
Spring 2019 CSE Qualifying Exam: Compilers

1. LR-Parsing. Consider the following augmented grammar G with start symbol S 0:

S 0 ! S

S ! iS

S ! iSeS

S ! {L}
S ! a

L ! LS

L ! "

(Here, " denotes the empty string.)

(a) For the grammar G above generate all of the LR(1) sets of items I0, I1, I2, . . . along
with complete transition information for an LALR (LALR(1)) parser. [Note: This
is NOT a canonical LR(1) parser; states with common cores are merged.]

(b) Using your answer to part (a), construct the action table and describe any con-
flicts. Assume the productions are numbered in order: 0–6.

2. Syntax-Directed Definition: Variable scope. Consider the BNF grammar for
expression syntax, below:

hexpri ::= hexpri1 + htermi
| htermi

htermi ::= htermi1 ⇤ hfactori
| hfactori

hfactori ::= id

| const

| (hexpri)
| let id := hexpri1 in hexpri2 end

1

• Here, id has a lexical attribute id.text that is the text of the identifier (i.e., the
name of the variable) returned by the lexical analyzer.

• In a let . . . end expression, the variable before the := sign is called a binding
occurrence of that variable, and the scope of this occurrence is the corresponding
hexpri2 (note: not hexpri1).

• We say that an occurrence of a variable v in a (sub)expression E is bound in E if
that occurrence is in the scope of a binding occurrence of v inside E. Otherwise,
the occurrence is free in E.

For example, consider the expression

x + let x := 4 in
let y := x+w in

x+y+z
end

end

The occurrences of the variables x, y, z are all free in the subexpression x+y+z, but
these occurrences of x and y are bound in the entire expression. The x occurring in
the subexpression x+w is bound in the expression as a whole, but the occurrences of w
and of z are both free in the expression as a whole, as is the occurrence of x before
the first let.

(a) (60% credit) Add semantic rules to the grammar above to compute as a synthe-
sized attribute hexpri.freevars the set of variables that occur free at least once in
hexpri. (Compute the same attribute for htermi and hfactori.)

(b) (40% credit) Add semantic rules that compute as an inherited attribute a Boolean
value id.isfree to each non-binding occurrence of a variable, indicating whether
that occurrence is free in the expression as a whole. (You do not need to set this
attribute to binding occurrences.)

In both parts, you may use set-valued attributes with some standard basic set opera-
tions: union (A [B for sets A and B), the empty set ;, as well as the following pure
functions (with no side e↵ects) for any object x and set A:

add(x,A): returns A [{x}.
remove(x,A): returns A \ {x}.
in(x,A): returns TRUE if x 2 A and FALSE otherwise.

You may also test equality of objects with =.

3. Control Flow and Liveness Analysis. The following fragment of 3-address code
was produced by a non-optimizing compiler:

0 start: sum = 0
1 i = 0
2 L0: j = 0
3 if i >= 16 goto L6
4 if j >= 64 goto L6
5 L1: t1 = b
6 t2 = i * w
7 t1 = t1 + t2
8 t3 = j * 8
9 t1 = t1 + t3

10 t4 = t1
11 f = a[t4]
12 if f > 0 goto L2
13 goto L3
14 L2: sum = sum + f
15 goto L4
16 L3: sum = sum - 1
17 L4: j = j + 1
18 if j < 32 goto L1
19 i = i + 1
20 if i < 8 goto L0
21 goto L5
22 L5: goto L0
23 sum = 0
24 L6: no-op

Assume that there are no entry points into the code from outside other than at start.

(a) (20% credit) Decompose the code into basic blocks B1, B2, . . . , giving a range of
line numbers for each.

(b) (30% credit) Draw the control flow graph, describe any unreachable code, and
coalesce any nodes if possible. Also give all the sets of blocks that constitute
loops, marking inner loops as such.

(c) (30% credit) Give a table with 25 rows saying which variables are live immediately
before each line number. Assume that n and sum are the only live variables
immediately after line 24.

(d) (20% credit) Describe any simplifying transformations that can be performed on
the code (i.e., transformations that preserve the semantics but reduce (i) the
complexity of an instruction, (ii) the number of instructions, (iii) the number of
branches, or (iv) the number of variables).

Algorithms

1. (Solving a Recurrence) Find tight asymptotic bounds on any positive real-valued function T (n)
satisfying the following recurrence for all su�ciently large n:

T (n) = T

✓
3

5
n

◆
+ 4T

✓
2

5
n

◆
+ n

2

That is, find an expression f(n), as simple as possible, such that T (n) = ⇥(f(n)). Use the substitution
method to prove that your answer is correct. (Note: Implicit floors or ceilings in the recurrence do
not a↵ect the answer.)

2. (Selection) You are given two sorted arrays X[1 . . . n] and Y [1 . . . n] of n numbers each, where n is a
positive integer. You may assume that there are no duplicates anywhere in the combined arrays. You
are also given an integer k such that 1 k n.

Describe an algorithm to find the k
th order statistic (i.e., the k

th smallest) of the 2n numbers in the
combined arrays. (For example, the n

th order statistic is just the median.)

Your algorithm should run in time O(lg k), assuming (as usual) that each array access, comparison,
and arithmetic operation on array indices takes constant time. (Note that you cannot merge the two
arrays into a single sorted array, because this takes too long.)

Explain why your algorithm works, in enough detail to convince an intelligent but skeptical reader
that it is correct.

3. (Dynamic Programming) The game of Cat and Mouse is played on a directed graph G, which we
will assume is acyclic. There is a unique vertex h of G with outdegree 0, and we call this vertex the
hole.1 Two players, the cat and the mouse, start on any two respective vertices of G. They then
alternate turns, where the player whose turn it is traverses an outgoing edge to an adjacent vertex.

The game ends when either

• one or the other of the players reaches the hole, in which case the mouse wins and the cat loses
(presumably, the mouse can escape down the hole but the cat would get stuck there), or else

• the two players occupy the same non-hole vertex, in which case the cat wins and the mouse loses
(for obvious reasons).

For example, in the following game, the cat can win if she moves first, but the mouse can win if he
moves first:

mouse

cat

hole

In the next paragraph, CF stands for “cat first” and MF stands for “mouse first.”

Describe an algorithm that takes as input a directed acyclic graph G with n vertices, represented as
an adjacency list where G.V = {v1, . . . , vn}, and outputs an n⇥ n⇥ 2 table

Win[1 . . . n, 1 . . . n, {CF,MF}]

such that, for each 1 i, j n and each t 2 {CF,MF}, Win[i, j, t] contains either “C” (for cat) or
“M” (for mouse) depending on who wins the game when both play optimally with perfect information,
the cat starting on vertex vi, the mouse starting on vertex vj , and the player making the first move
given by t.2

You may assume that the adjacency list of G has been topologically pre-sorted, so that (vi, vj) 2 G.E

implies i < j. The hole is then the last vertex vn.

Explain how your algorithm works, in enough detail to allow an intelligent non-expert to implement
it correctly. For full credit, your algorithm should run in O(mn) time, where m = |G.E|.

1Since h is the only vertex with outdegree 0, it is reachable from every other vertex in the graph.
2A non-ending game position is winning for the next-to-move player exactly when there exists a move the player can make

that results in a new winning position for that same player; otherwise, the position is winning for the other player.

