
CSE Qualifying Exam, Fall 2021,  Architecture (513) 

 

1.  Consider the following loop: 

LOOP: 

LD F2, 0(R1) 

MULT F2, F2, F4 

SD F2, 0(R1) 

LD F2, 12(R1) 

MULT F2, F2, F4 

SD F2, 12(R1) 

ADDI R1,R1,4 

BLT R1,R2,LOOP 

 

a. Does this loop contain a loop carried dependency?  Why or why not? 
 

b. Assume all floating-point instructions (those that operate on F-registers) have a latency of 4 
cycles, meaning that there must be 4 cycles separating an instruction that produces a result 
with another instruction that uses it as input.  

 
Can you unroll and schedule this loop to eliminate stalls?  Are there any complications when 
doing this?  Assume the iteration count is a multiple of the unroll factor. 
 
 

 
2. What is the arithmetic intensity of the loop nest below?  What is its expected performance if its 

host machine has a memory bandwidth of 12.8 GB/s and a peak computational throughput of 
10 Gflops/s? 
 
Assume: 

(1) the data type of the res, mat, and vec arrays are double 
(2) the vec array fits in on-chip cache, so you don’t need to include accesses to this 

array in the calculation 

for (int i=0;i<n;i++) { 
  res[i] = 0.0; 
  for (int j=0;j<m;j++) 
    res[i] += mat[i][j] * vec[j]; 
} 



3. Assume a CPU core has a clock rate of 5 GHz, a base CPI of 2.1, and has a 2-level cache with the 
following characteristics: 

• L1 hit time = 0 s, L1I cache miss rate = 5%, L1D miss rate = 2% 
• L2 hit time = 5 ns, L2 miss rate = 2%, L2 miss time = 20 ns 
• No penalty for write hits or misses 

 
a. What is its actual CPI?  State any assumptions you make. 

 

b. What is the overall speedup achieved from reducing the L2 miss rate by a factor of 2? 

 



Fall 2021 CSE Qualifying Exam
CSCE 531, Compilers

1. Syntax-Directed Transformation of Syntax Trees

Consider the following grammar for expressions:

E ::= E + E
E ::= num

(a) Describe with a simple English sentence which expressions are gen-
erated by the grammar. Show that the grammar is ambiguous.

(b) Convert the grammar into a left-recursive unambiguous grammar
with exactly two productions.

(c) Recall that reducing a syntax tree means replacing any node in the
tree that has only one child with that child (which may be empty).
A fully reduced syntax tree has no nodes with only one child. Draw a
fully reduced syntax trees for the expression 1+2+3, where the num-
bers are values of the num token, using the unambiguous grammar
from the previous step.

(d) Add actions to the grammar to produce an abstract syntax tree.
Use the following (common) convention: PlusExp corresponds to
E, NumExp(.) corresponds to the value of the token num, and
terminals and nonterminals on the right-hand of a production are
indicated by $i, as usual. Draw the abstract syntax tree for 1+2+3.

(e) Rewrite the grammar from part (b) to eliminate left recursion. Your
grammar must have three productions. Draw the syntax tree for
1+2+3. Draw the fully reduced syntax tree for 1+2+3.

(f) The syntax trees for 1+2+3 given by the unambiguous grammars
with and without left recursion are quite different. In general, while
the grammar with left recursion produces trees that reflect expression
structure well, the grammar without left recursion does not. Add
actions to its rules that construct abstract syntax trees like the ones
constucted for the unambiguous grammar with left recursion. This is
more easily done in a functional language that supports anonymous
functions (using lambda notation); if you use a C-style language, you
will need pointers and holes.

2. Liveness Analysis and Register Allocation

Consider the following program.
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f(a, b)1: LABEL begin
2: IF a<b THEN lab1 ELSE lab2
3: LABEL lab1
4: x := a + b
5: b := a + x
6: LABEL lab2
7: y := b− a
8: a := a/y
9: z := a− b

10: IF z<0 THEN end ELSE begin
11: LABEL end
12: RETURN a

(a) Compute succ(i), gen(i), and kill(i) for each instruction in the pro-
gram. For your convenience, an example of the table to be filled is
provided next to the program.

f(a, b)1: LABEL begin
2: IF a<b THEN lab1 ELSE lab2
3: LABEL lab1
4: x := a + b
5: b := a + x
6: LABEL lab2
7: y := b− a
8: a := a/y
9: z := a− b

10: IF z<0 THEN end ELSE begin
11: LABEL end
12: RETURN a

i succ[i] gen[i] kill[i]

1
2
3
4
5
6
7
8
9

10
11
12

(b) Calculate in and out for every instruction in the program. Show your
work in tabular form. Use of fixed-point iteration is recommended.

(c) Draw the (register-)interference graph for a, b, t, x, y, and z. Also
show the interference table (with columns for statement number, kill
set, and intereferes with set) that you used to build the interference
graph.

(d) Make a three-coloring of the interference graph.

(e) Explain how one could modify the program to use only two registers.
You do not need to provide a solution; only describe the approach
that you would take.

3. Predictive (LL(1)) Parsing Consider the following grammar for postfix
expressions:

E ::= EE+
E ::= EE∗
E ::= c
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(a) Eliminate left-recursion in the grammar.

(b) Do left-factorization of the grammar produced in part (a).

(c) Calculate Nullable, FIRST for every production, and FOLLOW for
every non-terminal in the grammar produced in part (b).

(d) Make an LL(1) parse table for the grammar produced in part (b).
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Fall 2021 CSE Qualifying Exam
CSCE 551, Theory

1. Let Σ be any alphabet. For any languages L1, L2 ⊆ Σ∗, define L1♦L2 to be the set of
all strings obtained by overlapping a string from L1 followed by a string from L2. (The
“overlap” could be the empty string.). Formally,

L1♦L2 := {xyz | x, y, z ∈ Σ∗ and xy ∈ L1 and yz ∈ L2} .

Show that if L1 and L2 are regular, then L1♦L2 is regular. If your proof involves a
correct construction, then you do not need to prove that it is correct.

2. Let Σ be some alphabet. Say that a language L ⊆ Σ∗ is length-dependent iff, for all
strings x, y ∈ Σ∗, if x ∈ L and |x| = |y|, then y ∈ L. Define the language LDTM as
follows:

LDTM := {〈M〉 |M is a TM and L(M) is length-dependent} .

(a) Show that LDTM is undecidable by giving a mapping reduction from ATM to LDTM

(i.e., ATM ≤m LDTM).

(b) Show that LDTM is not Turing-recognizable by giving a mapping reduction from
ATM to LDTM (i.e., ATM ≤m LDTM, or equivalently, ATM ≤m LDTM).

If you give a correct reduction, then you do not need to prove that it is correct. Getting
either (a) or (b) correct is worth 70%. Getting both correct is worth 100%.

3. Let G = (V,E) be a graph. An almost-clique in G is a set C ⊆ V of vertices such
that all pairs of distinct vertices in C are adjacent except for one pair. That is, an
almost-clique is a clique except with exactly one edge missing.

Let ALMOST-CLIQUE be the following decision problem:

Instance: A graph G and an integer K ≥ 2.
Question: Does there exist an almost-clique in G with K or more vertices?

ALMOST-CLIQUE is clearly in NP. Show that ALMOST-CLIQUE is NP-complete
by giving a polynomial reduction from CLIQUE to ALMOST-CLIQUE.

[If your reduction is correct, you do not need to show that it is correct.]
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Fall 2021 Q-exam — CSCE 750 (Algorithms)

1. (Solving a Recurrence) Let T (n) be any positive-valued function defined for all integers
n ≥ 1 by the following recurrence:

T (n) = n +

blog3 nc∑
i=1

T (bn/3ic) .

Find an expression f(n), as simple as possible, such that T (n) = Θ(f(n)). Use the substitu-
tion method to prove that your answer is correct.

2. (Counting Short Paths in a DAG) You are given a directed acyclic graph (dag) G =
(V,E), two vertices s, t ∈ V , and a positive integer k ≤ |E|. You want to find the number of
directed paths from s to t of length at most k (where the length of a path is the number of
edges along it).

Describe an algorithm that takes as input a dag G = (V,E) with |V | = n and |E| = m
(given in adjacency list form with vertex array V [1 . . . n]) and a positive integer k ≤ m and
returns the number of paths of length ≤ k from V [1] to V [n]. You can assume that the
vertices in the array V [1 . . . n] are arranged so that every edge (V [i], V [j]) ∈ E satisfies i < j.
(That is, all edges go “forward” from lower indices to higher ones.)

Explain how and why your algorithm works, in enough detail to convince an intelligent but
skeptical reader that it is correct.

For full credit, your algorithm must run in time O(k(n+m)), assuming all addition operations
take O(1) time.

3. (Binomial Trees) In a nonempty rooted tree T , the degree of a node x in T is the number
of x’s children. (So all leaves have degree 0, etc.). The degree of T is the degree of its root.

A nonempty, rooted, ordered tree T is a binomial tree if the following two conditions hold:

• if d ≥ 0 is the degree of T , then the children of the root (there are d of them) have
degrees d− 1, d− 2, . . . , 0 in left-to-right order;

• all the subtrees of the root of T are binomial trees.

Prove the following for binomial trees T of degree d ≥ 0 and root r:

(a) T has depth d and size 2d.

(b) The shape of T is uniquely determined by d, that is, any two binomial trees of degree d
have exactly the same shape.

(c) If d > 0, then removing the leftmost child of r results in a binomial tree of degree d− 1.

(d) For all 0 ≤ i ≤ d, the number of nodes of depth i in T is
(
d
i

)
, where

(
d
i

)
= d!

i!(d−i)! is the
“d choose i” binomial coefficient.

HINT for Part (d): Use part (c) and the defining recurrence for binomial coefficients: for
all integers d > 0 and integers i,(

0

0

)
= 1 ,

(
d

i

)
=

{ (
d−1
i−1
)

+
(
d−1
i

)
if 0 ≤ i ≤ d,

0 otherwise.


