
CSE	Qualifying	Exam,	Fall	2018	--	513	Architecture	

	

1.	 Consider	the	following	loop	nest:	

float	x[1024],	out[1024],	coeff[3];	

for	(i=0;i<n;i++)	{	

		out[i]	=	0;	

		for	(j=0;j<3;j++)	

				out[i]	=	out[i]	*	x[i]	+	coeff[j];	

}	

	

a.	 Is	the	inner	loop	parallel?		Why	or	why	not?	

	

b.	 What	is	the	arithmetic	intensity	of	this	loop	nest?	

	

c.	 Assume	the	processor	has	a	peak	memory	bandwidth	of	12.8	GB/s	and	a	peak	single	precision	
floating-point	throughput	of	10	Gflops/s.		Is	this	loop	compute	bound	or	memory	bound?		Why?	

	

d.	 If	the	compiler	were	to	unroll	the	inner	loop	completely,	unroll	the	outer	loop	by	a	factor	of	2,	
and	schedule	the	instructions	to	hide	their	latency	as	much	as	possible,	estimate	the	minimum	
number	of	registers	required.		Be	sure	to	provide	justification.	

	 	

2.	 Consider	a	memory	system	that	has	the	following	characteristics.	

memory	 type	 line	size	 miss	rate	 write	policy	 %	dirty	
access	
time	

bandwidth	
to	lower	
level	

L1	 split	
I:	64	bytes	
D:	16	bytes	

I:	2%	
D:	7%	

D:	write-
back	 50%	 0	 6.4	GB/s	

L2	 unified	 64	bytes	 2%	 write	back	 50%	 10	ns	

30	GB/s	to	
DRAM	

	
300	GB/s	to	

HBM2	
DRAM	 	 	 	 	 	 300	ns	 	
HBM2	 	 	 	 	 	 900	ns	 	

	

In	addition	to	its	normal	DRAM	(Dynamic	RAM,	or	regular	system	RAM),	this	memory	system	also	has	a	
“High	 Bandwidth	 Memory	 2,”	 in	 which	 the	 software	 can	 allocate	 certain	 frequently-accessed	 data	
structures	of	its	choosing	instead	of	allocating	them	in	DRAM,	specifically:	

• All	program	code	(instructions)	is	allocated	in	DRAM.	
• 90%	of	data	accesses	are	allocated	in	HBM2.	
• 10%	of	data	access	are	allocated	in	DRAM.	

Assume	 the	 base	 instruction	 CPI	 is	 1.	 	 For	 a	 program	 under	 test,	 assume	 that	 15%	 of	 all	 executed	
instructions	are	loads	and	5%	of	all	executed	instructions	are	stores.	

Calculate	the	overall	CPI.		State	any	assumptions.	

	

	

	

3.	 You	 are	 trying	 to	 decide	 what	 type	 of	 processor	 to	 purchase	 for	 a	 specific	 application.	 	 When	
running	in	serial	mode,	the	application	spends	90%	of	its	execution	time	performing	operations	that	
it	 could	perform	on	a	vector	unit.	 	 The	application	can	also	 run	 in	multi-threaded	mode,	 in	which	
only	1%	of	the	execution	time	must	be	serialized	as	a	single	thread.	

Processor	1	has	four	cores	and	each	core	has	a	vector	unit	that	can	execute	vectorized	code	with	a	
speedup	of	12.	

Processor	2	has	eight	cores	and	each	core	has	a	vector	unit	that	can	execute	vectorized	code	with	a	
speedup	of	4.	

Aside	from	these	differences	both	processors	are	identical.	 	Which	processor	do	you	purchase	and	
why?	

	

Fall 2018 CSE Qualifying Exam
CSCE 531, Compilers

1. LR-Parsing. Consider the following augmented grammar G with start symbol S:

S ! E

E ! T ? E : E

E ! T

T ! c

T ! (E)

(This grammar describes the “if-then-else” operator in C/C++/Java.)

(a) For the grammar G above generate all of the LR(1) sets of items I0, I1, I2, . . . , I12
(thirteen states in all) along with complete transition information for an LALR

(LALR(1)) parser. [Note: This is NOT a canonical LR(1) parser; states with

common cores are merged.]

(b) Using the sets-of-items constructed in part (b), construct the action table and

describe any conflicts. Assume the productions are numbered in order from 0 to

4.

1

2. Syntax-Directed Definition: Type Inference with Overloaded Operators.

Consider the grammar for expression syntax, below:

hexpri ::= hexpri op htermi
| htermi

htermi ::= hfactori ’:’ int

| hfactori ’:’ real

| hfactori
hfactori ::= var

| ’(’ hexpri ’)’

Every expression and subexpression must have one of four possible types: int, real,

unknown, or error. Give semantic rules to compute a synthesized type attribute for

each of the three nonterminals according to the following rules:

(a) If any subexpression has type error, then the whole expression has type error.

This rule takes precedence over all the following rules.

(b) If an expression involves the colon (:) operator, then the type of the expression is

the same as the type to the right of the colon, provided the subexpression to the

left is either of the same type or of unknown type. Otherwise, the expression

has type error.

(c) An expression consisting of a single var is of unknown type.

(d) When op is applied to two subexpressions:

i. If either subexpression is of type real, then the result is of type real.

ii. If both subexpressions are of type int, then the result is of type int.

iii. Otherwise, the result is of type unknown.

(Note the exceptions to this rule given by rule (a), above.)

2

3. Control Flow and Liveness Analysis. The following fragment of 3-address code

was produced by a nonoptimizing compiler:

1 start: i := 0
2 j := 0
3 loop: t1 := a[i]
4 t2 := b[j]
5 if t1 < n goto cont
6 t2 := b[j]
7 if t2 >= n goto exit
8 cont: k := i + j
9 if t1 >= t2 goto B

10 c[k] := t1
11 t1 := 0
12 i := i + 1
13 goto inc
14 B: c[k] := t2
15 j := j + 1
16 goto inc
17 k := k + 1
18 inc: goto loop
19 exit: no-op

Assume that there are no entry points into the code from outside other than at start.

(a) (20% credit) Decompose the code into basic blocks B1, B2, . . . , giving a range of

line numbers for each.

(b) (30% credit) Draw the control flow graph, describe any unreachable code, and

coalesce any nodes if possible.

(c) (30% credit) Give a table with 19 rows saying which variables are live immedi-

ately before each line number. Assume that c and n are the only live variables

immediately after line 19.

(d) (20% credit) Describe any simplifying transformations that can be performed on

the code (i.e., transformations that preserve the semantics but reduce (i) the

complexity of an instruction, (ii) the number of instructions, (iii) the number of

branches, or (iv) the number of variables).

3

Algorithms

1. Find tight asymptotic bounds on any positive real-valued function T (n) satisfying the following re-

currence for all su�ciently large n:

T (n) =
1

4
T

✓
3

4
n

◆
+

3

4
T

✓
1

4
n

◆
+ 1

That is, find an expression f(n), as simple as possible, such that T (n) = ⇥(f(n)). Use the substitution

method to prove that your answer is correct. (Note: Implicit floors or ceilings in the recurrence do

not a↵ect the answer.)

2. Suppose you have m nuts and m bolts. Each nut matches exactly one bolt; each bolt matches exactly

one nut. However, the sizes are all very similar, so you cannot directly tell whether a given nut is

smaller or larger than another nut. Likewise, you cannot directly compare one bolt to another bolt.

However, if you select one nut and one bolt, you can determine whether that nut is too small, too big,
or just right for that bolt. Your goal is to match each nut with the correct bolt.

More precisely, you are given a list of nuts n1, . . . , nm, and a list of bolts b1, . . . , bm. You have access

to a subroutine Test(ni, bj), which returns �1 if nut ni is smaller than bolt bj ; +1 if nut ni is

larger than bolt bj ; and 0 if nut ni and bolt bj match. The output should be a list of ordered pairs

(ni1 , bj1), . . . , (nim , bjm) such that each nut-bolt pair is correctly matched.

Describe a randomized algorithm for this problem, for which the worst-case expected number of calls

to the Test subroutine is ⇥(m logm). Explain why your algorithm works correctly, in enough detail

to convince an intelligent but skeptical reader that it is correct.

3. A palindrome is a string that is unchanged by reversal. Specifically, a string S[1, . . . , n] is a palindrome

if S[i] = S[n � i + 1] for every i 2 {1, . . . , n}. Examples: ‘hannah’, ‘smhtiroglalgorithms’, and ‘x’ are

palindromes, but ‘turtles’ is not a palindrome.

Notice that any string can be partitioned into palindromes performing a series of zero or more ‘cuts’

that slice it into substrings. The table below shows some examples.

Original String Partition into Palindromes Number of Cuts

abb a|bb 1

abbc a|bb|c 2

abba abba 0

abbab abba|b 1

abcde a|b|c|d|e 4

Describe an algorithm whose input a string of length n, and whose output is the smallest number

of cuts needed to partition the input string into palindrome substrings. Your algorithm only needs to

compute the number of cuts; it does not need to generate locations of those cuts. Explain why your

algorithm works, in enough detail to convince an intelligent but skeptical reader that it is correct. For

full credit, your algorithm should run in ⇥(n2
) time.

