence, which holds for all sufficiently large n:

T (n) =

{
2T (n/2) + n if n is even,

T (n− 1) + n if n is odd.

Find tight asymptotic bounds on T (n), that is, find a function f(n), as simple as possible,
such that T (n) = Θ(f(n)) as n → ∞. Justify your answer using the substitution method.

2. (Longest Welded Rod) You are supplied with a sequence r1, . . . , rn of n > 0 rods of various
positive integer lengths (in inches, say). Your job is to weld (i.e., fused end-to-end) rods to
form the longest possible single welded rod. There are two constraints, however:

(a) The order of the rods cannot be swapped. That is, if i < j and ri and rj both appear
in the welded rod, then ri must be somewhere to the left of rj .

(b) It may or may not be possible to weld two given rods together.

Design an algorithm for doing this. Your algorithm takes as input: (1) an array L[1 . . . n] of
positive integers where L[i] is the length (in inches) of rod ri; (2) an array W [1 . . . n, 1 . . . , n]
of Booleans, where W [i, j] = TRUE iff it is possible to weld ri directly with rj . Your
algorithm should return the length of the longest possible welded rod. (You are not required
to determine which rods make up the optimal rod.) Explain your algorithm well enough
so that an intelligent reader (who has taken CSCE 750) with no specialized knowledge can
implement it.

Your algorithm must run in time O(n2). As usual, you may assume that all arithmetic and
comparison operations on integers take O(1) time each.

3. (Shortest Path) Dijkstra’s algorithm (famously) may fail on a digraph that has nega-
tive edge weights. Let G := (V,E,w) be a weighted, directed graph with weight function
w : E → R that may have at most one edge with negative weight. Design an algorithm that
takes G and two vertices s, t ∈ V as input and returns the minimum weight of an s → t path.
(Your algorithm is not required to return an actual path, just its weight.) Describe your
algorithm with enough precision so that an intelligent reader (who has taken CSCE 750) with
no specialized knowledge can implement it.

Your algorithm must run in time O((n + m) lgm), where n = |V | and m = |E|. As usual,
you may assume that G is represented by adjacency lists, and all arithmetic and comparison
operations on weights take O(1) time each. You may also assume (as usual) that G has no
negative-weight cycles. For full credit, explain briefly why your algorithm is correct. [Note:
The Bellman-Ford algorithm computes shortest paths when weights can be negative, but you
cannot simply invoke it because it takes too long to run.]

