
Fall 2013 CSE Qualifying Exam
Core Subjects

September 28, 2013

Architecture

1. Consider the following five microarchitectures:

(a) a single processor core that supports 8-issue superscalar instruction dispatch, out-
of-order instruction execution, branch speculation, and robust branch prediction,

(b) a single in-order processor core that is single issue but supports 6-way simultane-
ous multithreading, having four program counters and four register files but all
threads share a single pool of functional units,

(c) a four-core multicore processor, where each processor core is single issue, in order,
and can execute only one thread,

(d) a single processor with a vector unit that can perform 8-lane vector operations,
containing a vector register file having eight vector registers of 64 elements each,
and a scatter-gather load/store unit, and

(e) a dual core processor where each core is single issue but can execute VLIW in-
structions containing 4 FP and 2 integer instructions, and each core contains a
4-wide SIMD unit.

Describe which types of applications will achieve the best performance on each of these
microarchitectures and why.

2. Consider a cacheless processor connected to a DRAM having the following address
mapping:

bits 5:3 column address

bits 8:6 bank address

bits 18:9 row address

1

Assume you’re implementing a kernel that performs a 3x3 averaging filter for an 8-bit
monochrome image:

unsigned char image[640*480];

...

for (i=0;i<480;i++)

for (j=0;j<640;j++) {

sum=0;

for (k=0;k<3;k++)

for (l=0;l<3;l++) {

idx=(i+k-1)*640 + (j+l-1);

sum += image[idx];

}

image2[i*640+j] = sum/9;

}

Assume that consecutive accesses to different DRAM rows requires 10 cycles of latency,
consecutive accesses to different DRAM columns (with same row) requires 5 cycles
of latency, and consecutive accesses to different DRAM banks (with same row and
column) requires 2 cycles of latency.

Would it be possible to change the code above such that its behavior is the same (i.e.,
performs the same 2D filter) but has a different memory access pattern that achieves
better performance given the characteristics of the memory system? Why or why
not? If so, give a brief explanation how this can be done (you don’t need to actually
transform the code).

3. You are given an application that runs in 1 minute and executes 1G instructions on a
single processor.

(a) If the application is 90% parallelizable (both time and instructions) and you have
100 processors, how fast will the application run?

(b) If the CPI of the sequential portion of the program equals the CPI of the paral-
lelizable part, what does Gustaphason’s Law say about the number of instructions
that could be executed with 100 processors in that 1 minute?

(c) In Tomasulo’s algorithm explain in detail what happens when an instruction is
issued (from the Queue to Reservation Station), including conditions that allow
the issuing.

(d) Explain in detail the workings of the CDB, who writes, what they write, where
results go. Include how you can have a structural hazard with the CDB and how
it would be handled.

2

Compilers

1. Design an EBNF grammar that represents expressions for a language with the opera-
tors in the following table. The start symbol of your grammar should be Expression.
Introduce nonterminal symbols as needed for the grammar to be unambiguous. Write
the production rules so that parse trees represent associativity and precedence cor-
rectly. The following table lists the symbols in decreasing order of precedence. For
example, ~ (which in this language, as in ML, indicates unary minus) and ! have the
highest precedence.

Operators Type Associativity
~ ! unary prefix none
* / % binary infix left

< <= > >= binary infix none
== != binary infix none
&& binary infix left
|| binary infix left

Assume that (round) parentheses, literals, and identifiers can be used to build up
expressions using the operators in the table. The parentheses are used to override
the associativity and precedence described in the table. You do not need to write
production rules that define literals and identifiers. You may use your favorite flavor
of EBNF.

2. Consider the following program in a C-like language with dynamic scope:

int n;

int fact()

{

int loc;

if (n > 1){

loc = n--;

return loc * fact();

}

else

return 1;

}

main{}

{

get(n);

if (n >= 0)

print(fact(n));

else

3

print("input error");

}

Assume that the program is run on a two-memory machine with separate code and
data memory. Assume further that 3 is read.

(a) Draw data memory as a stack of activation records at its deepest point. Show
the control link (sometimes called dynamic link), the return pointer, the returned
value, and local data for each activation record. Since you are not asked to
translate the code into assembly language, you cannot give a precise value for the
return point, but explain what is it for.

(b) What would change in the activation records if the language had static scope?

3. The following fragment of 3-address code was produced by a nonoptimizing compiler
(gcc -S sumss.c):

1 sumss

2 .LFB0 ss = 0

3 i = 1

4 goto .L2

5 .L6 j = 2

6 goto .L3

7 .L5 t1 = i + 5

8 if j > t1 goto .L4

9 t2 = 4*i

10 t3 = a[t2]

11 t4 = j*4

12 t5 = t4 + t3

13 t6 = *t5 // dereference

14 t7 = 4*i

15 t8 = a[t7]

16 t9 = j*4

17 t10 = t9+t8

18 t11 = *t10

19 t12 = t6*t11

20 ss = ss + t12

21 .L4 j = j +1

22 .L3 if j < m goto .L5

23 i = i + 1

24 .L2 if i < n goto .L6

25 ret ss

Assume that there are no entry points into the code from outside other than at sumss.

4

(a) (20% credit) Decompose the code into basic blocks B1, B2, . . . , giving a range of
line numbers for each.

(b) (20% credit) Draw the control flow graph, and describe any unreachable code.

(c) (40% credit) Fill in a 25-row table listing which variables are live at which control
points. Treat the array a as a single variable. Assume that ss is the only live
variable immediately before line 25. Your table should look like this:
Before line Live variables

1 . . .
2 . . .
3 . . .

.

(d) (20% credit) Describe any simplifying tranformations that can be performed on
the code (i.e., transformations that preserve the semantics but reduce (i) the
complexity of an instruction, (ii) the number of instructions, (iii) the number of
branches, or (iv) the number of variables).

5

Algorithms

1. Find tight asymptotic bounds on any positive function T (n) satisfying the recurrence

T (n) = T (
√

n) + T (3
√

n) + T (6
√

n) + lg n .

Show how you arrived at your answer. You may assume any implicit floors or ceilings
are of no consequence. [Note: k

√
n = n1/k for any n, k > 0.]

2. You are given a directed acyclic graph G = (V, E) as input, represented in the adjacency
list representation with vertex array V [1 . . . n], where n = |V |. Describe an algorithm
that returns the length of the longest (unweighted) path in G from V [1] to V [n] (or
some arbitrary negative number if no such path exists). Here, the length of a path is
the number edges along the path. Your algorithm should run in time O(|V |+ |E|).
NOTA BENE: You can assume that the vertices of G are in topologically sorted order,
that is, any directed edge (V [i], V [j]) ∈ E implies i < j.

[Hint: Use dynamic programming to build a table of longest distances to V [n] from
every vertex in G.]

3. Consider the following decision problem:

APPROXIMATE SUBSET SUM
Input: A list 〈a1, . . . , an〉 of positive integers and positive integers t and E

(all given in binary).
Question: Is there a subset J ⊆ {1, . . . , n} such that∣∣∣∣∣t−∑

j∈J

aj

∣∣∣∣∣ ≤ E ?

Show that APPROXIMATE SUBSET SUM is NP-hard by giving a polynomial reduc-
tion from SUBSET SUM.

Theory

Not given in Fall 2013.

6

