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Abstract

This paper investigates the invertibility of certain
analogs of the Turing jump operator in the polynomial-
time Turing degrees. If C is some complezity class, the
C-jump of a set A is the canonical C-complete set rel-
ative to A. It is shown that the PSPACE-jump and
EXP-jump operators are not invertible, i.e., there is
o PSPACE-hard (resp. EXP-hard) set that is not p-
time Turing equivalent to the PSPACE-jump (resp.
EXP-jump) of any set. It is also shown that if PH
collapses to 3%, then the Xf-jump is not invertible.
In particular, 1f NP = co-NP, then the NP-jump is
not invertible, witnessed, in particular, by G @ SAT,
where G is any 1-generic set. These results run con-
trary to the Friedberg Compleieness Criterion [Fri57]
in recursion theory, which says that every (recursive)
Turing degree above 0' is the Turing jump of another
degree. The sets used in the paper to witness C-jump
noninvertibility are all of the form G @ C, where G s
1-generic and C is some C-complete set. Other facts
regarding 1-generics G and G ® SAT are also ezplored

in this paper; in particular, G always lies in NP4 — P4
for some A <}, G, but if A <b_,, G @ SAT <k SAT#
for some A, then G <F, A®SAT, which in turn implies
either G <% A or P # NP.

1 Introduction

Much insight has been gained about the structure of
resource-bounded reductions and degrees by compar-
ing them with their recursion theoretic analogs. Some-
times the structures are similar; for example, Lad-
ner [Lad75] showed the polynomial-time (ptime) ver-
sion of Post’s problem: if P # NP then there is an
NP set which is neither in P nor NP-complete under
ptime Turing reductions. Frequently, the structures
are opposite—Ladner’s results also show that there
are no minimal ptime Turing degrees, in contrast to
the recursion theoretic case. The most unfortunate
circumstance, however, is also the most common: the
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polynomial-time analogs of known recursion theoretic
results remain unresolved. The halting problem is
known to be undecidable, but is SAT ¢ P? A result of
Myhill [Myh55] says that all m-complete r.e. sets are
recursively isomorphic, but its polynomial-time ver-
sion, the Isomorphism Conjecture, is a famous unre-
solved conjecture in complexity theory [BH77]. The
list goes on.

The Friedberg Completeness Criterion in recursion
theory [Fri57] states that the range of the Turing jump
operator on the Turing degrees is as large as possi-
ble: {a | 0’ < a}. In other words, a degree is jump-
invertible if and only if it lies above 0’. We address
natural complexity theoretic analogs of this statement
for complexity classes C. Namely,

Statement 1 For any set B ptime Turing hard for
C, there Is a set A such that B =, C4, where C4 is
some canonical C4-complete set under (unrelativized)
ptime Turing reductions.

If we call C4 the C-jump of A, then Statement 1
can be rephrased as, “a ptime Turing degree has a
C-jump inverse if and only if it is C-hard,” which is
a precise ptime analog of Friedberg’s result about the
(unbounded) Turing degrees. We show that State-
ment 1 is false for ¢ = PSPACE,EXP, and other
larger classes, and in the event that the polynomial
hierarchy collapses to %, the statement is false for
C = %% as well. In particular, if NP = co-NP, then
the NP-jump is not invertible. Our results thus run
contrary to the recursion theoretic setting, at least un-
der strong assumptions. The question of whether the
NP-jump is invertible without assumptions (or with
weaker assumptions) remains open at present, and we
currently know of no nontrivial class C for which State-
ment 1 holds.

It is worth noting that the Turing jump has been
successfully inverted in at least one restricted re-
cursion theoretic setting. Mohrherr [Moh84] showed



that every tt-degree above K contains a jump. Her
proof takes the original set constructed for the Fried-
berg jump inversion and shows that its jump is tt-
equivalent to the target set.

We use 1-generic sets (see Section 2; also see
Jockusch or Soare [Joc80, S0a87]), which greatly sim-
plify our task of addressing these questions. In Propo-
sition 5, we will show that if any C-hard degree fails to
have a C-jump inverse, then the degree of G @ C fails
to have one also, where G is any 1-generic set and C'is
complete for C [For93]. Observing this fact allows one
to concentrate exclusively on studying the behavior of
G @ C to decide Statement 1.

We give preliminary definitions in Section 2 and
prove our main results in Section 3. In Section 4, we
explore further the behavior of 1-generic sets, deter-
mining that every 1-generic set lies strictly between A
and SAT# for some A.! In fact, for all 1-generic G,
there is an A such that

A <}, G <P, SAT4, (1)

but there are no ptime Turing reductions going in the
opposite direction, so in particular, G € NP4 — P4,
This result does bear a resemblance to its recursion
theoretic analog, [Joc80, Theorem 5.1], which states
that every 1-generic set G is r.e. in some A <1 G. We
then show that the ptime tt-reduction mentioned in
(1) cannot be replaced by a ptime m-reduction or even
a ptime parity tt-reduction without assuming P # NP
unrelativized. The proof of the latter result relies on
the linearity of parity tt-reductions.

Finally in Section 5, we examine the related ques-
tion of NP-hardness versus relative NP-completeness.
We also suggest extensions to this work and pose some
open problems.

2 Preliminaries

We assume the reader is familiar with the basic con-
cepts of computability and complexity theory, which
can be found in a number of standard texts, includ-
ing [Soa87, HUT9]. We use w to denote the natu-
ral numbers, and use z,y, 2, ... for variables ranging
over w. We use «,3,v,0,T,u,v,w for variables rang-
ing over finite characteristic functions, i.e., functions
D — {0,1} where D C w is finite. We call these
functions (binary) strings if D is an initial segment

ISAT# is defined by Goldsmith and Joseph [GJ86]. Any
other NP4-complete set under unrelativized ptime Turing re-
ductions can be substituted for SAT# in the statement above,
for example, the set K(A) [BDG88]. We use SAT4 here mainly
to avoid confusion with the halting problem, which is denoted

by K.

of w. We identify strings with natural numbers via
the usual binary representation. For z € w, we let
|z| denote the length of z as a binary string. We use
A,B,C,... for subsets of w, and often identify them
with their characteristic functions. For A4, B C w,
A9BYE {2z | z € AYU{2z + 1 | ¢ € B} denotes
the join of A and B, A A B denotes the symmetric
difference of A and B, and A denotes w — A. If o is
a string, then o @ B denotes the partial characteris-
tic function f such that for all z, f(2z + 1) = B(z),
f(22) = o(z) if o(z) is defined, and f(2z) is unde-
fined otherwise. We fix a bijection (-, ):w X w — w to
be the standard ptime computable, ptime invertible
pairing function [Rog67].

If f and g are partial characteristic functions, we
say f < g to mean [ is extended by g, and f < ¢
to mean [ is properly extended by g. The domain
of f is denoted by domain(f), and f(z) | means
z € domain(f). If D C domain(f) is finite, then f}\D
denotes the unique partial characteristic function ex-
tended by f whose domain is D. Let S be a set of
binary strings and A C w. A meets S if there is a
o < A with o € S. A strongly avoids S if there is a
0 < Asuch that forall 7 >0, 7¢ S. Aset G Cw
is 1-generic if G either meets or strongly avoids every
r.e. set of strings. For more on 1-generic and generic
sets and their uses in recursion and complexity theory,
see [Joc80, Soa87, BI87, FFKL93].

If M is a time-bounded accepting/rejecting oracle
Turing machine (OTM) and f a partial characteristic
function, then M/ () is defined just in case all of M’s
oracle queries on input z are in domain(f). M7 then
denotes the partial characteristic function computed
by M with oracle f. The one exception to this rule is
when M is an NP machine; then, M/ (z) will also be
regarded as defined if there is some accepting path of
M7 (z), all of whose oracle queries are in domain(f)
and answered according to f, even if queries made on
other paths are not in domain(f). For a set A4, we
use M to denote both the machine M using oracle A
and the set computed by M with oracle A. It should
be clear from the context which meaning we intend.
If M’s oracle is the explicit join of two sets A and
B with B recursive, then we often separate the two
oracles, and view M as explicitly using the oracle A
only (M#), but having “private” access to the oracle
B; that is, M is a Turing reduction to A that uses B
internally.

This paper is concerned primarily with questions
about the structure of the ptime Turing degrees. Thus
all our notions of reducibility, equivalence, degrees,
completeness, and hardness will be with respect to



unrelativized ptime Turing reductions unless explic-
itly stated otherwise. If C is some relativizable com-
plexity class that is “reasonable,” i.e., A <% B implies
P4 C ¢4 C CP for all A and B, then we say that C
admits a jump if there is some OTM M such that M4
is CA-complete for all A (remember that completeness
is with regard to wunrelativized ptime Turing reduc-
tions). We will denote this complete set by C4, and
will write C? simply as C. Most of the usual complex-
ity classes containing P admit jumps: P, NP, ¥%, I1%,
..., PSPACE, EXP, NEXP, .... If C admits a jump,
then the operator that takes a set A to C4 we will
call the C-jump. By the “reasonableness” of C, the C-
jump clearly preserves ptime Turing equivalence, so it
can be thought of as an operator on the ptime Turing
degrees, independent of the machine used to compute
C#4. From now on, when we use C we will assume that
it admits a jump.

We say that the C-jump is invertible if every C-
hard degree is the C-jump of some degree. In other
words, for every C-hard set B, there is an A such that
P2 = p¢*,

If ¢ = NP for example, we will take C4 to be
SATA, the relativized version of SAT defined by Gold-
smith and Joseph [GJ86]). We will identify SAT# with
some NP oracle machine that computes it. For ev-
ery A, SAT# is complete for NP under unrelativized
ptime m-reductions. Moreover, the queries made by
SAT#(z) are strings of length at most |z|.

Finally, for S C w and n € w we use S<" to denote
the set {z € S | |z|] < n}. If o(z) is defined for all
z with |z| < n, then <™ denotes the set {z | |z| <
n & o(z) =1}.

3 Main Results
We first show the following (rather easy) fact:

Theorem 2 The PSPACE-jump is not invertible.

Proof: Let B be any set. If there is a set A such
that PSPACE“ = P3, then we have

PSPACE? = PSPACEFSPACE”
— PSPACE# = PE.

It is routine to construct a PSPACE-hard set B such
that PZ #£ PSPACE?®, which proves the theorem. O

Stephan [Ste95] has recently extended this result
to show that the EXP-jump is also not invertible, and
likewise for any reasonable deterministic class above

EXP.

Theorem 3 (Stephan) If C is a class and C4 is
closed under the NP-jump for all A, then the C-jump
is not invertible.

Proof: A C-hard set B can always be constructed
such that P? #£ NP5 (in particular, the set G @ C
described below suffices, where G is 1-generic and C
is C-complete). Suppose B =%, C*4 for some A. Then,

since SATC" € C4, and C# is C%4-complete, we have
B _ c4 A _
SAT” =8 SAT* <L ¢4 =L B,

and thus P? = NP2, which contradicts our choice of
B. O

Corollary 4 (Stephan) The EXP-jump is not in-
vertible.

We turn our attention in the rest of this section
to the question of jump invertibility for classes, some
of whose relativizations are not closed under the NP-
jump, i.e., classes that fail to satisfy the hypothesis of
Theorem 3 above. Here, the situation is much more
subtle; the proofs are more difficult and are based
upon unproven and unlikely assumptions. Still, the
results below provide strong evidence for the nonin-
vertibility of these jumps, and the techniques used in
the proof of Theorem 7 have more general applicabil-
ity, which we explore in the next section.

In the proof of Theorem 3, the set witnessing C-
jump noninvertibility was taken to be G @& C, where
G is any 1-generic set and C is C-complete. Actually,
this choice works in general. When considering the
question of C-jump inversion for an arbitrary class C,
we need only study the set G @ C. This is by virtue
of the following proposition [For93], whose proof may
be skipped:

Proposition 5 (Fenner, Fortnow) Let C be a
complexity class that admits a jump, and let G be
any 1-generic set. If the C-jump is not invertible (i.e.,
there exists a C-hard set B that is not equivalent to
the C-jump of any set), then G @ C is not equivalent
to the C-jump of any set.

Proof: The idea is that we can diagonalize against
any equivalence between GOC and C# by finite exten-
sion. Let B be asin the hypothesis. Since B&C =}, B,
B ® C also satisfies the hypothesis, and so does D& C
for any D such that D A B is finite. Let M, M5, and
M3 be any three ptime deterministic OTMs, and for
all sets D let Lyi(D), L2(D), and L3(D) denote M?,



MP, and MP, respectively. By hypothesis, for any
set D which is a finite variant of B, we have

D@ C #b, ¢l (De0)

and thus
Cch(PeC) £ [,(D& C)
or (2)
D @ C # Lz(CL:(PoC)),

This inequality is forced by only a finite amount of D;
that is, there exists a string 7 < D such that

CL:(r0C) () |£ Ly(r ® C)(z) |
() or - ®
(7 ® C)(z) 1 La(CH:99)(a) |

Let o be an arbitrary string. In (2), if we let D 4'p
except that D(z) = o(z) for all z € domain(o), then
there is a 7 = o satisfying (3). Thus the set

sd {7 | T satisfies (3)}
is dense. S is also r.e., so G meets S. Therefore,

Ch:(GOC) £ [,(G® C)
or (4)
G @ C # L3(Cr:(6o0)),

Since the ptime OTMs M;, M5, and M3 were chosen
arbitrarily, we have

G o C #h ch(999) (5)

for any M;. For any A, if C4 =" G®C, then we must
have A <%, G @ C, and this is explicitly ruled out by
(5). Thus there is no A such that C4 =k, G@C. O

The next lemma is crucial to most of our later re-
sults, especially Theorems 7 and 12. It says essentially
that any self-reduction of a 1-generic set must also self-
reduce all sets extending some finite string.

Lemma 6 Suppose G is a 1-generic set and R is some
time-bounded OTM. IfG = RS, then thereisac < G
such that B = R® for all B » o.

Proof: The set of strings

s ¥ {r | 3z(r(z)|# R"(z) |)}

is r.e. and hence is either met or strongly avoided by G.
By hypothesis, G does not meet S, so the conclusion
follows. O

We now prove our main results, which are all corol-
laries of the next theorem. We say that a class C is
polynomial-use bounded if there is a polynomial p such
that for all oracles A and inputs z, C*(z) uses A only
on queries of length at most p(|z|). PSPACE and X%
for & > 0 are all polynomial-use bounded.

Theorem 7 Suppose C is polynomial-use bounded
and G is 1-generic. For any set A, if

A<k goc<kct,

then
ADC
SAT#®¢ ¢« g C.

The next corollary leads directly to our results
about specific jumps. It pertains to classes that dis-
play a particular kind of weak NP-robustness.

Corollary 8 If C is polynomial-use bounded and
SATA®C <% C# for all A, then the C-jump is not
invertible.

Proof: Suppose the C-jump is invertible. For any
1-generic G, let A be such that G @ C =% C#. The
hypotheses of Theorem 7 hold, so we get SATA®C 4
GoC =4 C# as a contradiction. The C-hard set G®C
is therefore not equivalent to the C-jump of any set.
O

Note that PSPACE clearly satisfies the hypotheses
of Corollary 8, so we obtain an alternate (albeit much
more complicated) proof of Theorem 2 this way.

Corollary 9 For any k > 0, if ¥¥ = II}, then the 2% -
jump is not invertible. In particular, if NP = co-NP,
then the NP-jump is not invertible.

Proof: Assume the hypothesis and let C be a ¥%-
complete set. Both C and C are recognized respec-
tively by NP oracle machines M and N with an oracle
D € 3% _,. For any A, we can compute SATA®C on

input z by an NP4®? algorithm as follows: we guess
a path p of SATA®C(m) by nondeterministically guess-
ing answers to queries to C. If p is rejecting, we reject.
If p is accepting, we can then verify that our answers
were correct by guessing accepting paths yi,...,y, of
MP on those C-queries answered “yes” and accepting
paths nq,...,n, of NP on those C-queries answered
“no.” We accept iff we find such paths. The algorithm
shows us that

SATA®C ¢ NP4®P ¢ NP(FL-0" ¢ spd,

and thus ¥ satisfies the conditions of Corollary 8.
O



Proof of Theorem 7: This proof combines
Lemma 6 with a certain indirect NP hiding technique.
The trick is to define a language in NP4®C which de-
pends on too much of G to be reducible to G & C in
polynomial time.

Let A = M for a ptime DOTM (deterministic
OTM) M with private oracle access to C, and let
G = N* for some DOTM N whose use of A is re-
stricted to queries of polynomial length (N4 computes
G from A via C#). The machine N exists because C
is polynomial-use bounded, although N will not nec-
essarily run in polynomial time. We have

G = NM°

so by Lemma 6 there is a string 09 < G such that
for all B > 09, B = NMZ, By making a few minor
adjustments to M and N, we can assume without loss
of generality that

(VB) B=NM", (6)

as well as A = M% and G = N4.

We define a language L4 € NPA®C and show that
LA ¢% G @ C, which proves the theorem. If t(n)
is a monotone, recursive bound on the running time
of NB(z) for all B and for all z of length n, then
there is a monotone, unbounded, ptime computable
function b(n) such that max{b(n), 2°™ - t(b(n))} < n
for all n. (For example, if ¢(n) is exponential, then
b(n) = loglogn will certainly do.) Suppose pis a
monotone polynomial bounding both the running time
of M and the length of oracle queries of N. Let

n Ay<b(n)
14 £ {0 Bajy <y [Ale) £ MY (@)]

To see that L4 € NPAG)C, we note that for |z| < p(n),

MV (z) can be computed from 4 @ C in deter-
ministic time polynomial in n, owing to our choice of
b(n). Both A and C are needed for the computation;
recall that M has private oracle access to C. Now let
Q@ be any ptime DOTM with private oracle access to
C, and let ¢ be a polynomial bound on @’s running
time. If we show that L # Q€, we are done; since Q
was chosen arbitrarily, we have L4 £5 G @ C. Since
G is 1-generic, we need only show that for every string
0 < G there is a string 7 > o and z such that

M (2)1# Q7(2) ] - (7)

For if this is the case, then G must meet the set of all
such 7, and so Q¢ # IM® = A,

Given any o, let mg be the least m such that o(2) is

undefined for all z of length m, and let ng be least such

that b(ng) > mg and g(ng) < 2™°. We define 7 to be o
extended with zeros just far enough to be defined on all
y of length at most max{q(no), p(p(no))}. Note that
for any sets G » # and a¥ MEC, we have G=N4 by
Equation (6). Thus for all z of length at most p(no),
we have

A(e) = MC(z) = ME“™ ()

_ Ma<b(””)(m) _ M(NA)<b("0)(m)‘

Therefore, 0™ ¢ LA 1 Q7 (0™°) accepts, then letting
¥ 2 and z £ omo satisfies Equation (7).

If Q7(0™°) rejects, then let y be least such that
ly| = no and y is not queried by Q7(0"°). Define T
to be the same as 7 except that 7(y) = 1. Q7(0™°)

still rejects. Now consider any Gy rand A% MEC,
further, let D L VS Again by Equation (6) we
have _ - _

G = N# and G<¥(m) = NP,

But é(y) + é<b("0)(y), and so there must be some z

queried by N4 (y) such that Z(m) # D(z). That is,
there is an z with |z| < p(no) such that

i(e) £ D) ]
_ M5<b(n0)(1‘.) _ M(NA)<b(nD)(€L‘.).

Thus 0"° € LZ, and Equation (7) is satisfied. O

Remark: The machines M and N in the previous
proof can be viewed as total recursive operators (e.g.,
mapping a set B to MP). Equation (6) then says
that their composition, N o M, is the identity. This
immediately implies that M is one-to-one and N is
onto. The injectivity of M is evident, for example,
when we argue that changing a single bit of G must
change A somewhere.

Stephan [Ste95] has a alternate proof of Theorem 7
which does not use 1-generic sets. With the hypothesis
that NP = co-NP, he constructs an NP-hard degree
in EXP with no NP-jump inverse.

4 NP-Intermediacy of 1-Generic Sets

Although we suspect that G @ SAT cannot be in the
degree of SAT* for any A, a natural question to ask is
whether G or G @ SAT can lie strictly between A and
SAT# for some A. The next theorem shows this to
be the case for both G and G @ SAT. In fact, we get



G € NP# — PA. Unlike Theorem 7, Theorem 10 does
correspond positively with a recursion theoretic result
regarding 1-generic sets, namely, every 1-generic set G
is 1.e. in some set strictly below G [Joc80].

Theorem 10 For any 1-generic set G there is a set A
such that for all recursive R,

1. A<P, G <P SAT#,
2. SAT* 2. G @ R, and

3.G¢2 A®R.

Proof Sketch: For any oracle D we define a length-
preserving function

€2 (2) & D(21)D(210)D(2100) - - - D(z10l1-1)

and two languages

12 £ {(z,eP(2)) |z € D},
daf

L7 = {1"|(3(z,y) € D)|e| = |y| = n}.

Given a l-generic G, let A a LE. Clearly, A <P, G,
and for all z,

z€ G (@) |zl = |yl & (o,9) € 4],

so G € NP# ie., G <P SAT#.

Let R be a recursive set and let M be any DOTM
running in polynomial time with private oracle access
to R. Since LY € NP? for all D, it suffices to show
that L{ # M® and G # M* with finite extension
arguments starting with a prefix of G. To see that
L # MG, start with a string 0 < G and pick n large
enough. If M7%0(1™) accepts, extend o to a string

r ¥ 500... long enough to (i) bound the use of the
acceptance, (ii) force 1™ ¢ Lg’I, and (iil) make £7(z) |
for all z of length n. If M7%0"(1™) rejects, find a pair
(z,01*l) with |z| = n such that M7°°(1") does not
query z. Let 7 be as before except that 7(z) = 1. We
have ¢7(z) = 0/%l, which puts (z,0/®) into L], thus
putting 1™ into Lg’I.

Showing G # M# is a similar routine application

of NP hiding, and the details are left to the reader.
O

Corollary 11 For every 1-generic set G there is an A
such that both G and G @ SAT are in NP4 — P4, and
not in the complete degree of NP4,

Interestingly, replacing the tt-reducibility in Theo-
rem 10 by a more restrictive reducibility, such as <P,
or even just S%_“, implies P # NP. This is also true
for G @ SAT as well as G. Thus we cannot get such
a stronger result without either using unproven com-
plexity theoretic assumptions or proving P # NP.

Theorem 12 Let D be an arbitrary recursive set. If
G is 1-generic and there is an A such that

,D
4 <52, G <h SAT4,

then G <P A @ SATP.

Here, ng)tt stands for ptime parity truth table re-
ducibility with unrestricted private adaptive oracle ac-
cess to D. For example, if D = 0, we conclude from
the hypothesis that G <§ A @ SAT. For D = SAT
we get G <h A @ 2%, where we identify 3% with some
»2-complete set.

Corollary 13 If there is a 1-generic set G, a set D €
PH, and a set A such that

A<b_,, Go D <k SAT* and G £}, 4,

then P # NP.

Proof: If P = NP, then SAT? € P and so G <P 4
by Theorem 12. O

The proof of Theorem 12 is somewhat unusual in
that it depends on the fact that parity tt-reductions
naturally correspond to linear maps between certain
vector spaces over Zs. If S C w is any set, then we let
25 denote the set of all characteristic functions with
domain S. We can naturally view 2° as a vector space
over the field Z,, with vector addition being compo-
nentwise addition modulo 2. For u, v € 2°, we let u+v
denote the vector sum of u and v.2 Suppose M com-
putes a parity tt-reduction by making nonadaptive
queries. To see how M induces linear maps between
these vector spaces, one can readily verify that for any
o and 7 with the same domain, M°t™ = M + M".
(M?, M7, and M°*7 all have the same domain.)

Proof of Theorem 12: Suppose A S%_“ G via
a ptime DOTM M which can privately make un-
restricted adaptive queries to D but only parity-tt
queries to G. Suppose further that N is a ptime

2Tt is customary to use @ to denote this sum, but @ is over-
loaded enough in this paper as it is.



DOTM and G = NSAT",
rem 7, we then have

As in the proof of Theo-

G- NSATMG _ g€

where R is a DOTM simulating the computation of

G
NSATY™ By Lemma 6, there is a string o9 < G

B
such that (VB > o¢) B = R? = NSATY Again by
tweaking M and N slightly, we may also assume that

(YVB) B = RB = NSAT" (8)

Given input z, we describe a procedure to compute
G(z) from A @ SATP?. First we find finite functions
o, v with size polynomially bounded in |z| such that
a < MY and « determines the value of NS4T"(z)
(i-e., makes the computation defined). We can do this
readily using the SATP portion of the oracle:

We start with o := v := 0, and we sim-
ulate the computation of N(z). Each time
N makes an oracle query g, we determine if
there are polynomial sized o > « and 7 > v
such that ¢ < M7™ and SAT?(¢q) = 1. If there
are any such o and 7, then there are ones of
polynomial size: it suffices that M7 yield a
o that gives answers to queries made along
some accepting path of SAT?(g). Moreover,
such ¢ and 7 can be found easily via pre-
fix search using SAT?. (The prefix search
asks existential questions about the compu-
tation of M, which itself uses D implicitly
as an oracle.) If there are such ¢ and 7, we
set  := o and ¥ := 7, answer “yes” to N's
query, and continue. If not, we answer “no”
and continue.

[Note that in general @« 4 A and v £ G, so we

cannot simply output y(z) at this point.] We let

s ¥ domain(a) and T A domain(y), and compute

Jé] a APS, making queries to A. Finally, if z ¢ T,
output 0. Otherwise, find a (:T — {0, 1} such that
M¢(y) = A(y) for all y € S (prefix search using
SAT; note that |S| and max(S) are both polynomi-
ally bounded in |z|), and output {(z). This ends the
algorithm.

The procedure above clearly runs in polynomial
time relative to A @ SAT?. To see that it outputs
G(z), we first observe that z € T'; otherwise, for any
set B > v, the computation of R?(z) does not depend
on B(z). That is, we have REV{#}(2) = RP-{o}(g),

which violates Equation (8) above. Next, we observe
that ¢ exists; this follows from the fact that M7 (y) is
defined for all y € S and M is a tt-reduction from A
to G.

We now consider the map f:27 — 25 induced by
the computation of M on the members of S:

(Vu € 27) f(u) £ M®)s.

This is a linear map (M is a parity tt-reduction), and
a, 3 € range(f). This means that f~!(a) and f~1(8)
are nonempty affine subspaces of 27. Furthermore,
it is easy to verify that f~1(8) is an affine trans-
late of f~!(a), that is, there is a uy € 27 such that
f7YB) = f(a)+uo. Forany v,w € f~1(a), we have
R'(z) | = R¥(z) | = N34T"(2) |, hence v(z) = w(z)
by Equation (8). Since ¢ and G)T are both elements
of f=1(B), there are vectors v,w € f~!(a) such that

(=v+ug
and
G’|\T = w + up.
But then,
{(2) = [v + uo](2)
= [w +uo)(z) = [G]T)(z) = G(a),
and the algorithm is correct. O

5 Related Questions and Further
Work

We conjecture that the NP-jump is not invertible. By
Corollary 9, we know that proving the opposite would
be as hard as proving NP # co-NP. It would be inter-
esting if one could prove that the NP-jump is invert-
ible based on some reasonable complexity theoretic as-
sumptions (ones that hold in a relativized world, say).
We present the following proposition as evidence that
the NP-jump is not invertible, and we hope it will be
helpful in obtaining a proof of noninvertibility.

Proposition 14 Suppose G is 1-generic and M is a
ptime DOTM such that

G @ SAT =B SAT#,
where A = MG®5AT | Then the following hold:
1. NP # co-NP.
2. NPA®SAT L Np4,
3. A is not NP-hard.
4. A <% G.

5. M"®SAT jg low for PNP,



Proof Sketch:

1. This follows immediately from Corollary 9 and
Proposition 5.

2. In the proof of Theorem 7 with C = NP, the set
L# is in NPA®SAT "and L4 £P G@SAT. If L4 €
NP4, then SAT4 #£5 G @ SAT, contradiction.

3. This follows immediately from the item 2.

4. If A <% G we can remove the SAT portion of M’s
oracle, which puts L“ into NP#. We proceed as
in the proof of item 2.

5. Let Q be a ptime DOTM such that SAT# =
GHSAT
SATM®® = QC®SAT By adapting the proof
of Lemma 6, we may assume that for all B,

SATMBeBSAT _ QBGBSAT‘

Setting B = 0 yields

SATMmeSAT _ Qﬂ)e)SAT‘

The right hand side is in PNF.

O

Is every NP-hard set relatively NP-complete? That
is, for every set B with SAT <k B, is there an A
such that B is NP%-complete? This question is dif-
ferent from the one addressed in Section 3, because
(ptime Turing) completeness for NP relative to an or-
acle A customarily means that the witnessing ptime
Turing reductions also have access to A. We are not
particularly interested in this question here because
(1) it does not directly relate to the structure of the
ptime Turing degrees, and (2) it can be affirmed triv-
ially: given an NP-hard set B, choose any A such that
B <P A and P4 = NP4,

The set G® C of Theorem 7 is not recursive, and it
begs the question of whether the C-jump is not in-
vertible on the ptime degrees of recursive sets. A
more careful analysis of the requirements of Theorem 7
should yield a recursive witness to noninvertibility. It
is indeed likely that some resource-bounded notion of
genericity—of the type studied by Ambos-Spies et al.
[ASNT94, AS95]—will suffice.

Is the NEXP-jump invertible? What about X-levels
of the exponential hierarchy? Neither Theorem 3 nor
Theorem 7 immediately applies to these classes.

Returning to the question of NP-jump invertibility,
is there a relativized world where the NP-jump s in-
vertible? In phrasing this question, one must make

sure that all computations have free access to the ora-
cle, including the reductions. It is easily checked that
this question is equivalent to the existence of an oracle
O such that

(VB)(34)[ B <& SAT#®° <P B @ SAT? ],
or equivalently,

dB 1-generic in O)(3A4
g
[ B <P SAT#®? <P. B @ SAT?].
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