Spring 2013 CSE Qualifying Exam
Core Subjects

March 23, 2013

Architecture

1. ROB trace - single issue

(a) Non-pipelined functional units
Assume the following:

Nine ROB slots.

1 integer Execution unit, 5 reservation stations, one cycle to execute.
1 Floating Add Unit, 3 reservation stations, 6 cycles to execute.

1 Floating MULT Unit, 2 reservation stations, 10 cycles to execute.
Functional units are not pipelined.

There is no forwarding between functional units; results are communicated by the
common data bus (CDB).

The execution stage (EX) does both the effective address calculation and the mem-
ory access for loads and stores.

Thus, the pipeline is IF/ ID/ IS/ EX/ WB. Loads require one clock cycle.
The issue (IS) and write-back (WB) result stages each require one clock cycle.
There are five load buffer slots and five store buffer slots.

Assume that the Branch on Not Equal to Zero (BNEZ) instruction requires one
clock cycle.

loop: LD FO, O(R1)

MULT.D F8, FO, FO
ADD.D F2, F2, F8
DADDIU R1, R1, +8
BNE R1, R2, loop

Fill in the table below for as much as you can assuming the BNE is taken and succeeds.
(Do not add rows to the table.)

Tter.

Instruction

Issues at

Execute/memory

Write CDB

Commit

(b) ROB - functional units pipelined:
Now assuming that the floating point units are pipelined and that when an operation
moves into the second stage of the pipeline the reservation station is freed up.

loop: LD FO, O(R1)
MULT.D F8, FO, FO
ADD.D F2, F2, F8
DADDIU R1, R1, +8
BNE R1, R2, loop

Fill in the table below for as much as you can assuming the BNE is taken and succeeds.
(Do not add rows to the table.)

Iter. | Instruction Issues at | Execute/memory | Write CDB | Commit

2. Memory stall cycles Consider a 1GHz computer with the following memory character-
istics.

Cache hit rate is 90%.
Each cache block contains 32 bytes.

N N
o o

The processor gets 1 word from its cache with one cycle if it is a cache hit.

/N~
o o

The processor references the memory 1.5 per instruction.

25% of the references are writes.

—

The bus reads or writes a single word at a time with 100ns.

—_—

The cache uses write allocate on a write miss.

= @
—_— T ' ~— ' —

Assume for the perfect memory, the CPI = 1.0.

—~
]

For each of the following two cache write strategies,

(a) The cache is write through
(b) The cache is write back

What is the average CPI? Be sure to state any other assumptions you make clearly.

3. Eliminating stalls:
Given the code and assume a FOP to FOP stall of two cycles and a Load to FOP stall
of one cycle. Also assume FOP to Store has two stalls.

$L46:

addu $2, $2, $3

1.4 $£f0, 0($2)
mul.d $£f2, $£f0, $£f0
add.d $f4, $f2, $f0
s.d $£f4, 0($4)
subui $4, $4, #8
beq $2, $4, $L46

(a) Loop Unrolling SimpleScalar - Show how to unroll the loop just once and schedule
to eliminate as many stalls as possible.

(b) If your loop would normally execute an odd number of times and your unroll it
once, what problems arise and how do you address them.

(¢c) What in the architecture limits the number of times a loop could be unrolled?

(d) Show how to unroll this loop for a SuperScalar (VLIW) that can issue one integer,
one floating add, one floating multiply, and one load/store operation each cycle.

e) How does a fine-grained multithreaded processor such as the Niagara T1 eliminate
g g
stalls due to level-one cache misses?

Compilers

1. The “break” statement of C causes the exiting of an enclosing loop or switch statement.
It should generate an unconditional jump to some appropriate label. Given a language
with the statement types below:

(While) ::= while (Boolean) do (StatementListjendwhile ;

(IfThenElse) ::= if (Boolean) then (StatementList), else (StatementList), endif ;
(Break) := break;

(Assignment) = var = expression ;

(a) (20% credit) Provide productions for (StatementList) and (Statement). The for-
mer produces one or more statements, and the latter produces a while, if-then-else,
break, or assignment statement.

(b) (80% credit) Add enough semantic actions to the grammar to handle control-flow
caused by the break statement only.

You may assume any attributes, data structures, or supporting routines that you find
useful, provided you make it reasonably clear how they behave. Both synthesized and
inherited attributes are allowed.

2. Consider the following two code templates for the while loop:

(a) execute [[while E do C]]
JUMP h
g: execute C
h: evaluate E
JUMPIF(1) g

(b) execute [[while E do C]]
g: evaluate E
JUMPIF(0) h
execute C
JUMP g
h:

The command evaluate E will place the result of evaluating the condition E (with
result 1 for true and 0 for false) in such a way that the following JUMPIF can access
the result.

(a) Argue that the two code templates are semantically equivalent. Show the object
codes produced by the two templates for the source code
while i > 0 do i :=1 - 2

(b) Compare the two object codes and explain why most compilers use (a variation
of) the second template.

3. The following fragment of 3-address code was produced by a nonoptimizing compiler:

1 start: x :=1

2 y =1

3 sum := X

4 sum := sum + 1

5 1loopl: 1if x = n then goto outl
6 loop2: if y = x then goto out2
7 tl := aly]

8 t2 =y *x tl

9 t3 = tl + x

10 if t3 < n then goto skip
11 t3 :=t3 - n

12 skip: sum := sum + t3

13 y =y +1

14 goto loop2

15 goto loop2

16 out2: a[x] := sum

17 sum := x + 1

18 x :=x +1

19 goto loopl
20 outl: x 1 =x -1
21 tl := alx]
22 print ti1
23 if x = 0 then goto out
24 goto outl
25 out:

Assume that there are no entry points into the code from outside other than at start.

(a) (20% credit) Decompose the code into basic blocks By, Bs, ..., giving a range of
line numbers for each.

(b) (20% credit) Draw the control flow graph, and describe any unreachable code.

(c) (40% credit) Fill in a 25-row table listing which variables are live at which control

points. Treat the array a as a single variable. Assume that n and sum are the
only live variables immediately before line 25. Your table should look like this:

Before line | Live variables

1

2

3

(d) (20% credit) Describe any simplifying tranformations that can be performed on
the code (i.e., transformations that preserve the semantics but reduce (i) the

9

complexity of an instruction, (ii) the number of instructions, (iii) the number of
branches, or (iv) the number of variables).

10

Algorithms

1.

(a) (75%) Rows and columns of the table below are labeled by statements about
functions f(n) and g(n). Fill out all empty cells in this table according to the following
rules.

In the cell in a row labeled A and a column labeled B, write a letter E, C, or I denoting

E: the statements A and B are equivalent, that is, A implies B and, vice versa, B
implies A;
C: the statements A and B are compatible but not equivalent, that is, A and B may

hold simultaneously for certain functions f(n) and g(n), but in general one of the
statements does not imply the other;

I: the statements A and B are incompatible, that is, A and B never hold simultane-
ously.

X g(n) = O(f(n)) | g(n) = Q(f(n)) | g(n) = O (n)) | g(n) = o(f(n)) | g(n) = w(f(n))
f(n) = O(g(n))
f(n) = Q(g(n))
f(n) = O(g(n))
f(n) = o(g(n))
f(n) = wlg(n))

(b) (25%) Prove three of your answers (of your choice): one E, one C, and one 1.

11

2. Given integers L < U and a subroutine P computing a non-decreasing function, i.e.,
for any integers a < b, P(a) < P(b).
The algorithm below returns an integer k in the range L < k < U such that P(k) = 0.

If there is no such integer, it returns L — 1.

BINARY-SEARCH(L, U)

—
5

if P(L)>0o0r P(U)<0

)
(b) return L — 1
(¢c) a=1L
(d) b=U
(e) whileb—a >1
6 o=z
(&) P <0
(h) a=c
(i) else b=c
() it P(a) =
(k) return a
(1) if P(b) =0
(m) return b
(n) return L —1

(a) (40%) Give an appropriate loop invariant and prove correctness of BINARY-SEARCH
algorithm.

(b) (50%) Assuming that computing P(m) takes f(m) time, where f is some non-
decreasing positive function, find tight asymptotic lower and upper bounds (in terms
of L, U, and f) for the BINARY-SEARCH running time.

(c) (10%) In particular, what is the asymptotic running time in the case of f(m) = ©(1)
?

(Hint: Figure out why this algorithm is called binary search.)

12

3. Given strings U, V', and T', the problem asks to determine whether 7" includes inter-
weaving (without interruptions) copies of U and V.

For example, the strings U = acab and V' = ccb appear interweaving in 7' = baccacbbd.

(a) (30%) Describe the optimal substructure of a solution. Derive and prove a corre-
sponding recurrent formula.

(b) (50%) Give a pseudocode for a dynamic programming algorithm.

(c) (20%) Analyze space and time requirements of your algorithm in terms of the
lengths of strings U, V', and T

13

Theory

1. Prove that the following language is decidable:

{(D) | D is a DFA and there exists a string x
such that 2" € L(D) for all n > 1}

2. Prove that the following language is undecidable:

{(G1,G3) | G1,G; are CFGs and L(G1)L(Gs) = L(G1)}
3. Let B be a set of TMs with the input alphabet . We define languages
A ={(M,w) | M € B, w e ¥*, and M accepts w}

and
Ep ={(M)| M € B and L(M) = (}.

(a) (50%) Prove that if Ag € NP, then Eg € coNP.

(b) (50%) Prove that if Ag € NP and Eg € NP, then B € NP.

14

