
Architecture	
	

1.	 Consider	the	following	loop	nest:	

float	x[1024],	out[1024],	coeff[3];	

for	(i=0;i<n;i++)	{	

		out[i]	=	0;	

		for	(j=0;j<3;j++)	

				out[i]	=	out[i]	*	x[i]	+	coeff[j];	

}	

	

a.	 Is	the	inner	loop	parallel?		Why	or	why	not?	

	

b.	 Unroll	the	inner	loop	(completely)	and	convert	the	loop	nest	to	MIPS	assembly.	

	

c.	 Assume	the	resulting	code	(outer	loop	and	unrolled	inner	loop)	is	executed	on	a	single	issue,	in-
order	5-stage	processor	pipeline.		Assume	the	processor	is	fully	pipelined	with	data	forwarding.		
Also	 assume	 loads	 and	 stores	 have	 a	 fixed	 latency	 of	 2	 cycles	 (in	 the	memory	 stage),	 integer	
instructions	 a	 fixed	 latency	 of	 1	 cycle	 (in	 the	 execute	 stage),	 and	 floating	 point	 instructions	 a	
fixed	 latency	 of	 3	 cycles	 (in	 the	 execute	 stage).	 	 In	 other	 words,	 the	 execute	 and	 memory	
“stages”	have	potentially	multiple	cycles	of	latency.		Estimate	the	resulting	CPI.	

	

d.	 Schedule	the	unrolled	inner	loop	to	minimize	the	impact	of	data	dependencies	and	repeat	part	
c.	

	 	



2.	 Consider	a	memory	system	that	has	the	following	characteristics.	

memory	 type	 line	size	 miss	rate	 write	policy	 %	dirty	
access	
time	

bandwidth	
to	lower	
level	

L1	 split	
I:	64	bytes	
D:	16	bytes	

I:	2%	
D:	7%	

D:	write-
back	 	 0	 6.4	GB/s	

L2	 unified	 64	bytes	 2%	 write	back	 50%	 10	ns	 3.2	GB/s	
L3	 unified	 2	KB	 1%	 write	back	 60%	 50	ns	 1.6	GB/s	

RAM	 	 	 	 	 	 400	ns	 	
	

Assume	 the	 base	 instruction	 CPI	 is	 1.	 	 For	 a	 particular	 program	 under	 test,	 assume	 that	 15%	 of	 all	
executed	instructions	are	loads	and	5%	of	all	executed	instructions	are	stores.		Calculate	the	overall	CPI.		
State	any	assumptions.	

	

3.	 Consider	the	following	loop:	

	

float	img[1024*1024];	

for	(i=0;i<h;i++)	

		for	(j=0;j<w;j++)	{	

				sum=0;	

				for	(k=0;k<5;k++)	

						sum+=img[(i+k)*w+j];	

		}	

	

a.	 What	is	the	arithmetic	intensity	(ops	per	byte)	of	this	loop?	

	

b.	 Assume	this	loop	nest	is	executed	on	a	processor	with	a	peak	floating	point	throughout	of	16	
Gflops	and	a	peak	memory	bandwidth	of	12	GB/s.		Is	this	loop	memory	bound	or	compute	
bound?		Why?	

	

c.	 Assume	the	processor	supports	4-way	SIMD	instructions,	but	only	when	data	is	accessed	from	
consecutive	memory	locations.		Would	such	instructions	benefit	this	loop?		If	not,	is	it	possible	
to	change	to	the	loop	in	order	to	effectively	utilize	these	instructions?	



Compilers

1. Suppose we want to build expressions out of VAR and CONST tokens with the

following allowed operators (eight in all):

Operators Type Associativity
ˆ , $ unary postfix left to right

@, # binary infix left to right

*, & unary prefix right to left

< binary infix none

%, = binary infix right to left

Groups of operators have the same type, precedence, and associativity. Groups are

listed in order of decreasing precedence. Expressions can also include parentheses to

coerce evaluation order as usual.

Give the rules section of a yacc (bison) source file to build an LALR parser for these

expressions. Use expr as the start symbol. Your grammar should reflect the precedence

and associativity of the operators as closely as possible. No semantic actions are

required. [Your yacc syntax need not be exactly correct as long as it is close.]

2. Provide semantic actions for the middle break loop, which has the following syntax:

S ! loop S1 until B S2 endloop ;

When the loop is entered, S1 is executed before the termination test B. If B evaluates

to false the loop exits. If not, execution proceeds with S2 and then with S1 before

testing B again.



3. The following fragment of 3-address code was produced by a non-optimizing compiler:

1 start: x := 1

2 y := 1

3 sum := x

4 sum := y

5 loop: if x = n then goto out1

6 t1 := y

7 t2 := t1 * t1

8 t3 := t1 + x

9 if t3 < n then goto skip

10 t3 := t3 - n

11 skip: sum := sum + t3

12 y := y + 1

13 goto loop

14 out2: x := sum

15 sum := x + 1

16 x := x + 1

17 out1: x := y - 1

18 t1 := x

19 print t1

20 if x = 0 then goto out

21 goto out2

22 goto out1

23 out: no_op

Assume that there are no entry points into the code from outside other than at start.

(a) Decompose the code into basic blocks B1, B2, . . . , giving a range of line numbers

for each.

(b) Draw the control flow graph, and describe any unreachable code.

(c) List which variables are live immediately before line 8 and which variables are

live immediately before line 18. Treat the array a as a single variable. Assume

that n and sum are the only live variables immediately after line 23.

(d) Describe any simplifying transformations that can be performed on the code (i.e.,

transformations that preserve the semantics but reduce (i) the complexity of an

instruction, (ii) the number of instructions, (iii) the number of branches, or (iv)

the number of variables).



Algorithms

1. Find a tight asymptotic upper bound on the function T (n) defined by the following

recurrence:

T (n) = 2T
⇣n
3

+ 8

⌘
+ 5n

Prove, using the substitution method, that your answer is correct. You are only

required to show the inductive step; you need not show how base cases are handled.

2. Leo decides to send messages using a simple code in which each letter is encoded by

its (zero-based) index in the alphabet. The table below shows a few examples.

Letter Code
a 0

b 1

c 2

.

.

.

.

.

.

h 7

.

.

.

.

.

.

z 25

Unfortunately, Leo forgot to include delimiters between the code numbers, and as a

result, his messages are ambiguous. For example, the message ‘24’ might be one letter

(‘y’) or two (‘ce’). Likewise, the message ‘111’ might be ‘bbb’, ‘bl’, or ’lb’. The mes-

sage ‘1920171911418’ has 96 di↵erent decodings, including the strings ‘bjcabhbjbos’,

‘tcartlebi’, and ‘turtles’.

Describe, in pseudocode, a ⇥(n) time algorithm that takes as input a string of length

n encoded in this way, and outputs the number of distinct decodings of that string.

(Your algorithm only needs to output the number of decodings; it does not need to

generate the decoded strings themselves.) Explain why your algorithm works, in

enough detail to convince an intelligent but skeptical reader that it is correct.

3. Let T1 and T2 denote two binary search trees that each contain the same set of n
distinct keys, but whose shapes may be distinct. Prove that there exists a sequence

of ⇥(n) rotation operations that transforms T1 into T2.


