CSE Qualifying Exam, Fall 2022
CSCE 513-Computer Architecture

1. A MIPS processor has a clock cycle time of 1 nanosecond (ns) and a base CPI of 2.0
for a specific machine learning application that includes 40% load and stores instructions.
If the memory hierarchy for this processor has the following characteristics:

e L1 hittime =1 ns, L1 Instruction cache miss rate = 1%, L1D miss rate = 5%
e L2 hittime =2 ns, L2 miss rate = 2%
e Main Memory access time = 400 ns

Which one of the below options leads to a higher performance improvement compared to
the base computer system, and by how much?

(a) Decreasing the base CPI to 1.5 at the cost of a 10% increase in the load/store
instructions.
(b) Adding a third-level cache (L3) with a hit time of 4 ns and a miss rate of 1.5%.

State any assumptions you make.

2. Computer system Alpha has a memory bandwidth of 4 GB/s and a peak computational
throughput of 5 GFlops/s, while computer system Beta has a peak throughput of 3
GFlops/s and a memory bandwidth of 3GB/s. Given the loop below in which the data type
of the res, mat, and vec arrays are double (double-precision floating point):

for (int i=0;i<n;i++) {
for (int 3=0;j<m;j++)
res[i]= mat[i] [j]*vec[]]:

res[i]+= vec[]];

Assuming the Computer System Beta fits 80% of the arrays in on-chip caches, while the
Computer System Alpha requires to access the main memory for 50% of the arrays, which
computer system is faster in executing the above loop by how much? Provide your
performance calculation results in GFlops/s. State any assumptions you make.




3. Given the below latencies for the dependant Floating-Point (FP) and Integer operations

in a MIPS processor:

Instruction Producing Results

Instruction Using Results Latency in clock cycles

FP ALU operation

FP ALU operation

FP ALU operation

Store double

Load double

FP ALU operation

Load double

Store/Load double

Load integer

Integer ALU operation

Integer ALU operation

OFRIOINWI~

Integer ALU operation

(a) What is the CPI (Clock per Instruction) of the processor when executing a program, in
which the below loop is iterated for 1,000 iterations? Assumption: Find the CPI
without any optimization such as scheduling and loop-unrolling.

Loop: 1.d S£f0,0(Ssl) #FP Load
add.d $fl1,$f0,sf2 #FP Add
sub.d $f3,5$f£3,5f2 #FP sub
s.d $f1,0(S$sl) #FP Store
addi $sl,s1,-8 #integer add
bne $sl, Szero,Loop #Branch

(b) What is the minimum CPI that can be achieved when unrolling the above loop with a
factor of 4 and using register-renaming and scheduling to speed up the execution?




Fall 2022 CSE Qualifying Exam

CSCE 531, Compilers

1. Syntax-Directed Transformation of Syntax Trees

Consider the following grammar for expressions:

(a)
(b)
()

F = FE+F
E = num

Describe with a simple English sentence which expressions are gen-
erated by the grammar. Show that the grammar is ambiguous.

Convert the grammar into a left-recursive unambiguous grammar
with exactly two productions.

Recall that reducing a syntax tree means replacing any node in the
tree that has only one child with that child (which may be empty).
A fully reduced syntax tree has no nodes with only one child. Draw a
fully reduced syntax trees for the expression 1+2+3, where the num-
bers are values of the num token, using the unambiguous grammar
from the previous step.

Add actions to the grammar to produce an abstract syntax tree.
Use the following (common) convention: PlusExp corresponds to
E, NumExp(.) corresponds to the value of the token num, and
terminals and nonterminals on the right-hand of a production are
indicated by $i, as usual. Draw the abstract syntax tree for 1+2+3.

Rewrite the grammar from part (b) to eliminate left recursion. Your
grammar must have three productions. Draw the syntax tree for
14-243. Draw the fully reduced syntax tree for 1+2+3.

The syntax trees for 14243 given by the unambiguous grammars
with and without left recursion are quite different. In general, while
the grammar with left recursion produces trees that reflect expression
structure well, the grammar without left recursion does not. Add
actions to its rules that construct abstract syntax trees like the ones
constucted for the unambiguous grammar with left recursion. This is
more easily done in a functional language that supports anonymous
functions (using lambda notation); if you use a C-style language, you
will need pointers and holes.



2. Liveness Analysis and Register Allocation

Consider the following program.

fib(n)1: a:=0
2. bi=1
32 z:=0
4: LABEL loop
5:
6: LABEL body
7. t:=a+b
8 a:=5b
9 b=t
100 n:=n—1
11: z:=0
12:  GOTO loop
13:  LABEL end
14: RETURN a

IF n=0 THEN end ELSE body

(a) Compute succ(i), gen(i), and kill(i) for each instruction in the pro-
gram. For your convenience, an example of the table to be filled is

provided next to the program.

fib(n)1: a:=0
22 bi=1
32 z:=0
4: LABEL loop
5:  IF n=0 THEN end ELSE body
6: LABEL body
7. t:=a —+ b
8 a:=b
9 b=t
10 n:=n-—1
11: z:=0
12:  GOTO loop
13:  LABEL end
14: RETURN a

|

[ succli] | gen[d] [ kill[i] |

1
1
2
3
4
)
6
7
8

9
10
11
12
13
14

(b) Calculate in and out for every instruction in the program. Show your
work in tabular form. Use of fixed-point iteration is recommended.

()

Draw the (register-)interference graph for a, b, n, t, and z. Also
show the interference table (with columns for statement number, kill
set, and intereferes with set) that you used to build the interference

graph.

Make a four-coloring of the interference graph.

Explain how one could modify the program to use only three registers.

You do not need to provide a solution;

that you would take.

only describe the approach



3. Predictive (LL(1)) Parsing Consider the following grammar for postfix
expressions:

F = FFE+
E = FFEx
FE = c

(a) Eliminate left-recursion in the grammar.
(b) Do left-factorization of the grammar produced in part (a).

(c) Calculate Nullable, FIRST for every production, and FOLLOW for
every non-terminal in the grammar produced in part (b).

(d) Make an LL(1) parse table for the grammar produced in part (b).



Fall 2022 Q-exam — CSCE 750 (Algorithms)

1. (Solving a Recurrence)

Let T(n) be any positive-valued function defined for all integers n > 1 by the following
recurrence:

T(n) =2T(n*?) +T(n — 1) +n?.

Then T(n) = ©(n*) for some real constant & > 0. Find k, and justify your choice using
the substitution method. You may assume that any implicit floors or ceilings are of no
consequence.

2. (Maximal Noncontiguous Subsequence) You are given a sequence S := (ai,...,ay) of
n > 0 integers, each of which could be positive, negative, or zero. Say that a subsequence of
S is good if it does not include any two consecutive elements of S. For example, if n = 6,
then (a1,as,as) and (a2,aq) are good, but (as,as,as) and (aj,as,as) are not. Describe
an algorithm that on input S returns a good subsequence of S the sum of whose elements
is as large as possible. Your description should include enough detail that an intelligent
programmer can implement it. For full credit, your algorithm should run in worst-case time
O(n). (As usual, assume each integer arithmetic operation takes O(1) time.)

Explain why your algorithm works, in enough detail to convince an intelligent but skeptical
reader that it is correct.

3. (Dynamic Minimum Spanning Tree) Let G := (V, E) be a connected graph with vertex
set V :={v1,v9,...,v,} and with edge weight function w : E — R. Let (V,T) be a minimum
spanning tree (MST) of G with respect to w. For any edge e := {v;,v;} € E and real number
d, define an altered weight function w’ obtained by adding ¢ to w(e), that is, for any ¢’ € E,

() = w(e)+6 ife =e,
= w(e) if ¢/ # e.

You may assume that all edge weights are pairwise distinct (with respect to both w and w'’).
Given G, (V,T), e, and 4 as input,

(a) describe an algorithm that finds an MST of G with respect to w’, assuming e € T' and
5> 0.

(b) describe an algorithm that finds an MST of G with respect to w’, assuming e ¢ T and
6 < 0.

You'll get 80% credit for either one and 100% credit for both. High-level descriptions are
enough, provided they are precise enough for an intelligent programmer to implement them
without guesswork. You may assume that both G and (V,T) are given in adjacency list
representation, and that (V,T) really is an MST with respect to w (so you don’t need to
check this).

Both algorithms must run in time O(n+m), where m := | E|, assuming real number operations
take O(1) time each. This means that simply recomputing a minimum spanning tree with
respect to w’ from scratch takes too much time and will earn zero credit. You need not justify
the correctness of your algorithm.



