Determining Acceptance Possibility for a
Quantum Computation is Hard for the
Polynomial Hierarchy

Stephen Fenner * Frederic Green f
University of South Carolina Clark University

Steven Homer * Randall Pruim

Boston University Calvin College

January 19, 1999

Abstract

It is shown that determining whether a quantum computation has
a non-zero probability of accepting is at least as hard as the polyno-
mial time hierarchy. This hardness result also applies to determining
in general whether a given quantum basis state appears with nonzero
amplitude in a superposition, or whether a given quantum bit has pos-
itive expectation value at the end of a quantum computation. This
result is achieved by showing that the complexity class NQP of Adle-
man, Demarrais, and Huang [1], a quantum analog of NP, is equal to
the counting class coC_P.

*Computer Science Department, University of South Carolina, Columbia, SC 29208
(on leave from the University of Southern Maine). E-mail: fenner@cs.sc.edu. Supported
in part by the NSF under grant and CCR 95-01794.

T Department of Mathematics and Computer Science, Clark University, Worcester, MA
01610. E-mail: fgreen@black.clarku.edu.

tComputer Science Department, Boston University, Boston, MA 02215. E-mail:
homer@cs.bu.edu. Supported in part by the NSF under grant NSF-CCR-9400229.

§Department of Mathematics and Statistics, Calvin College, Grand Rapids, MI 49546.
E-mail: rpruim@calvin.edu. This work was done while visiting the Computer Science
Department at Boston University.

1 Introduction

This decade has seen renewed interest and great activity in quantum comput-
ing. This interest has been spurred by the clear formal definition of the quan-
tum computing model and by the surprising discovery that some important
computational problems which may be classically infeasible are feasible using
quantum computers. One central result is Shor’s bounded-error polynomial-
time algorithms for discrete logarithm and for integer factoring on both a
quantum Turing machine [16] and (equivalently) quantum circuits [17]. This
opens the possibility that if such machines can be constructed, or effectively
simulated, then one can rapidly factor large integers and compromise a good
deal of modern cryptography.

While the main research focus has been on finding efficient quantum al-
gorithms for hard problems, attention has also been paid to determining
the strength of quantum computation wvis-a-vis its classical (probabilistic)
counterpart [7, 5]. In this paper we take a further step in this direction by
proving that testing for non-zero acceptance probability of a quantum ma-
chine is classically an extremely hard problem. In fact, we prove that this
problem—which we call QAP (“quantum acceptance possibility”) and which
is complete for NQP (a quantum analog of NP)—is hard for the polynomial-
time hierarchy. This is done by showing that NQP is precisely the exact
counting class [23] coC_P:

Theorem 1.1 NQP = coC_P.

coC_P, in turn, is hard for PH under randomized reductions [20, 21], and
may still be hard even if P = NP. Thus

Corollary 1.2 The problem of determining if the acceptance probability of
a quantum computation is non-zero (QAP) is hard for the polynomial time
hierarchy under polynomial-time randomized reductions.

We will see in Section 4 that Theorem 1.1 is mostly insensitive to the set
of transition amplitudes we allow in our model of quantum computation. The
equation holds whether we allow arbitrary algebraic numbers as transition
amplitudes (Theorem 4.1) or we restrict transition amplitudes to be in a
small finite set of rational numbers as described by Adleman, et al. [1]

(Theorem A.1). We will assume throughout the paper that transcendental
amplitudes are not allowed.

The class NQP was originally defined by Adleman, Demarrais, and Huang
[1], who showed that NQP C PP. The sharper upper bound NQP C coC_P
is implicit in their proof and a recent result of Fortnow and Rogers [13]. The
main contribution of this paper is to obtain the lower bound coC_P C NQP.
Adleman et al. also asked if EQP (the quantum analog of P) and NQP are
the same. Our result implies that EQP = NQP is equivalent to the collapse
of the counting hierarchy (see Section 3).

Graph Nonisomorphism [14] is an example of a problem in coC_P that is
not known to be in NP. Theorem 1.1 shows that there is a quantum machine
that takes two graphs as input and accepts with probability zero exactly
when the two graphs are isomorphic.

We prove Theorem 1.1 and Corollary 1.2 in Section 3. The proof can be
easily adapted to show hardness of determining whether any given quantum
bit must be zero (or one) with certainty in a quantum computation, or more
generally, whether some given quantum state shows up in a superposition
with nonzero amplitude. Both of these questions are equivalent to QAP,
and therefore also NQP-complete.

Determining non-zero acceptance probability of a classical machine is
complete for NP, but determining exact accepting probability is much harder:
it is hard for #P. By analogy, one might have hoped Q) AP would be signifi-
cantly easier than the problem of determining the exact accepting probability
of a quantum computation, and possibly even to locate () AP within the poly-
nomial hierarchy. Our work shows that this is probably not the case as if
QAP is in the polynomial hierarchy then this hierarchy collapses.

Work of Bennett et al. [3] and recently of Fortnow and Rogers [13] has
suggested that quantum computation with bounded error probability (BQP)
is most likely unable to solve NP-hard problems. Combined with our result,
this implies that BQP is even less likely than PH to contain QAP. We take
this as evidence that quantum computers, even if implemented, will be un-
able to amplify exponentially small probabilities to such an extent that they
become reliably detectable by means of repeated experiments and observa-
tions. This difference between bounded error computation and determining
non-zero acceptence probability exists classically as well; in the classical case,
bounded error computation corresponds to BPP and determining non-zero
acceptence probability corresponds to NP.

Our work is part of an on-going effort to compare the power and limita-
tions of quantum computers with those of more well-studied classical com-
puters. In the classical case, one attempts to classify problems according
to their intrinsic computational difficulty (complexity). For example, the
class P of problems decidable by deterministic computations running in time
bounded by a polynomial in the size of the input (i.e., polynomial time) is
widely regarded as capturing feasible, exact computations; the class BPP,
defined similarly except using probabilistic machines, captures the notion of
feasible probabilistic decidability.

Over time, complexity theorists have built up elaborate frameworks of
classes describing the power of various models of computation. Of these
frameworks, the best known is the polynomial hierarchy (PH), the levels of
which consist of problems definable by (a fixed constant number of) alternat-
ing polynomially bounded versions of the quantifiers 4 and V in front of a P
predicate. The class NP, containing the well-known NP-complete problems,
is the first level of this hierarchy. It is widely believed that PH does not
collapse, i.e., that it is a proper hierarchy with each level distinct from all
other levels. This implies and generalizes the conjecture that P # NP. For a
good introduction to complexity theory see, for example, Balcazar et al. [2].

Problems related to counting, e.g., “How many satisfying truth assign-
ments are there to a given Boolean formula?”, have also been widely studied
(see [15, 12] for example). It has been found [20, 21] that there are counting
problems at least as difficult as any problem in PH, and thus (likely) much
more difficult than any NP problem.

The relationship between quantum computing and counting problems has
been previously observed [18, 13, 3]. Our result further strengthens the
connections between quantum computation and counting complexity and
strengthens previous results in this area by providing the first example of a
quantum computation problem whose complexity can be precisely character-
ized in terms of a counting class.

The essential distinction between classical probabilistic models and quan-
tum machines, and the true source of power in the latter, rests in the fact that
the states in a quantum superposition can cancel each other, a phenomenon
known as destructive interference. Since many states can be involved in such
a cancellation, certain measurable properties of the quantum state can be
very sensitive to the number of classically accepting paths. Our result, while
using and extending the resulting connection between quantum computation

4

and counting problems, also serves to clarify it.

2 Probabilistic and Quantum Computation

We let ¥ = {0,1}. We are interested in decision problems (languages) over
¥*. Of particular interest are the language

QAP = {(M,z,0") | M encodes a quantum machine that has

non-zero probability of accepting z in ¢ steps},

and the class NQP, which will be defined at the end of this section.

We review here briefly the models of classical probabilistic computation
and quantum computation that we will employ in this paper. Our devel-
opment is based on Turing machines, but can just as easily be based on
quantum circuits [8], which are polynomially equivalent to quantum Turing
machines [25]. See the references for more details regarding the models used
here [18] as well as equivalent formulations [6]. Those who are already famil-
iar with Turing machine models for quantum computation can skip to the
definition of NQP at the end of this section.

A classical probabilistic computation can be viewed as a tree. Each node
in the tree is labeled with a configuration (instantaneous description of tape
contents, head location and internal state) of the Turing Machine. Edges
in the tree are labeled with real numbers in the interval [0, 1], which corre-
spond to the probability of a transition from the parent configuration to the
child configuration. Each level of the tree represents one time step (hereafter
referred to as a step). Throughout this paper we will consider only compu-
tations (both classical and quantum) for which the depth of the tree (time)
is polynomial in the length of the input. Probabilities can be assigned to a
node by multiplying the probabilities along the path from the root to that
node. The probability of the computation being in configuration ¢ at time ¢
is the sum of the probabilites assigned to each node at level ¢ that has been
assigned configuration c.

In order for such a tree to represent a probabilistic computation, it must
be constrained by locality, and classical probability. Locality constraints re-
quire that the probability assigned to the edge from one node to another
correspond to the action of one step of a probabilistic Turing machine, so in

particular, the probability (1) is non-zero only if a Turing machine could ac-
tually make such a transition (thus for example, the only tape cells that can
change are the ones which were under a head in the parent configuration),
and (2) depends only on that part of the configuration which determines
the action of the machine, and not on the rest of the configuration or the
location in the tree. Probability constraints require that the sum of all prob-
abilities on any level is always 1. It is equivalent to require that the sum of
the probabilities on the edges leaving any node equal 1. For the purposes
of complexity considerations, it is usually sufficient to consider probabilities
from the set {0, %, 1}. If one considers the probabilistic machine to be a
Markov chain, the entire computation can be represented by a matrix which
transforms vectors of configurations into vectors of configurations, with the
coefficients corresponding to probabilities.
The probability that a machine accepts on input x after ¢ steps is

> Prfconfiguration ¢ at step ¢ | configuration ¢, at step 0]
c€lqce

where I, is the set of all accepting configurations and ¢y is the initial config-
uration corresponding to an input z. Note that the class NP can be defined
in terms of probabilistic machines: A language, L, is in NP if and only if
there is a probabilistic machine M and a polynomial p such that

r € L < Pr[M accepts = in p(|z|) steps] #0

A quantum computation can be similarly represented by a tree, only
now the constraints are locality and quantum probability. In the quantum
computation, the edges are assigned algebraic (see Section 4) complex-valued
probability amplitudes. The amplitude of a node is again the product along
the path to that node. The amplitude associated with being in configuration ¢
at step t is the sum of the amplitudes of all nodes at level ¢ labeled with ¢. The
probability is the squared absolute value of the amplitude. A configuration
¢ uniquely corresponds to a quantum state, denoted by |¢). The states |},
for all configurations ¢, form an orthonormal basis in a Hilbert space. At
each step we consider a quantum computation to be in a superposition |p)
of basis states, and write this as

> acle)

cel’

where «a. is the amplitude of |¢). Since the basis states |¢) are mutually
orthonormal, the amplitude a. of |¢) in a superposition |p) is the inner
product of |¢) with |¢), denoted by (¢ | ¢). The probability of accepting is
defined as for the probabilistic computation.

Once again the sum of the probabilities on any level must be 1 (3- |a.
1). As before, a restricted set of amplitudes for local transitions is sufficient,

2=

namely rational numbers or square roots of rational numbers. In fact, the
machine we construct will only use amplitudes in {O,j:%,:l:l}.lt is nol,
however, sufficient to require that the sum of the squares of the amplitudes
leaving any node be 1. This is due to the effects of interference among the
configurations. A quantum computation can also be represented by a matrix
which transforms quantum states into quantum states (represented as vectors
in a Hilbert space with basis states |c), i.e., states of form |¢) as above). To
satisfy the constraints of quantum probability, this matrix must be unitary
(its inverse is its conjugate transpose). In the case where all amplitudes are
real numbers, a matrix is unitary if and only if it is orthogonal.

The class NQP is defined, as in [1], analogously to the class NP by replac-
ing the probabilistic machine with a quantum machine:

Definition 2.1 A language L is in NQP if and only if there is a quanium
Turing machine Q) and a polynomial p such that

r €L < Pr[Q accepts x in p(|z|) steps] # 0

It is not hard to see that QAP is hard for NQP via a standard argument:
given L, (), and p as in Definition 2.1 above, we reduce L to Q AP by mapping
input = to (Q,z,07(7D). We also have QAP € NQP as a consequence of the
construction of an efficient universal quantum machine [5]. Therefore, QAP
is complete for NQP.

One might entertain other possibilities for defining a quantum analog of
NP. One justification for our definition is that NQP bears the same relation
to BQP as the class NP does to BPP. As BQP plays a central role in efficient
quantum computation, this seems like a natural definition to study. Two
other possible quantum analogs to NP would be the class JEQP, i.e., the class
of sets {S]| there is a polynomial p and an EQP machine M such that for all
strings x, x € S iff there is a string y with |y| < p(]z|) such that M accepts
(x,y)} and the class IBQP, defined similarly. Each of these definitions is
analogous to that of NP as 4P.

It is not clear whether any two of the three classes NQP, 3EQP, and ABQP
are the same. For example, it is not known if P = EQP, but if P = EQP and
the polynomial hierarchy separates, then 3IEQP = NP # NQP.

3 Main Result

Theorem 3.2 shows how to design quantum machines for which the result-
ing amplitude of the unique accepting state is closely related to some given
function in the class GapP. Before giving the proof, we define this class of
functions.

Definition 3.1 Given any L C ¥*, let L, = {y € ¥* | (z,y) € L}. A
Junction f : {0,1}* — Z is in GapP if there is a language L in P and an
integer k such that,

= AL - S - L

(@) . ,

where n = |x|.

This is equivalent to saying that a GapP function is the difference (gap)
between the number of accepting paths and the number of rejecting paths in
some nondeterministic polynomial time computation. More information can
be found in the references [10] about the intuition behind this definition and
the basic properties of the class GapP.

Now we are ready to prove the technical theorem on which Theorem 1.1
rests. This result can be obtained as a corollary of Theorem 8.9 of Bernstein
and Vazirani [5] regarding Fourier sampling. Our proof, which uses the same
techniques, 1s more direct, and will be used to generalize a result of Fortnow
and Rogers which is proved in the appendix of this paper (see Section 4).

Theorem 3.2 For any f € GapP, there is a ptime quantum Turing machine
Q and a polynomial p such that, for all x of length n,

f(z)?
op(n)

Pr[Q(z) accepts| =

In fact, for all x, Q(z) has a unique accepling configuration which it reaches
with probability amplitude exactly — f(z)/20()/2,

8

Proof Sketch: Our proof directly uses techniques of Simon [18] and
Deutsch and Jozsa [9]. Let & € N and let L. C X* be a set in P such
that for all = of length n,

= A L] - |8 — L

(@) 5

Let M be a polynomial time machine recognizing L, so that for all (x,y),
(r,y) € L iff M accepts on input (z,y). Fix an input z of length n and
let m = n*. When our quantum machine @ takes z on its read-only input
tape, it will use m + 1 bits of a special work tape ¢. It will use other work
tapes only for deterministic, reversible computation. We denote a possible
configuration of Q(z) as a basic state

|z, y,b)

where z is the contents of the input tape and y, b are the contents of ¢ (y is a
vector of m bits, and b is a single bit). We suppress the other configuration
information, i.e., the state of (), the positions of the heads, and the contents
of the other work tapes. This other information is irrelevant because at all
important steps of the computation, the same state and head positions of
() will appear in all configurations in the superposition, and all other work
tapes besides ¢ will be empty.

Initially, y = 0 and b = 0. @) first scans over all the bits of y and applies
to each bit what has become a useful and popular local transition rule

0) = —=(10) +[1))

1) o %um— 1)),

In general, scanning an arbitrary state |z,y,b) in this way yields

1 "
|x7Y7 b> = om/2 Z(_l)yy |Sl?,y/,b>,

y/

where y -y’ is the dot product -7 ; y;y! of the bit vectors y and y’. The above
transformation [9, 18] is called the Fourier transform of the basis |z,y,b).

Thus @ scanning the first m bits of the tape t corresponds to the global
transition

|z,0,0) — 2/QZ:|:1;y,

@ then simulates the deterministic computation of M on input (z,y) in
a reversible manner [8, 4], using other work tapes'. Let by be the one-bit
result of the computation of M(z,y). @ sets b = by. The superposition is

1
Qm/g Z |5’77y7by>
y

Afterwards, () repeats the scan it performed at the beginning, using the same
local transformation rule, except that it now includes all m+1 bits, including
b, in the scan. This leads () into a new superposition

| \/_Qm EZ yy,+byb,|x7y/7b/>'

y y'.b’

now

We now consider the coefficient of |z,0,1) in |¢):

(2,0,1|¢) = \}_21 Z(_l)}"o-l-byl
11 by
= aam ;(—D
1 1

= _EQm—l f(.f)
Finally, () deterministically looks at the m + 1 bits of the tape ¢. If it sees
0,1 it accepts; otherwise, it rejects.
Thus |z,0,1) is the unique accepting configuration of @, and it has prob-

ability amplitude
1 1

BV

which implies the theorem by setting p(n) = 2m — 1 = 2n* — 1.]

/(z)

I This computation is also done obliviously so that the internal state and tape head
position of the machine is the same for all components of the superposition at any given
time. If we had used quantum circuits for the proof, this technicality would have been
unnecessary.

10

A converse to Theorem 3.2 follows directly from work of Fortnow and
Rogers [13]. Fortnow and Rogers’ result is given only for quantum machines
that use rational amplitudes. Their proof can be easily modified to obtain
the following. In Section 4 we also give a generalization of this theorem to
arbitrary algebraic amplitudes.

Theorem 3.3 (Fortnow, Rogers) For any ptime quantum machine M (with
transition amplitudes that are products of rational numbers and the square
root of a fized integer), there is a GapP function f, a natural number d,
and a polynomial p such that M accepts any input x with probability exactly

f(z)/dp(lrl),

Combining Theorems 3.2 and 3.3 provides an exact characterization of
NQP in terms of a counting class known to be hard for PH.

Definition 3.4 A language L is said to be in the class C_P if there is a
GapP function f such that for any x, x € L if and only if f(x) = 0. The

class coC_P is the set of all languages with complements in C_P.

By Theorems 3.2 and 3.3, a language L is in C_P (resp., coC_P) if and
only if there is a polynomial-time quantum Turing machine () such that for
any x,

r € L < Pr[Q(x) accepts] = 0 (resp., Pr[Q(z) accepts] # 0).

Thus NQP = coC_P, so Theorem 1.1 is a corollary of Theorems 3.2 and 3.3.
It is known that C_P is hard for the polynomial hierarchy under ran-
domized reductions [21, 19]. Thus Corollary 1.2 (QAP is hard for PH under
randomized reductions) follows.
Hence if QAP is anywhere in PH, then PH collapses; in fact, the counting
hierarchy also collapses.? Combining our results with those of Fortnow and
Rogers [13], we find that QAP € BQP (or QAP € EQP) also implies the

collapse of the counting hierarchy.

?This is a hierarchy built over the class PP instead of NP. The counting hierarchy
was originally defined in terms of counting quantifiers [23]. The assertion follows from an
alternative characterization in terms of oracles [22].

11

4 Robustness of NQP

In our definition of NQP we assume that the probability amplitudes are
algebraic. In this section we want to explore briefly the extent to which this
assumption is significant. Let NQPg be the class defined like NQP, but with
amplitudes taken from the set S. So NQP = NQPg, where Q is the algebraic
complex numbers. Similar notation applies to other quantum classes.

Adleman et al. [1] show that, although BQP¢ is uncountable, BQPg =
BQPq = BQPyo +3/5,+4/5,+1}, and so the latter class provides a reasonable,
robust definition for BQP. The proof of Theorem 3.2 shows that coC_P C
NQP{O7i%7i1}, and it can be modified to show that coC_P C NQP g 13/5 +4/5.41}
as well. A proof of this modified result is given in the appendix. These inclu-
sions together with Corollary 4.2 below show that NQPg = NQP (o 13/5 +4/5+1) =
coC_P, generalizing a theorem of Fortnow-Rogers (Theorem 3.3).

We use the following theorem, the main theorem for this section, which
unifies and generalizes some of the results of Adleman, et al. [1] given above.
Our proof is somewhat similar to theirs. We begin by recalling some basic
facts from algebra. Let ai,...,a, be complex numbers. Let Q(ay,...,ay)
be the smallest subfield of C containing aq,...,a,. A basic fact of abstract
algebra is that aq,...,q, are all algebraic (over Q) iff Q(ay,...,a,) (as a
vector space over Q) is finite dimensional.

Theorem 4.1 Lel M be any quantum accept/reject TM that has algrebraic
transition amplitudes and runs in time t(n). Then there are positive integers
s and D, real algebraic numbers aq,. .., as linearly independent over Q, and
GapP functions f1,..., fs, such that for any input x of length n,

1 S
Pr[M(x) accepts| = IO ij(:z;,()t(”))aj.
7=1

Moreover, all the a; are in the field extension of Q generated by the transition
amplitudes of M.

Proof Sketch: The transition amplitudes mentioned in M (not necessarily
real), together with their complex conjugates, generate a field F' that has
finite dimension over Q and that is closed under complex conjugate. Let
81, ..., 3, be a basis for F'. Every element of F' can be expressed uniquely
as a linear combination of the ;. Furthermore, there are unique rationals

12

{qijkt1<ijk<m such that 38,8, = 3, ¢i;x0k. Hence for any two elements
a =73 a;3; and b =3 b;3; of I, the coefficient of B¢ in abis >=,37; a;b;q; ;-
Now choose ay, ..., a5 to be a basis of F'N R over Q such that for each ¢ we
can write

Re(B;) =Y ¢ijaj,
7=1

where the ¢; ; are all integers.

We may assume WLOG that the ¢; ; ; are all integers. If not, we redefine
the basis to clear all the denominators: let £ be the lem of all denominators
appearing in the g;;z. Then redefine the 3; by 38; = {3;. Then, B3, =
> u 0qi 1B, so the coefficients are now all integers.

Fix any input x, and let U be the global unitary 1-step transition matrix
for M(z). It is clear that each entry of U is in F', and moreover there is an
integer d and an integer-valued FP function u such that the (i, 7)th entry of
Uis |

(U)i,j = 3 E u(;L', iajv k)ﬁk
k=1

The proof now proceeds as in the proof of lemma 3.2 of Fortnow and
Rogers [13], except that here we add and multiply elements of F. Multi-
plying U times itself then reduces to obtaining uniform exponential sums of
polynomial products of the u(z,i,7,k)’s and ¢; ;5. But GapP is closed un-
der these operations. So there are GapP functions ¢i,..., g, such that the
(1, 7)th entry of U" is

I & o
(Ut)’ivj = E ng('ra()tvzajak)/@k-
k=1

Now take ¢ = t(n) to be the running time of M(z). The acceptance proba-
bility is the sum of squared absolute values of all “accepting” entries of U'S,
where S is the column vector representing the basic quantum state of the
initial configuration of M(z). (Note that squaring an absolute value is just
a field operation in F', since F is closed under complex conjugate.) Again
using the closure properties of GapP, there are GapP functions hq, ..., A,
such that

1 m
Pr[M(x) accepts| = hl > hi(x, 05,
=1

13

where D = d?. Since this quantity is real, we have

1 m
Dt Ehi(m,Ot)Re(ﬁi)
=1
1 m S
e E Z hl(;l}, Ot) Z Cm‘a]'
=1 7=1

1 S
= ﬁij(%Ut)aj
7=1

Pr[M(x) accepts] =

where for each j, we define
filw,0) =3 _cijhi(z,0%).
=1

It follows from the closure properties of GapP that the f; are all in GapP.
This proves the theorem.]

Corollary 4.2 (implicit in [1]) For M as above, the sel
{z | Pr[M(z) accepts] = 0}
is in C_P. Thus NQPa C coC_P.

Proof. Since the o; are all linearly independent over Q, the probability is
zero iff all the f;(z) are zero, iff f(z) = 0 where

F(e) = S

j=1

The function f is clearly in GapP.]

The proof of Theorem 4.1 actually yields a more general result regarding
probability amplitudes, which may be of independent interest. As with Adle-
man et al., we simply choose a single primitive element for the field extension
of Q generated by the transition amplitudes of the machine in question.

Theorem 4.3 Let () be any quantum TM whose transition amplitudes are
all algebraic numbers. There exists an algebraic number 3, positive integers
d and k, and GapP functions fi(x,u,s) for all i, 0 <1 < k such that, for any

14

input x, time t € N, and basis state |s) of Q(z), the probability amplitude of
|s) in the quantum state of Q(z) after running t steps is exactly

1 k—1

T2 i 09

Furthermore, 3 is a primitive element with degree k of the field extension of
Q generated by the transition amplitudes of ().

5 Conclusion

One may ask if a polynomial-time probabilistic Turing machine has a non-
zero acceptance probability. This problem is NP-complete. QAP is the
analogous problem in the quantum setting and it is NQP-complete. As we
have seen in this paper, NQP = coC_P, which is a much harder class than
NP, and our characterization shows that QAP is nowhere in the polynomial
hierarchy unless the polynomial hierarchy and the counting hierarchy collapse
and are equal.

We interpret this as a lower bound on the capabilities of quantum com-
puters. Just as it is unlikely that an NP machine’s acceptance probability
can be amplified (i.e., that NP C BPP), so is it unlikely that a quantum
machine’s acceptance probability can be amplified (i.e., coC_P C BQP), and
even more unlikely that it can be amplified classically (i.e., coC_P C BPP).
To our knowledge, this is the first hardness result of this nature regarding
quantum computation. The result also shows how destructive interference
can lead to vastly different behaviors for acceptance probabilities in classical
and quantum machines.

Note that the results here show that if NQP C BQP, then the counting
hierarchy collapses to PP. It would be interesting to see if it collapses even
farther (say, to BQP). This would give us a better understanding of how
much harder NQP is than BQP.

Acknowledgements

The work of S. Fenner was supported in part by the NSF under grant NSF-
CCR-95-01794. The work of S. Homer was supported in part by the NSF

15

under grant NSF-CCR-94-00229. The work of R. Pruim was done while
visiting the Computer Science Department at Boston University. We thank
C. Pollett, J. Watrous and the referees for helpful comments.

An earlier version of this paper appeared in the Sixth Italian Conference

on Theoretical Computer Science, October, 1998 [11].

References

(1]

2]

[7]

L. Adleman, J. DeMarrais, and M. Huang. Quantum computability.
SIAM Journal on Computing, 26:1524-1540, 1997.

J. L. Balcazar, J. Dfaz, and J. Gabarrd. Structural Complexity I, volume
11 of FATCS Monographs on Theoretical Computer Science. Springer-
Verlag, 1988.

C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths
and weaknesses of quantum computation. SIAM Journal on Computing,

26:1510-1523, 1997.

P. A. Benioff. Quantum mechanical hamiltonian models of turing ma-

chines. Journal of Statistical Physics, 29:515-546, 1982.

E. Bernstein and U. Vazirani. Quantum Complexity Theory. SIAM J.
Comp., 26:141-1473, 1997.

A. Berthiaume. Quantum computation. In L. Hemaspaandra and
A. L. Selman, editors, Complexity Theory Retrospective II, chapter 2,
pages 23-50. Springer-Verlag, 1997.

A. Berthiaume and G. Brassard. The quantum challenge to structural
complexity theory. In Proceedings of the 7th IEEE Structure in Com-
plexity Theory Conference, pages 132-137. TEEE, 1992.

D. Deutsch. Quantum theory, the church-turing principal, and the uni-
versal quantum computer. In Proceedings of the Royal Society of London,

pages 97117, 1985.

16

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

D. Deutsch and R. Jozsa. Rapid solutions of problems by quantum com-
putation. In Proceedings of the Royal Society of London, pages 553-558,
1992.

S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes.
Journal of Computer and System Sciences, 48(1):116-148, 1994.

S. Fenner, F. Green, S. Homer and R. Pruim. Quantum NP is Hard
for PH. In Proceedings of the Sixth Italian Conference on Theoretical
Computer Science, World-Scientific, pages 241 - 252, 1998.

L. Fortnow. Counting Complexity. In .. Hemaspaandra and A. L. Sel-
man, editors, Complexity Theory Relrospective II, chapter 4, pages 81—
107. Springer-Verlag, 1997.

L. Fortnow and J. Rogers. Complexity limitations on quantum compu-
tation. In Proceedings of the 13th IEFEE Conference on Computational
Complexity, pages 202-209. TEEE, 1998.

J. Kobler, U. Schoning and J. Toran. The Graph Isomorphism Problem:
Its Structural Complexity. Birkhauser. 1993.

U. Schoning. The Power of Counting. In A. L. Selman, editor, Com-
plexity Theory Retrospective, chapter 8, pages 204-223. Springer-Verlag,
1990.

P. W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In Proceedings of the 35th IEFEE Symposium on Founda-
tions of Computer Science, pages 124-134. TEEE, 1994.

P. W. Shor. Polynomial-time algorithms for prime number factoriza-
tion and discrete logarithms on a quantum computer. SIAM J. Comp.,

26:1484-1509, 1997.

D. Simon. On the power of quantum computation. SIAM Journal on

Computing, 26:1474-1483, 1997.

J. Tarui. Probabilistic polynomials, AC(®) functions and the polynomial-
time hierarchy. Theoretical Computer Science, 113:167-183, 1993.

17

[20] S. Toda. PP is as hard as the polynomial-time hierarchy. STAM Journal
on Computing, 20(5):865-877, 1991.

[21] S. Toda and M. Ogiwara. Counting classes are at least as hard as the
polynomial-time hierarchy. STAM Journal on Computing, 21(2):316-328,
1992.

[22] J. Toran. Complexity classes defined by counting quantifiers. J. Assoc.
Comput. Mach., 38(3):753-774, 1991.

[23] K. Wagner. The complexity of combinatorial problems with succinct
input representation. Acta Informatica, 23:325-356, 1986.

[24] J. Watrous. Private communication. 1997.

[25] A. C.-C. Yao. Quantum circuit complexity. In Proceedings of the 3jth
IEEE Symposium on Foundations of Computer Science, pages 352-361,
1993.

A Appendix

In this appendix, we show that Theorem 3.2 also holds for quantum machines
that use amplitudes in the set R = {0,+2,+2,£1}. This result was first

5
suggested to us by J. Watrous [24].

Theorem A.1 For any f € GapP, there is a ptime quantum Turing machine
Q) with transition amplitudes in R and a polynomial p such that, for all x of

length n, 5
Pr[Q(z) accepls] = (52)"" [(2)*

In fact, for all x, Q(x) has a unique accepting configuration which it reaches
with probability amplitude exactly (%)p(”)ﬂf(x).

Proof Sketch: We indicate the essential differences with the proof of
Theorem 3.2. Now the basic states are |z,y,b) where z and y are as before
and b is two bits.

18

Initially, y = 0 and b = 00. In @’s initial scan over the bits of y, apply
the following local transition rule A to each bit:

0) 5 £(310) +4/1))
1)+ £ (=400) +3[1)).

If we let |z|; be the number of components of the vector z that have the
value ¢, then transforming an arbitrary state |z,y,b) in this way yields

1 , , /
[z, y:b) = = S ()Y ¥l gly =Y lgly'=Ylo |y by
y/

Thus) scanning the first m bits of the tape corresponds to the global tran-

sition
|z,0,00) — Zay|x,y,00>,
y
where
31¥loglyls
ay = = .

Again @ simulates the deterministic computation of M on input (z,y)
in a reversible manner. Let by be 01 if M accepts, 10 if it rejects. Q) sets

b= by.

The superposition is now
|$70700> = Za}’|$7yab}’>7
y

Next, () performs the transition A to the first bit of by and then the transition
B given by

0 5 410) +3]1))

1
1) = £ (=310) +4]1)).
to the second bit of by. That is, () applies

12 9 16 12
1| =9 12 —12 16
95| =16 —12 12 9

12 —16 -9 12

19

to by. Finally, () repeats the scan it performed at the beginning, using the
same local transformation rule (A) on the m bits of y. This leads @ into a
new superposition

- o 23 0y Bl ¥) [y 8,
where
aly,y') = (—4)¥ =¥l-+ly=0l-14ly"=yli+ly =0l 3[y"~¥lo+ly—0lo
Bly,y) =25 Tyy .

We now consider the coefficient of |z, 1,01) in |¢):

(z,0,1] ¢) = E4|1—y|1+|y—0|13I1—ylo+|y—0|oﬁ(by7()1)

y

= g 120,01

12m
= St 2 By, 01)
25m+1 £

o1
- 95m+1

12f(x).

Finally, () deterministically looks at the m + 2 bits of the tape ¢. If it sees
1,01 it accepts; otherwise, it rejects.
Thus |z,1,01) is the unique accepting configuration of @), and it has

probability amplitude
12
m+1
(S2)1).

which implies the theorem by setting p(n) = 2m + 2 = 2n* + 2. O

20

