
Fall 2011 CSE Qualifying Exam
Core Subjects

September 24, 2011

1

Architecture

1. The following loop is the so-called DAXPY loop (double-precision aX plus Y) and the
central operation in Gaussian elimination. The following code implements the DAXPY
operation, Y = aX +Y , for a vector length 100. Initially, R1 is set to the base address
of array X and R2 is set to the base address of Y.

DADDIU R4,R1,#800 ; R1 = upper bound for X

foo: L.D F2,0(R1) ; (F2) = X(i)

MUL.D F4,F2,F0 ; (F4) = a*X(i)

L.D F6,0(R2) ; (F6) = Y(i)

ADD.D F6,F4,F6 ; (F6) = a*X(i) + Y(i)

S.D F6,0(R2) ; Y(i) = a*X(i) + Y(i)

DADDIU R1,R1,#8 ; increment X index

DADDIU R2,R2,#8 ; increment Y index

DSLTU R3,R1,R4 ; test: continue loop?

BNEZ R3,foo ; loop if needed

Assume the functional unit latencies as shown in the Table below. Assume a 1-cycle
delayed branch that resolves in the ID stage. Assume results are fully bypassed.

Instruction producing result Instruction using result Latency in clock cycles
FP multiply FP ALU op 6
FP add FP ALU op 4
FP multiply FP store 5
FP add FP store 4
Integer operations and all loads Any 2

(a) Assume a single-issue pipeline. Show how the loop would look both unscheduled
by the compiler and after compiler scheduling for both floating-point operation
and branch delays, including any stalls or idle clock cycles. What is the execution
time (in cycles) per element of the result vector, Y, unscheduled and scheduled?
How much faster must the clock be for processor hardware alone to match the
performance improvement achieved by the scheduling compiler (neglect the pos-
sible increase in the number of clock cycles necessary for memory system access
effects of higher processor clock speed on memory system performance)?

(b) Assume a VLIW processor with instructions that contain five operations, consist-
ing of two memory references, two floating-point operations, and one integer or
branch operation. We will compare two degrees of loop unrolling. First, unroll
the loop 6 times to extract ILP, and schedule it without any stalls (i.e., completely
empty issue cycles), collapsing the loop overhead instructions, and then repeat
the process but unroll the loop 10 times. Ignore the branch delay slot. Show the

2

two schedules. What is the execution time per element of the result vector for
each schedule? What percent of the operation slots are used in each schedule?
How much does the size of the code differ between the two schedules? What is
the total register demand for the two schedules?

2. You are trying to decide on a new processor for a specific application. After profiling
this application on your old processor, you find it has the following characteristics:

• The application can be modified to run in multi-threaded mode, in which only
1% of the total execution time must be serialized. In this case, you need one
processor for each thread. However, since the application is memory intensive,
multithreading it for a single-chip multiprocessor would create a memory bottle-
neck that would slow down each individual thread by 4n%, where n = number of
concurrent threads (e.g. using four threads would cause each individual thread to
run 16% slower).

• When running in multi-threaded mode, 90% of the execution time can be acceler-
ated using a SIMD processing unit that speeds up the vector code by a factor of n,
where n = number of SIMD lanes. However, using a SIMD unit places additional
demands on the memory interface, resulting in a 30% loss of SIMD throughput
for every four SIMD lanes added.

Assuming all other performance factors are equal, what is the speedup achieved by
each of the following proposed processors relative to the old processor?

(a) 1. Processor 1 has eight cores and each core has a four-wide SIMD unit.

(b) 1. Processor 2 has four cores and each core has an eight-wide SIMD unit.

(c) 1. Processor 3 has two cores and each core has a four-wide SIMD unit. However,
since these processors are inexpensive, six of them can be purchased for the same
price as either of the above processors. These six processors can then be arranged
as a cluster computer and parallelized using a message-passing model as opposed
to a shared memory model. Due to I/O contention in the cluster interconnect,
each thread now experiences a slowdown of 6n%, where n = total number of
threads.

3. You’re a computer architect at Qualcomm designing the next generation Snapdragon
processor for smart phones. The Android team at Google just notified you that the new
version of the Android OS, ”Ice Cream Sandwich,” will feature a new user interface
that is more memory intensive than previous versions.

At this time, your processor contains four cores and has a shared write-back last-level
cache that consumes 2.3 µJ of energy for a clean miss and 3.7 µJ for a dirty miss.
At this point in time you have the option of doubling the number of cache lines for
the new processor. You estimate that this will reduce the miss rate by 60% but will
consume an additional 1.2 µW of static power and add 1 µJ of energy to each type of

3

miss. Assuming half of all misses are dirty, what miss rate must be reached under the
smaller cache to make the larger cache more energy efficient?

4

Compilers

1. Design an EBNF grammar that represents expressions for a language with the opera-
tors in the following table. The start symbol of your grammar should be Expression.
Introduce nonterminal symbols as needed for the grammar to be unambiguous. Write
the production rules so that parse trees represent associativity and precedence cor-
rectly. The following table lists the symbols in decreasing order of precedence. For
example, ~ (which in this language, as in ML, indicates unary minus) and ! have the
highest precedence.

Operators Associativity
~ ! none
* / % left

< <= > >= none
== != none
&& left
|| left

Assume that (round) parentheses, literals, and identifiers can be used to build up
expressions using the operators in the table. The parentheses are used to override
the associativity and precedence described in the table. You do not need to write
production rules that define literals and identifiers. You may use your favorite flavor
of EBNF.

2. Consider the following program in a C-like language with dynamic scope:

int n;

int fact()

{

int loc;

if (n > 1){

loc = n--;

return loc * fact();

}

else

return 1;

}

main{}

{

get(n);

if (n >= 0)

print(fact(n));

else

5

print("input error");

}

Assume that the program is run on a two-memory machine with separate code and
data memory. Assume further that 3 is read.

(a) Draw data memory as a stack of activation records at its deepest point. Show
the control link (sometimes called dynamic link), the return pointer, the returned
value, and local data for each activation record. Since you are not asked to
translate the code into assembly language, you cannot give a precise value for the
return point, but explain what it is for.

(b) What would change in the activation records if the language had static scope?

3. This question is about the (two-way) conditional (“if then else”) statement.

(a) Show that the following BNF grammar (similar to, but simpler than, the ones
used in Algol and C) for the conditional statement is ambiguous. (Hint: “dangling
else”.)

<ifStatement> ::= if (<expression>) <statement> |

if (<expression>) <statement> else <statement>

<statement> ::= <assignment> | <ifStatement> | <block>

<block> ::= {<statements>}

<statements> ::= <statements><statement> | <statement>

(b) In Java, the ambiguity is resolved by introducing a new nonterminal symbol,
<statementNoShortIf>. Give a modified grammar for the one-way and two-way
conditional that eliminates the dangling else ambiguity and argue that it is not am-
biguous. Do not give explicit production rules that define <statementNoShortIf>,
but simply explain its meaning as a category of statements.

(c) Other languages eliminate the ambiguity of conditional statement by introducing a
delimiter that indicates the conclusion of an “if then” or “if then else” statement.
Let the delimiter be fi. Rerwrite the rules for the conditional statement to
eliminate the ambiguity.

(d) A variation of the technique just described is used in Ada, in the following EBNF
grammar, where the braces and square brackets and metalevel symbols indicating
“zero or more” and “optional” respectively:

<ifStatement> ::= if <expression> then <block>

{elseif <expression> then <block>} [else <block>] end if;

Show that this technique also eliminates the “dangling else” ambiguity.

6

Algorithms

1. Give tight asymptotic bounds on any positive function T (n) satisfying the recurrence

T (n) = nT (
√
n) + n2 .

You may assume that any implicit floors or ceilings never have any effect (that is,
n = 22k for some natural number k). You answer should be of the form Θ(f(n)),
where f(n) is expressed as simply as possible. [Hint: consider a change of variables.]

Show your work.

2. Describe a sequential algorithm MultiMerge that takes a collection L1, . . . , Lk of
nonempty (simply) linked lists of numbers, where for each i the list Li is sorted in
ascending order, and merges them into a single sorted linked list. You may destroy
the original lists in the process. Your algorithm should run in time O(n lg k), where n
is the total number of items in all the lists combined. Your algorithm should also use
O(k) extra space besides the input. (Assume that each number uses O(1) space.)

Your description must include a high-level description of the basic strategy employed.
You are not required to prove either the correctness of your algorithm or its time and
space bounds.

3. Describe an explicit polynomial reduction from SUBSET-SUM to PARTITION, where
both decision problems are defined below:

SUBSET-SUM
Instance: A list 〈a1, . . . , an〉 of positive integers and a positive integer t (all

given in binary).
Question: Is there a subset S ⊆ {1, . . . , n} such that

∑
i∈S ai = t?

PARTITION
Instance: A list 〈a1, . . . , an〉 of positive integers (all given in binary).
Question: Is there a subset S ⊆ {1, . . . , n} such that

∑
i∈S ai = (1/2)

∑n
i=1 ai?

You are not required to prove that your reduction is correct to get full credit, but if
your answer is incorrect, some explanation may earn you partial credit.

7

Theory

1. Fix an integer k ≥ 2, and let Σ = {0, 1, . . . , k − 1}. The lexicographic ordering (also
called the dictionary ordering) on Σ∗ is defined as follows: For all x, y ∈ Σ∗, we say
that x ≤lex y iff either x is a prefix of y or else there exist a string w ∈ Σ∗ and symbols
a, b ∈ Σ such that

• wa is a prefix of x,

• wb is a prefix of y, and

• a < b.

You may take it for granted that ≤lex is a total ordering on Σ∗.

(a) (50%) Show that, for any string w ∈ Σ∗, the language

≤lex(w) := {x ∈ Σ∗ : x ≤lex w}

is regular.

(b) (50%) For any language A ⊆ Σ∗, define the language

≤lex(A) := {w ∈ Σ∗ : (∃x ∈ A) w ≤lex x}.

Show that if A is regular, then ≤lex(A) is regular.

2. For this question, we fix a finite alphabet Σ that does not contain the symbol #. Recall
that Σ∗#Σ∗ = {x#y : x, y ∈ Σ∗}.
Let A ⊆ Σ∗#Σ∗ be a Turing-recognizable language such that for every x ∈ Σ∗ there
exists y ∈ Σ∗ such that x#y ∈ A.

(a) (75%) Show that there exists a language B such that

i. B ⊆ A,

ii. B is Turing-recognizable, and

iii. for every x ∈ Σ∗, there exists exactly one y ∈ Σ∗ such that x#y ∈ B.

(b) (25%) Show that any language B satisfying (2(a)i)–(2(a)iii) above is actually
decidable.

3. Recall that a language A is polynomially (mapping) reducible to a language B (written
A ≤p

m B) iff there exists a polynomial-time-computable function f : Σ∗ → Σ∗ such
that, for all x ∈ Σ∗,

x ∈ A ⇐⇒ f(x) ∈ B .

Also recall that A denotes the complement of A (that is, A = Σ∗ − A).

Show that if A is in NP and A ≤p
m A, then A is also in NP.

8

