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Abstract

We study the complexity of inverting many-one, honest, polynomial-time computable onto
functions. Asserting that every polynomial-time computable, honest, onto function is in-
vertible is equivalent to the following proposition that we call Q: For all NP machines M
that accept X*, there exists a polynomial-time computable function gp; such that for all z,
gum() outputs an accepting computation of M on z.

We show that Q is equivalent to several well-studied propositions in complexity theory.
For example, we show that Q is equivalent to the proposition that, for all NP machines
M that accept SAT, there exists a polynomial-time algorithm gas that transforms any
accepting computation of M on input z into a satisfying assignment of z.

We compare Q with its following weaker version that we call Q’: for all NP machines
accepting X* there is a polynomial-time computable function gps that computes the first
bit of an accepting computation of M. As a first step in comparing Q and Q’, we show
that if every 0-1-valued total NPMV function has poly-time computable refinements, then
for all £ > 0, every k-valued total NPMV function has refinements in PF. We relate both
Q and Q' to the question of whether the class NPMV; has refinements in TFNP, a class of
functions studied by Beame et al.

Finally, we study the relationship of Q and Q' with other complexity hypothesis. We
show that Q' implies that AM N coAM C BPP, and NP N coAM C RP. Also, Q' and
NP = UP implies that the polynomial hierarchy collapses to ZPPNF, and Q implies that
every one-one paddable degree collapses to a one-one length-increasing degree.



1 Introduction

Understanding the power of nondeterminism has been one of the primary goals of research
in complexity theory in the past two decades. One-way functions are an important tool
for studying nondeterministic functions. A polynomial-time computable function f is one-
way if it is one-to-one, honest, and cannot be inverted in polynomial time. Grollmann and
Selman [GS88] showed that one-way functions exist if and only if P # UP. For many-to-one
functions, it is easy to see that every polynomial-time computable many-to-one function is
invertible if and only if P = NP. Thus, most researchers believe that poly-time computable,
non-invertible functions exist: indeed, several results in public-key cryptography [ESY84]
and pseudorandom generators [ILL89] are proven under this assumption.

Several of the results on noninvertibility of one-way functions do not restrict the func-
tions to be onto, that is, the inverse of a one-way function could be a partial function.
Grollmann and Selman showed that every one-to-one and onto function is invertible if and
only if P = UPNcoUP, and Borodin and Demers [BD76| showed that, if every many-to-one,
poly-time computable onto function is poly-time invertible, then P = NP N coNP. How-
ever, these consequences are still weaker than P = NP. Indeed, it is conceivable that every
poly-time computable, honest, onto function is invertible in polynomial time, but P # NP.
However, other than the above results, not much is known about the consequences of as-
suming that every onto function is polynomial-time invertible.

In this paper, we study the complexity of inverting many-to-one onto functions. The
hypothesis that all polynomial-time computable, honest, onto functions are invertible is
equivalent to the following proposition that we call Proposition Q.

Proposition Q: For all NP machines M such that L(M) = ¥*, there exists
a poly-time computable function fas such that for all strings z, fas(z) outputs
an accepting computation of M on z.

Propostion Q is equivalent to several other fundamental, yet seemingly unrelated propo-
sitions in complexity theory. For example, Q is equivalent to the following interesting as-
sertion: for all NP machines M that accept SAT, there is a polynomial-time procedure
that translates an accepting computation of M into a satisfying assignment. Informally,
this is equivalent to saying that there is essentially only one nondeterministic algorithm
for accepting SAT. As a corollary, it follows that if Q holds, then every many-one reduc-
tion between two NP sets can be converted to a “witness-preserving” many-one reduction,
which is equivalent to saying that Karp’s notion of many-one completeness [Kar72] is equiv-
alent to Levin’s notion of “universal search problems” [Lev73]. Some other propositions to
which Q is shown to be equivalent are tautology search as studied by Impagliazzo and Naor
[IN88] and the assertion that total functions in the function class NPMV have refinements
in PF [Sel94] (formal definitions are given in Section 2). The equivalence of Q to these
much-studied complexity hypotheses illustrates the robustness of Q.

We also consider a weaker proposition and ask—can we efficiently compute a single bit
of an inverse of an onto function? We call this proposition Q'.

Proposition Q' For all NP machines M such that L(M) = ¥*, there exists



a poly-time computable function fas such that for all strings =, fas(z) outputs
the first bit of some accepting computation of M on z.

In addition to the equivalence of Q' to various “one-bit” versions of Q, Q' is equivalent
to the following much studied proposition [GS88, FR94|: every pair of disjoint coNP sets
are p-separable (that is, for all disjoint pairs of coNP sets, there exists a p-time computable
set that contains one of the two sets and is disjoint from the other one).

Papadimitriou [Pap94| (see also [BCE195]) defined the function class TENP to study
the complexity of computing proofs that are always known to exist because of some combi-
natorial property. TFNP is the class of total functions whose graphs are polynomial-time
computable. An interesting question is whether every total function in NPMV; has a re-
finement in TENP. We show that this question is intermediate between Q and Q'.

Are Q and Q' equivalent? In other words, if all 0-1 valued, total NPMV functions
are computable in poly-time, then is every total NPMV function poly-time computable?
Without the totality constraint, the answer to this question is trivially in the affirmative,
since both of the hypotheses is equivalent to P = NP. However, since neither Q nor Q'
are known to be equivalent to P = NP, the equivalence of Q and Q' seems to be a harder
question. We make progress towards resolving this question in the affirmative and show
that, if every 0-1 valued total NP function is computable in poly-time, then for all £ > 0,
every total NP function with at most k-many output values is computable in polynomial
time (in symbols, for all & > 0, Q' = NPkV,; C. PF). To prove this, we use a “binary
search technique with errors” that may be of independent interest.

Finally, we study the relationship of Q to other well-known complexity hypotheses. It
is well-known that if Q holds, then P = NP N coNP [BD76, IN88|. Continuing this line of
research, we show that Q' implies that AM N coAM = BPP and that NP N coAM = RP.
Thus, if Q' holds, then the graph isomorphism problem is in RP, which is not known to
follow by the assumption that P = NP NcoNP. Next, we study how assuming that Q holds
affects some well-studied open questions in complexity theory. The first question is whether
NP = UP implies that the polynomial hierarchy collapses. While neither hypothesis Q nor
NP = UP are by themselves known to imply to collapse of the polynomial hierarchy, we
show that if both Q' and NP = UP hold, then PH = ZPPNF C ¥, Next, we consider the
question of whether every paddable 1-degree collapses to a paddable 1-length-increasing
degree. We show that if Q holds, then indeed this is the case. Finally, we list some
known relativization results to show that some of our results are optimal with respect to
relativizable proof techniques.

In Section 2, we will give some preliminary definitions—in particular, we will define
function complexity classes. In Section 3, we will prove the various characterizations of Q
and in Section 4, we give our results about the relationship between Q and other complexity
assertions. We conclude by listing the open questions in Section 5.

2 Preliminaries

In this section, we will set down notation that will be used throughout the paper. All
languages and functions are defined over strings in the alphabet ¥ = {0, 1}, the set of all



strings is denoted by ¥*. We will let SAT denote the set of all satisfiable boolean formulas.
We assume that the reader is familiar with the definitions of standard language complexity
classes such as P, NP, UP, and AM [Bab85]. We will, however, formally define the various
classes of nondeterministic functions that we will be looking at in great detail.

We will use the notation set down by Selman [Sel94] (see also [BLS84]) for defining
partial, multivalued functions. A transducer is a nondeterministic Turing machine that, in
addition to its usual input and work tapes, has a write-only output tape. The transducer T
outputs a string y on input z if there exists an accepting path of T on input z that outputs
y (we denote that by T(z) — y). Hence, a transducer could be multivalued and partial,
since different accepting computations of the transducer may yield different outputs and
since the transducer may not have any accepting computation on the input.

Given a multivalued function f and a string z, we use the following set.

set-f(z) = {y | f(z) — y}

Next, we define some useful function classes.

Definition 1 (a) PF is the class of functions computable by a deterministic polynomial-
time transducer.

(b) NPMV is the class of partial, multivalued functions f for which there is a nondeter-
ministic polynomial-time machine N such that for every z, it holds that

1. f(z) is defined if and only if N(x) has at least one accepting computation path,
and

2. for every y, y € set-f(z) if and only if there is an accepting computation path of
N(z) that outputs y.

(¢) NPSV is the class of single-valued partial functions in NPMV.
(d) A function f € NPkV iff f € NPMV and for all x € ¥*, ||set-f(z)|| < k.
(e) A function f € NPbV iff f € NP2V and for all z, set-f(z) C {0,1}.

We will be interested in subclasses of NPMV that are total, that is, functions f such
that for all 2z € ¥*, ||set-f(z)|| > 0. Given a function class F, we will denote the set of all
total functions in F by F;. For example, NPMV; is the class of total functions in NPMV.

We also need the following technical notion of refinement. Given partial multivalued
functions f and g, define g to be a refinement of f if dom(g) = dom(f) and for all z in
dom(g) and all y, if y is a value of g(z), then y is a value of f(z). If f is a partial multivalued
function and G is a class of partial multivalued functions, we write f €. G if G contains
a refinement g of f, and if F and G are classes of partial multivalued functions, we write
F C. G if for every f € F, f €. G. This notion enables us to compare the complexity of
two functions that output a different number of values (see [Sel94]).

We use the notion of refinement to define what it means to invert a many-to-one function.
If f € PI"is an honest function and F is a function class, then we say that f is invertible
in F if f~1 has a refinement in F—that is, there exists a function ¢ € F such that for all
z,if f7!(z) is defined, then g(z) outputs some value of f~!(z).



If M is a nondeterministic polynomial-time Turing machine, then consider the following
function pps € NPMV. For all strings z € L(M),

pm(z) — y  yis an accepting computation of M on z.

We will abuse notation to use pas(z) to denote some unspecified output value of par on
input z.

3 Characterizations of Q and Q'

In this section, we show that Q and Q' are equivalent to several, seemingly unrelated
complexity hypotheses.

Theorem 1 The following are equivalent.

1. Proposition Q holds.
2. All polynomial-time computable onto functions are invertible in PF.
3. NPMV; C. PF.

4. For all S € P such that § C SAT, there exists a poly-time computable g such that for
all z € S, g(z) outputs a satisfying assignment of x.

5. P =NPnNcoNP and NPMV,; C. NPSV;.
6. For all M € NP such that L(M)= SAT, 3fs € PF such that for all x € SAT,

fu(z,pa(z)) —  a satisfying assignment of .

7. For all M,N € NP such that L(M) C L(N), 3fu €. PF such that Yz € L(M),
fu(z,pu(2)) = pn(2).

8. For all L € P and for all NP machines M that accept L, Afar € PF such that Vo € L,
fu(z) — pu(z).

Proof See appendix. O

Suppose Q holds and A, B € NP are such that A <P B via a function f. It follows by
Theorem 1, part (6) that for all Turing machines M, N such that L(M)= A and L(N) = B,
there exists a polynomial-time computable function gas x such that for all z € A,

gmN(z, pm(z)) = pr(f(2)). (1)

In their seminal papers on NP-completeness, Karp [Kar72] and Levin [Lev73] gave indepen-
dent definitions of many-one reductions. The main difference between the Karp and Levin
definitions of many-one reduction was that Levin insisted that in addition to instances in A
mapping to instances in B, there must be a polynomial algorithm that maps every “witness”
of strings in A to some “witness” of the mapped string in B. This is just a restatement of
Equation 1, hence Q can be stated in another interesting way.



Corollary 2 Proposition Q holds if and only if for all A, B € NP, every Karp reduction
from A to B is also a Levin reduction.

Next, we characterize Q’.
Theorem 3 The following are equivalent.

1. Proposition Q' holds.

2. For all polynomial-time computable onto functions f, there exists a function g € PF
that computes the first bit of f=1.

3. NPbV, C. PF.

. For all 8 € P such that S C SAT, there exists a poly-time procedure fy; such that for
all x € S, far(z) — the first bit of a satisfying assignment of z.

B

5. For all M such that L(M)= SAT, 3fm € PF such that Vz,

Iz, pa(z)) — 158 bit of the satisfying assignment of .
6. VM, N such that L(M) C L(N), there exists fay € PI such that for all strings =,
Sar(z, pu(@)) = 1% bit of pn(2).
7. [FR94] All disjoint coNP sets are P-separable.

Proof Fortnow and Rogers [FR94| showed that (7) is equivalent to Q’. The rest of the
proofs are analogous to the corresponding proofs in Theorem 1. O

Remark: In Theorem 3, we can replace "the first bit" in parts 2, 4, 5 and 6 with any
polynomial-time computable boolean function of the bits.

Beame at al. [BCE195] study the class TFNP, which is the class of functions f in
NPMV; such that the set graph(f) = {(z,y) | f(z) — y} is in P. Does the graph of every
function in NPMV; belong to P? The following proposition shows that the answer is “no”,
unless P = NP.

Proposition 4 If for all f € NPMVy, graph(f) € P, then P = NP.

Proof Consider the following 2-valued function f, which is clearly in NPMV;. For all
strings € ¥*, f(z) outputs the number 2, and for all strings z € SAT, f(z) outputs 1.
(Soif z € SAT, then f(z) outputs 1 and 2 on two different accepting paths.) By hypothesis,
graph(f) € P. It is easy to see that € SAT if and only if (z,1) € graph(f). O

Thus, it might be more meaningful to compare these classes using refinements. We
ask whether every NPMV,-function has a refinement whose graph is in P (in symbols, is
NPMV,; C. TFNP). We show that this hypothesis is intermediate in complexity between

Q and Q',



Theorem 5 (i) If Q holds, then NPMV,; C. TFNP.
(i) If NPMV, C. TFNP, then Q' holds.

Proof Suppose Q holds. Then, by Theorem 1, part 3 it follows that NPMV,; C PF. Thus
trivially, NPMV; C. TFNP.

To prove (ii), let NPMV,; C. TFNP. Let f be a function in NPbV,. We want to show
that f has a refinement in PF. By hypothesis, there exists a function ¢ € NPMV; such
that dom(g) = dom(f) = ¥*, and for all z,y € ¥*, if g(z) maps to y, then f(z) maps to y.
Moreover, graph(g) € P. Let M be the polynomial-time TM that accepts graph(g). Then,
a polynomial-time refinement N of f can be described as follows. On input z, N simulates
M on input (z,0) and (z,1). Since g is total, M must accept at least one of (z,0) or (z,1).
If M accepts (z,b), for some b € {0, 1}, then N outputs b. This implies that NPbV, C. PF,
and hence Q' holds. O

Hemaspaandra, Rothe and Wechsung [HRW95] define the complexity class EASY@ as
the class of languages [ such that for all NP machines M, if L(M) = L, then pys €. PF.
It is easy to see that Q can be formulated as follows.

Proposition 6 Q <= EASYY = P.

4 One bit versus many bits

In this section we ask the question, does Q hold if and only if Q" hold? Recall that this can
be rephrased as,

Does NPbV,; C. PF imply that NPMV,; C. PF?

Let us first consider an analogous question for partial multivalued functions—that is, whether
NPbV C. PF — NPMV C. PF. Selman [Sel94| showed by using the classical “self-
reducibility pruning” argument that if NPSV C. PF, then NPMV C. PF. However, these
techniques do not seem to carry over for classes of total functions.

The following theorem obtains a partial “collapse” result for total functions. The proof
uses a binary search procedure with multivalued oracles that might be of independent interest.

Theorem 7 For all k> 0,

NPbV; C. PF < NPkV,; C PF.

We need the following lemma to prove the main theorem.
Lemma 8 If Q' holds, then NPSV; C. PF.

Proof See appendix. O



Proof of Theorem 7  We will show that if NPbV,; C. PF, then NPkV, C. NP(k—1)V,.
By induction, this implies that NPkV; C NPSV;. The theorem then follows by Lemma 8
and Theorem 3.

Let f € NPkV, for some constant £ > 2. Suppose that for every input z we are given—as
free advice—some value ¢(z ) which is guaranteed to be between the minimum and maximum
outputs of f(z), inclusive (¢(z) is otherwise arbitrary). We can then nondeterministically
compute a refinement of f with at most £ — 1 values for every input z, as described by the
algorithm A below. We then show that if NPbV,; C,. PF, then such a ¢(z) can be computed
in polynomial time, which then implies that f €. NP(k — 1)V,, which proves the theorem.

Begin A
Input: . (¢(z) is also given as free advice.)
Guess an output y of f(z)
if y = ¢(z), then output y and halt.
else begin
5=y}
repeat
Guess an output z of f(z) such that z ¢
S:=5UA{z}
until $ contains an element > ¢(z).
if ¢(z) is the maximum element of 5, then
Output ¢(z) and halt.
else
Output the minimum element of S
end

End A

We claim that procedure A outputs a refinement of f with at least one and at most
k — 1 values. First, note that all outputs of A are also outputs of f(z). Second, note that
A is total: if the repeat loop is entered, then by our assumption about ¢(z) there must be
at least two outputs of f(z), and since at least one output is > ¢(z), a value of z will always
be found, and the loop will eventually terminate.

We now show that for all z, A(z) will output less than k strings. There are two cases:

1. If ¢(z) is the maximum output of f(z), then A will only output ¢(z) on any accepting
path,i.e., A(z) is 1-valued.

2. If ¢(z) is less than some output of f(z), then the maximum output of f(z) is never
output on any accepting path of A. This is because any accepting path will either
output ¢(z) or else the minimum of a set of at least two distinct outputs of f(z). In
this case, A outputs at most k& — 1 outputs of f(z).

Now to complete the proof, assume that NPbV; C. PF. We show how to compute a
value ¢(z), lying between the extreme values of f(z), via something akin to binary search.
Let M be an NP machine that on input (z,y) outputs 0 if there is a value z of f(z) with



z < y, and outputs 1 if there is a value z of f(z) with z > y (the machine may output both
values on different paths). M computes an NPbV, function, so it has a refinement Up(z,y)
in PF. Note that if y is less (resp. greater) than all outputs of f(z), then Up(z,y) = 1
(resp. Up(z,y) = 0). Fixing z, we perform “binary search” on the space of all y (up to an
appropriate polynomial length bound), where for each probe 3’ in the middle of a range, we
use Up(z,y’) to tell us where to continue searching—the upper half iff Up(z,y’) = 1. By
the aforementioned properties of Up, we will be steered into the range spanning the outputs
of f(z), and will converge on a value ¢(z) satisfying our requirements. O

5 Relationships with other Complexity Hypotheses

In this section, we ask how propositions Q and Q’ relate to other well-known complexity
hypotheses. The following relationships are either well-known or easy to prove.

Proposition 9 (i) /[BD76, IN88] If Q' holds, then P = NP N coNP.
(ii) If Q' holds, then one-way permutations do not exist.

(iii) P = NP — Q

Next, we consider one of the main open questions in structural complexity, namely,
whether NP = UP implies that the polynomial hierarchy collapses. We show that if Q’
holds, then the answer to this question is affirmative. This fact is interesting since it is not
known whether Q' itself implies a collapse of the polynomial hierarchy.

Theorem 10 If Q' holds and NP = UP, then PH = ZPPNF C ¥F.
Proof See appendix. O

A set Z is paddable if there exists a function g(-,-) that is one-to-one, length-increasing
and p-time invertible in both arguments, and has the property that for all strings = and
y, z € Z <= g¢(z,y) € Z. Paddable sets play an important role in the study of the
isomorphism conjecture [BH77]. A 1-1 paddable degree consists of all sets 1-1 equivalent to
some paddable set. We show that if Q holds then every 1-1 paddable degree collapses to a
1-1 length increasing degree.

Theorem 11 If Q holds, then every 1-1 paddable degree is a 1-1 length increasing degree.
Proof See appendix. O

We now extend Proposition 9, part (i) to probabilistic classes. It is interesting to note
that none of the following collapses are implied by the hypothesis P = NP N coNP.

Theorem 12 (a) Q' — AM N coAM = BPP.



(b) Q' — NP N coAM = RP.

Proof See appendix. O

One interesting consequence of the Theorem 12 is that if Q holds, then the graph
isomorphism problem is in RP since Goldreich, Micali and Wigderson [GMW91] showed
that graph isomorphism is in coAM.

We end this section by listing the relativized results that are known about Q and Q’.

Theorem 13 The following relativized results are known.

1. [FR94] Q holds relative to any sparse generic oracle with the subset property (any
subset of the sparse generic set is also a sparse generic).!

2. [FRY4] There exists an oracle A such that NP4 £ coNP# and Q* holds.
3. There exists an oracle B such that NPP = UPP, QB holds and NPP # coNPB.

4. [FRY4, IN88, CS93] There exists an oracle C such that P® = NPY ncoNPY and Q’C
fails.

5. [FFK92] There exists an oracle D such that QP fails and the isomorphism conjecture
holds relative to D.

6. [KMRS89] There exists an oracle E such that QF fails and the isomorphism conjecture
fails relative to F.

Proof To prove (3), it is not hard to see that the oracle in (2) can be constructed so that
NP = UP relative to the oracle. Hence the claim follows. O

In particular, the oracle in (3) implies that the collapse of the polynomial hierarchy in
Theorem 10 is unlikely to be improved to NP = coNP. This also shows that the result of
Hemaspaandra et al. [HNOS94] is optimal under relativizable proof techniques.

6 Open Questions

The following questions remain open.

1. Does Q imply that the polynomial hierarchy collapses? Is there an oracle relative to
which Q holds and the polynomial hierarchy does not collapse to ¥57?

Is there an oracle relative to which Q' holds but Q fails?
For some non-constant function f, does NPbV,; C. PF imply that NPfV, C. PF?

Does Q and P=UP imply that the polynomial hierarchy collapses?

ore W

Q and the Isomorphism Conjecture: Is there an oracle relative to which ¢ holds and
the Isomorphism conjecture holds?

!See [FR94] for a discussion on sparse genericity.
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Appendix

Here we give proofs of some of our main theorems.
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A Proofs of Theorems in Section 3

Theorem 1 The following are equivalent.

1. Proposition Q holds.
2. All polynomial-time computable onto functions are invertible in PF.
3. NPMV; C. PF.

4. If S € P such that S C SAT, then there exists a poly-time computable g such that for
all x € S, g(z) outputs a satisfying assignment of x.

5. P =NPnNcoNP and NPMV,; C. NPSV,.
6. For all M € NP such that L(M)= SAT, 3fs € PF such that for all x € SAT,

fu(z,pa(z)) —  a satisfying assignment of .

7. For all M,N € NP such that L(M) C L(N), 3fu €. P such that Vo € L(M),
fu(z, pu(2)) = pn(2).

8. For all L € P and for all NP machines M that accept L, Afar € PF such that Vo € L,
fu(z) — pa(z).

Proof (1) <= (3): Let Q hold and let f € NPMV,. Consider the following NP machine
M that accepts ¥*. On input z, M guesses a value y and accepts z if and only if f(z) — y.
Since f is total, L(M) = ¥*. Since hypothesis Q holds, for all z, some accepting path of M
is computable in polynomial time. Hence f €. PF. Conversely, let M be an NP machine
accepting X*. Consider the multivalued function, far(z) — pm(z). Since L(M) = ¥*,
Sy € NPMV,; and thus fj; has a refinement gpy € PF. Hence Q holds.

(2) < (3): The assertion in (2) is just a restatement of the assertion NPMV,; C. PF.

(3) < (4):  We simply observe that NPMV,; C. PF <= [NPMV,; C NPSV;
and NPSV,; C. PF]. The equivalence now follows by the relation NPSV; = p NP OcoNP
[Sel94, HNOS94].

(1) < (6): Suppose Q holds and M is an NP machine that accepts SAT. Define an
NP machine M’ as follows. On input (z, p), if p is not an accepting computation of M on z,
then accept. Else, if p is an accepting computation of M on x, then guess a truth assignment
of z and accept iff it is a satisfying assignment. It is easy to see that L(M') = ¥*. Since
Q holds, there exists f € PF computes an accepting path of M’ on input (z,p), and when
p = pm(), a satisfying assignment of z can be recovered from the output of f. Thus (1)
implies (6).

To prove the converse, let L(M) = ¥*. Let S be the range of Cook’s reduction applied
to M—that is, S is the set of boolean formulae obtained by encoding (see [Coo71]) the
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computations of M on strings in ¥*. Let f € PF be the reduction implicit in Cook’s
theorem [Coo71] from M to SAT. Observe that S € P.

Define M’ as follows. On input ¢, accept immediately if ¢ € 5. If ¢ € 5, then accept ¢ if
and only if there exists a satisfying assignment to ¢. It is easy to see that M’ accepts SAT.
It follows by the hypothesis that there exists a function gas such that on input (¢, par(¢)),
gy outputs a satisfying assignment of ¢. And for all ¢ € S, par(¢) is computable in
polynomial time.

Now we can compute an accepting computation of M as follows. On input z,let f(z) = ¢
and let gar (@, par(¢)) = w. The string w is a satisfying assignment for ¢. It follows by the
encoding in Cook’s theorem that an accepting computation of M can be recovered from w.

Hence Q holds.

(6) <= (7): To show that (7)implies (6) is easy—simply let N be the NP machine that

accepts SAT be guessing satisfying assignments. We will now show that (3) implies (7),
which will imply that (6) implies (7). Let M and N be such that L(M) C L(N). Define a
function hps as follows.

hat(z,y) — {pM(m) if pu(z)—vy ‘
’ x otherwise
It is easy to see that has € NPMVy, since hence for all pairs (z,y), if y = pap(z), then there

must exist a string z = py(z), which will be output by har. By (3), has has a refinement g
in PF. Thus (7) holds.

(1) <= (8): One direction ((8) — (1)) is trivial. For the converse, it suffices to prove
that (3) implies (8). Let L € P and let M be an NP machine that accepts L. Consider the
following total function.

har(z) — {pM(ac) it =€ L
T otherwise
Clearly, har € NPMVy, and by (3), hasr has a refinement gas that can be computable in
polynomial time. Thus, (8) holds.

(5) < (8): Once again (8) — (5) is trivial. Now suppose that (5) holds. Let S € P
and let M be an NP machine that accepts 5. Let h be the poly-time computable Cook
reduction from M to SAT. Consider the following range-set 5,

S'={¢| 3z € 5, h(z) — ¢}

It is easy to see that S’ C SAT. It follows by definition of Cook reduction that the string z
such that A(z) — ¢ is encoded in ¢. Also, whether z € S can be determined in polynomial
time. Thus, S € P. Since (5) holds, there exists a poly-time procedure g that computes
a satisfying assignment of all ¢ € S’. Thus, an accepting computation of M on = € S can
be computed as follows. On input z, compute g(h(z)) to obtain a satisfying assignment
of g(z). It follows by the encoding in Cook reduction that given a satisfying assignment
of h(z), an accepting path of M on z can be computed in polynomial time. Thus, (8)

holds. O
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B Proofs in Section 4
Lemma 8 If Q' holds, then NPSV; C. PF.

Proof lLet h € NPSV;. Assume, without loss of generality that there is a polynomial p
such that for all strings z, the length of the output of A(z) is exactly p(|z|). We will denote
the i’ bit of A(z) by h;(z). Define a 0-1 valued function g as follows.

g(m,i)l—> {hz(x) if 1 Sp(|$|)

0 otherwise

Since ¢ is 0-1 valued and Q' holds, there exists a refinement ¢’ of g such that ¢’ € PF. Given
z, the value of h(z) can be obtained simply by simulating ¢'(z,1), ¢'(z,2),...,9'(z,p(|z]))
and then concatenating the output. Thus h €. PF. O

C Proofs in Section 5
Theorem 10 If Q' holds and NP = UP, then PH = ZPPNF.

Proof It suffices to show that Q' and NP = UP implies that NPMV C. NPSV, since
by a result of Hemaspaandra et al. [HNOS94], if NPMV C. NPSV, then PH = ZPPYF,
Further, to prove that NPMV C. NPSV, it suffices to show that there exists a single-
valued nondeterministic transducer that computes a satisfying assignment of a given boolean
formula [Sel94].

Let M be an UP machine accepting SAT. Since Q' holds, there exists a function
far € PF that computes the first bit of a satisfying assignment of ¢, given ¢ and pas(¢) as
input. Let ¢ be a polynomial that bounds the running time of M. For convenience, we will
assume that for a boolean formula ¢ with variables x;,...,zg, far outputs the value of z;
in the satisfying assignment.

Now consider the following nondeterministic transducer 7. On input ¢(z1,22,...,%,),
guess n-pairs of strings: ((y1,61),...(yn, b)) such that by,bs,...,b, € {0,1} and y1,...,y, €
{0, 1}2(m),

Now verify that y1 = papr(@(z1,...,2,)) and by = far(¢,y1) = by, and forall 1,2 <7 < n,
yi = pam(p(b, ..., bi—1, 24y ..., 20)) and b; = far(z,y;). If all the above conditions hold, then
output b1by...b,.

It is easy to see that by . ..b,, is a satisfying assignment of ¢, since b,, = far(¢(b1, ..., bn-1,%4)).
We need to show that by . ..b, is unique—that is, no two accepting computations of T output
two different assignments. This follows from our following claim.

Claim 1 For all i, if b1,...,b;_1 are unique, then b; is unique.
Proof If by,...,b;_1 are unique, then ¢(by,...,b;—1,;,...,x,) is unique, and since M is
a UP machine, par(¢(b1,...,bi—1,%;,...,2,)) is unique too. Recall that fas € PF, so the

claim follows. O
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Thus T is an NPSV transducer that computes satisfying assignments, and hence PH =

7PPNP. 0

Theorem 11 If Q holds, then every 1-1 paddable degree is a 1-1 length increasing degree.

Proof Let A and B be many-one equivalent and let A <P B via a one-to-one function
f. If B is paddable, the trivially, A reduces to B via a 1-1 length-increasing reduction.
Now assume that A is paddable. Let g be the padding function of A. We will show that A
reduces to B via a one-to-one length-increasing reduction.

A one-to-one length-increasing reduction A’ from A to B can be constructed as follows.
Let z be an input string. Consider the set pad(z) = {g(z,y) | y € SI*1*?}. Now consider
the set Im(z) = {f(w) | w € pad(z)}. Since f is 1-1, it must map distinct strings in Im(z)
to distinct strings. Since g is 1-1 by definition, ||[Im(z)|| > 2/*I+'. Thus, by the pigeon-hole
principle, for all z € ¥*, there exists a string z € I'm(z) such that |z| > |z|.

Define h to the function that maps z to such a string z. Clearly A € NPMV;. Since Q
holds, A has a refinement A’ in PF. Hence A’ is the 1-li reduction from A to B. O

Theorem 12 (a) Q' — AM N coAM = BPP.

(b) Q' — NP N coAM = RP.

Proof To prove (a), let L € AM N coAM. It follows by a result of Furer et al. [FGM*89],
that the AM N coAM protocol for L can be converted to a protocol with “one-sided error”,
that is, for all strings z, the “correct” verifier will accept z for all random strings. Let V;
and V3 be the verifiers for the Arthur-Merlin systems for L and L. Consider the following
Turing machine M that accepts ¥* x ¥*. On input (z,r), M guess a “response” from
Merlin on input z and then nondeterministically simulates a computation of V; or V5, on
input z with the random string r. If either V; or V; accept, then accept (z,r). Clearly, M
accepts X* x X*, and since Q holds, there exists a polynomial-time computable function fjs
that, on input z, outputs a computation of M. Hence, membership in L can be determined
as follows. On input z, simulate fas(z,r) on a random string r. If the output of fas is
an accepting computation of Vi, then accept, else reject. It is easy to see that the above
procedure will be correct with high probability. Hence L € BPP.

The proof of (b) is identical to the proof of (a)—now M also guess a witness for z if
x € L, hence the BPP algorithm described above is an RP algorithm. O
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