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Abstract

We show that polynomial-time randomness (p-randomness) is preserved under a variety of
familiar operations, including addition and multiplication by a nonzero polynomial-time com-
putable real number. These results follow from a general theorem: If I ⊆ R is an open interval,
f : I → R is a function, and r ∈ I is p-random, then f(r) is p-random provided

1. f is p-computable on the dyadic rational points in I, and

2. f varies sufficiently at r, i.e., there exists a real constant C > 0 such that either

(∀x ∈ I − {r})
[
f(x)− f(r)

x− r
≥ C

]
or

(∀x ∈ I − {r})
[
f(x)− f(r)

x− r
≤ −C

]
.

Our theorem implies in particular that any analytic function about a p-computable point
whose power series has uniformly p-computable coefficients preserves p-randomness in its open
interval of absolute convergence. Such functions include all the familiar functions from first-year
calculus.

Keywords: Randomness, p-randomness, complexity, polynomial time, measure, martingale,
real analysis

Subject Classification: Computational complexity

1 Introduction

Informally, we might call an infinite binary sequence “random” if we see no predictable patterns in
the sequence. Put another way, a sequence is random if it looks “typical,” that is, it enjoys no easily
identifiable properties not shared by almost all other sequences. Here, the notion of “almost all”

∗An extended abstract of this paper appeared in FCT 2011 [5].
†Partially supported by NSF grants CCF-0515269 and CCF-0915948.
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comes from Lebesgue measure on the unit interval [0, 1]. What we mean by “easily identifiable,” on
the other hand, can vary greatly with the situation. In statistics, random sequences are useful to
avoid bias in sampling or in simulating processes (e.g., queueing systems) that are too complex for
us to determine exactly. In statistics, desirable properties for random sequences include instances of
the law of large numbers: a fixed sequence of length n should occur in the sequence asymptotically a
2−n fraction of the time, for example. Other examples include the law of the iterated logarithm. In
cryptography and network security, “easily identifiable” must be strengthened to “unpredictable by
an adversary.” In computer science generally, random sequences should produce successful results
most of the time when used in various randomized algorithms.

There is always a trade-off between the amount of randomness possessed by a sequence and
the ease with which it can be produced. Random sequences that can be produced algorithmically
(i.e., pseudorandom sequences) are of course desirable, provided they have enough randomness
for the task at hand. The study of algorithmic randomness has a long and rich history (see, for
example, [4, 3] for references to the literature). Complexity theoretic notions of randomness were
first suggested by Schnorr, and resource-bounded measure and randomness were developed more
fully by Lutz (see [8]). For a survey on the subject, see [1].

A natural trade-off in the context of polynomial-time computation is the notion of polynomial-
time randomness, or p-randomness for short (see Definition 2.1, below), which is closely tied with the
notion of p-measure introduced by Lutz [6, 7]. There are p-random sequences that can be computed
in exponential time; in fact, almost all sequences in EXP (in a resource-bounded measure theoretic
sense) are p-random. Yet p-random sequences are still strong enough for many common tasks, both
statistical and computational. For example, p-random sequences satisfy the laws of large numbers
and the iterated logarithm (see [13]), and they provide adequate sources for BPP computations
and have many other desirable computational properties (see [8]).

The current work addresses some geometric aspects of p-random sequences. Recently, connec-
tions between the geometry of Euclidean space and effective and resource-bounded measure and
dimension have been found [9, 10]. The question of how the complexity or measure theoretic prop-
erties of a real number are altered when it is transformed via a real-valued function goes back at
least to Wall [12], who showed that adding or multiplying a nonzero rational number to a real num-
ber whose base-k expansion is normal1 yields another real with a normal base-k expansion. Doty,
Lutz, & Nandakumar recently extended Wall’s result, showing that the finite-state dimension of
the base-k expansion of a real number is preserved under addition or multiplication by a nonzero
rational number [2]. At the other extreme of the complexity spectrum, it is not hard to show that
algorithmic randomness (Martin-Löf randomness [11]) is preserved under addition or multiplication
by a nonzero computable real, regardless of the base of the expansion.

In this paper we take a middle ground, considering how polynomial-time computable functions
mapping reals to reals preserve p-randomness. We show (Theorem 4.1, below) that such a function
f maps a p-random real r to a p-random real f(r) provided f satisfies a kind of anti-Lipschitz
condition in some neighborhood of r: f(x) varies from f(r) at least linearly in x− r. (This result
still holds even if f is not monotone in any neighborhood of r, or if f is only polynomial-time
computable on dyadic rational inputs, or if f enjoys no particular continuity properties.)

Our result has a number of corollaries: p-randomness is preserved under addition and mul-
tiplication by nonzero p-computable reals (complementing the results in [12, 2] and the folklore

1An infinite sequence s over a k-letter alphabet Σ is normal iff for any finite string w ∈ Σ∗, there are nk−|w|(1+o(1))
occurrences of w as a substring among the first n letters of s, as n tends to infinity.
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result about algorithmically random reals); it is also preserved by polynomial and rational func-
tions (with p-computable coefficients) and all the familiar transcendental functions on the reals,
e.g., exponential, logarithmic, and trigonometric functions.

The polynomial-time case presents some technical challenges not present with unbounded com-
putational resources. Roughly speaking, given a polynomial-time approximable function f : R→ R,
our goal is to define a betting strategy (i.e., a martingale; see Section 2) that bets on the next bit
of the binary expansion of a real number r, given previous bits. The strategy is based on the
behavior of an assumed strategy d that successfully bets on f(r). If we had no resource bounds,
then we could approximate f at various points as closely as needed to obtain a good sample of d’s
behavior on f applied to those points, allowing us to mimic d and thus succeed on r. Since we
are polynomial-time-bounded, however, we have no such luxury, and we have to settle for rougher
approximations of f . For example, d could succeed on f(0.0111111111 · · · ) (where there is a long
string of 1’s before the next 0 in the argument to f) but lose everything on f(0.10000 · · · ), which
is close by. If we only have a poor approximation to f , then we cannot distinguish the two cases
above, and so d is no good at telling us how to bet on the first digit after the decimal point. For-
tunately, we may assume that d is conservative—in the sense that it does not bet drastically—so
that d’s assets are relatively insensitive to slight variations in the real numbers corresponding to
the sequences it bets on.

Section 2 has basic definitions, including martingales and p-randomness. Section 3 describes
the conditions on real-valued functions sufficient to preserve p-randomness. Our main results are
in Section 4, where we prove that these conditions indeed suffice; Theorem 4.1 is the main result
of that section. In Section 5, we show that these conditions hold for a variety of familiar functions.
In Section 6, we give evidence that the strongly varying hypothesis in Theorem 4.1 is tight. We
suggest further research in Section 7.

2 Notation and basic definitions

We let N = {0, 1, 2, . . .}. We let Q be the set of rational numbers. A dyadic rational is some q ∈ Q
expressible as ±a/2b for some a, b ∈ N. We let Q2 denote the set of dyadic rational numbers.

For real x > 0, we let lg x denote log2 x.
In this paper, we only consider the binary expansions of real numbers. If need be, all our results

can easily be modified to other bases.
Our basic notions and results about p-computability, martingales, and randomness in complexity

theory are standard. See, for example, [7, 8, 1].
Let w ∈ {0, 1}∗ and s ∈ {0, 1}∞. We let |w| denote the length of w, and for any 0 ≤ i < |w| we

let w[i] be the (i + 1)st bit of w. Similarly, for any i ∈ N we let s[i] denote the (i + 1)st bit of s.
For any m,n ∈ N with m ≤ n, we let s[m. . . (n − 1)] = s[m]s[m + 1] · · · s[n − 1] ∈ {0, 1}∗ denote
the substring consisting of the (m+ 1)st through the nth bit of s. We let {0, 1}n denote the set of
strings in {0, 1}∗ of length n. If v ∈ {0, 1}∗ ∪ {0, 1}∞, we let w v v mean that w is a prefix of v,
and we let w @ v mean that w is a proper prefix of v. We denote the empty string by λ.

Recall that a martingale is a function d : {0, 1}∗ → R such that for every w ∈ {0, 1}∗,

0 ≤ d(w) =
d(w0) + d(w1)

2
.
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We will also assume without loss of generality that d(λ) ≤ 1. We say that d succeeds on a sequence
s ∈ {0, 1}∞ iff

lim sup
n→∞

d(s[0 . . . (n− 1)]) =∞ .

We say that d strongly succeeds on s iff

lim inf
n→∞

d(s[0 . . . (n− 1)]) =∞ .

A function d : {0, 1}∗ → R is p-computable if there is a polynomial time computable function
d̂ : {0, 1}∗ × {0, 1}∗ → Q such that ∣∣∣d(w)− d̂(w, 0r)

∣∣∣ ≤ 2−r

for every w ∈ {0, 1}∗ and r ∈ N. We say that d̂ is a p-approximator for d. A real number c is
p-computable if the constant function {0, 1}∗ → {c} is p-computable, and we may suppress the first
argument in a p-approximator for c.

Definition 2.1. A sequence s ∈ {0, 1}∞ is p-random if no p-computable martingale succeeds on
s.

Definition 2.2. We will say that a martingale d is conservative iff

1. for any w ∈ {0, 1}∗ and b ∈ {0, 1},

d(w)

2
≤ d(wb) ≤ 3d(w)

2
,

and

2. for any s ∈ {0, 1}∞, if d succeeds on s, then d strongly succeeds on s.

Note that if d is conservative, then d(w) ≤ (3/2)|w| for all w. It is well-known (and easy to
show) that if there is a p-computable martingale that succeeds on s, then there is a conservative
p-computable martingale that succeeds on s.

We identify a sequence s ∈ {0, 1}∞ with a real number 0.s ∈ [0, 1] via the usual binary expansion:
0.s :=

∑∞
i=0 s[i]2

−(i+1). This correspondence is one-to-one except on Q2, where it is two-to-one.
For every x ∈ {0, 1}∗, we define 0.x := 0.x000 · · · , and we define the dyadic interval

Γx := [0.x, 0.x+ 2−|x|] = {0.s : s ∈ {0, 1}∞ ∧ x @ s} .

For s ∈ {0, 1}∞, we define 0.s to be p-random iff s is p-random. If x ∈ R, then we define x to
be p-computable (p-random) just as we do for x−bxc. It is well-known that no p-computable real
number is p-random.
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3 Functions of interest

We will restrict our attention to certain types of real-valued functions of a real variable. We are
only interested in the behavior of these functions on p-random inputs. For simplicity, we will only
consider functions with domain [0, 1], but this is in no way an essential restriction. Our functions
will possess a certain p-computability property and a certain strong variation property. Both these
properties are local in the sense that we only care about them in the vicinity of a p-random number.

Definition 3.1. A function f : [0, 1]→ R is weakly p-computable if there exists a polynomial-time
computable function f̂ : {0, 1}∗ × {0, 1}∗ → Q such that for any w ∈ {0, 1}∗ and r ∈ N,∣∣∣f̂(w, 0r)− f(0.w)

∣∣∣ ≤ 2−r .

Note that a weakly p-computable function can behave arbitrarily on [0, 1]−Q2.

Definition 3.2. Let f : [0, 1]→ R be a function and let Γy ⊆ [0, 1] be some dyadic interval with
y ∈ {0, 1}∗. We say that f is weakly p-computable on Γy iff there exists a ptime computable function

f̂ : {0, 1}∗ × {0, 1}∗ → Q such that for any w ∈ {0, 1}∗ and r ∈ N,∣∣∣f̂(w, 0r)− f(0.(yw))
∣∣∣ ≤ 2−r .

If x ∈ [0, 1], then we say that f is weakly p-computable at x iff f is weakly p-computable on some
dyadic interval containing x.

We say that f is locally weakly p-computable if f is weakly p-computable at all p-random points
in [0, 1].

[Note that 0.(yw) ∈ Q2 is the dyadic rational number corresponding to the string yw (the
concatenation of y and w).]

In other words, f is weakly p-computable at x iff we can approximate f on the dyadic rationals
in some dyadic interval containing x in polynomial time. Notice that we are not insisting that
f have any continuity properties. This means in particular that f̂ may not uniquely determine
f on Γx. Notice also that a function may be locally weakly p-computable but not “globally” p-
computable, being patched together nonuniformly with various p-computable functions on different
dyadic intervals.

We can extend Definition 3.2 to weak p-computability at an arbitrary point x ∈ R in the natural
way.

Definition 3.3. Let I ⊆ R be an interval, let f : I → R be a function, and let x ∈ I be some point.
We say that f strongly varies at x on I iff there is some real constant C > 0 such that either

1. for all z ∈ I − {x},
f(z)− f(x)

z − x
≥ C ,

or

2. for all z ∈ I,
f(z)− f(x)

z − x
≤ −C .
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f(r)

r

f(r)

r

Figure 1: For f to strongly vary at r, its graph must confine itself to the shaded region on the left
(if strongly increasing) or the right (if strongly decreasing) in some neighborhood of r. The thick
line on the left has slope C (satisfying y− f(r) = C(x− r)), and the line on the right has slope −C
(satisfying y − f(r) = −C(x − r)), for some constant C > 0. Both diagrams depict an arbitrarily
small neighborhood of r.

In case (1) we say that f strongly increases at x on I, and in case (2) f strongly decreases at x on
I.

We say that f strongly varies at x if f strongly varies at x on N for some open interval N
containing x. We define f strongly increasing/decreasing at x analogously.

The notion of strong variation is illustrated in Figure 1.

Example 3.4. If f is C1 in a neighborhood of x and f ′(x) 6= 0, then f strongly varies at x.

4 Main result

Here is our main technical theorem, from which the other results in the paper follow easily.

Theorem 4.1. Let I ⊆ R be some interval and f : I → R some function. Suppose r is a p-random
point in the interior of I. If f is weakly p-computable at r and strongly varies at r, then f(r) is
p-random.

4.1 Establishing Theorem 4.1

We start this section with two easy observations which we give without proof.

Observation 4.2. Let n be any integer, and let a ∈ Q2. A number r ∈ R is p-random if and only
if 2nr is p-random, if and only if r + a is p-random, if and only if −r is p-random.
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Observation 4.3. Let I ⊆ R be an interval, let f : I → R be a function, let n be any integer, and
let a ∈ Q2. Define

g(x) = 2nf(x) ,

h(x) = f(x) + a ,

j(x) = f(2nx) ,

k(x) = f(x+ a) .

Then f strongly varies at some x ∈ I on I (respectively, is p-computable at x) if and only if all of
(−f), g, h strongly vary (respectively, are p-computable) at x on I, if and only if j strongly varies
(respectively, is p-computable) at 2−nx on 2−nI, if and only if k strongly varies (respectively, is
p-computable) at x−a on I−a. The sense of variation (strongly increasing or strongly decreasing)
of f is the same as that of g, h, j, k and opposite that of (−f).

Theorem 4.1 is a corollary of the next lemma, which gives the theorem its essential technical
content. We prove this lemma later in this section. For convenience, we will assume that our
function f is monotone ascending. We will show later that this is not an essential restriction.

Lemma 4.4. Let f : [0, 1]→ R be weakly p-computable and monotone ascending on [0, 1]. Suppose
that x0 ∈ [0, 1] and that f strongly increases at x0 on [0, 1]. Then if f(x0) is not p-random, then
x0 is not p-random.

To prove Lemma 4.4, we need to construct a martingale df that succeeds on x0, given one
that succeeds on f(x0). If martingale d succeeds on f(x0), then we can define df (w) (for a given
string w) to sample the values of d on points in f(Γw). We do this by sandwiching df (w) between
a lower bound d−(w;n) and an upper bound d+(w;n). We get d+(w;n) by overestimating d’s
total contribution in an interval around f(0.w) (Equation (1), below), and we get d−(w;n) by
underestimating it (Equation (2)). These estimates become more refined as n increases, and,
provided d is conservative, they reach a common limit as n goes to infinity, yielding a well-defined
martingale df .

Definition 4.5. Let f : [0, 1]→ [0, 1] be monotone ascending on [0, 1] and let d be a martingale.
For every x ∈ {0, 1}∗, let ∆x denote the interval f(Γx) = [f(0.x), f(0.x + 2−|x|)], and for every
n ∈ N, define

d+(x;n) = 2|x|−n
∑

y∈{0,1}n : Γy∩∆x 6=∅

d(y) , (1)

and define
d−(x;n) := 2|x|−n

∑
y∈{0,1}n : Γy⊆∆x

d(y) . (2)

The only differences between the sums in Equations (1) and (2) are at most two terms d(y)
where Γy straddles the boundary of ∆x. The assumption that d is conservative is needed to ensure
that these terms are not too large, and thus that d+(x;n) and d−(x;n) are close to each other. The
following lemma is routine and easy to check.
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Lemma 4.6. Let f and d be as in Definition 4.5. For any x ∈ {0, 1}∗, if Γy is any dyadic interval
contained in ∆x (that is, Γy ⊆ ∆x), then letting n = |y|,

2|x|−nd(y) ≤ d−(x;n) ≤ d−(x;n+ 1) ≤ d−(x;n+ 2) ≤
· · · ≤ d+(x; 2) ≤ d+(x; 1) ≤ d+(x; 0) .

Proof. The first inequality holds because Γy ⊆ ∆x, and hence 2|x|−nd(y) is one of the terms
in the sum defining d−(x;n). To see the other inequalities on the top line, notice that each
term 2|x|−(n+i)d(y′) in the expression for d−(x;n + i) (for some i ∈ N) is equal to the sum
2|x|−(n+i+1)d(y′0) + 2|x|−(n+i+1)d(y′1) of two terms occurring in d−(x;n+ i+ 1).

Clearly, all terms in d−(x;n+ i) are included in d+(x;n+ i), and so every quantity on the top
line is less than or equal to the corresponding quantity on the bottom line.

Finally, the inequalities on the bottom line all hold because splitting each term 2|x|−id(y′) in
the expression for d+(x; i) into the equivalent sum

2|x|−(i+1)d(y′0) + 2|x|−(i+1)d(y′1)

accounts for all the terms in d+(x; i+ 1) (and possibly more).

Definition 4.7. Let f and d be as in Definition 4.5. We define the upper f -shift of d to be the
function defined for all x ∈ {0, 1}∗ as

d+(x) := lim
n→∞

d+(x;n) .

Similarly, we define the lower f -shift of d to be

d−(x) := lim
n→∞

d−(x;n) .

Since for any fixed x ∈ {0, 1}∗, d+(x;n) and d−(x;n) are both monotone functions of n (de-
creasing and increasing, respectively) by Lemma 4.6, the limits in the definition above clearly exist,
and

d−(x;n) ≤ d−(x) ≤ d+(x) ≤ d+(x;n)

for all n.
For some martingales, the upper and lower f -shifts may differ, but they coincide for conservative

martingales.

Lemma 4.8. Fix f and d as in Definition 4.5. Suppose further that d is conservative. For any
x ∈ {0, 1}∗ and n ∈ N,

d+(x;n)− d−(x;n) ≤ 2|x|+1

(
3

4

)n

. (3)

Proof. Here we only use Property (1) of being conservative. All the terms in the two sums on the
left-hand side of the inequality (3) cancel except for at most two dyadic intervals—one containing
the left endpoint of ∆x and the other containing the right endpoint. These two intervals correspond
to two strings y and z respectively, both of length n. Thus we get

d+(x;n)− d−(x;n) ≤ 2|x|−n(d(y) + d(z)) ≤ 2|x|−n
[(

3

2

)n

+

(
3

2

)n]
= 2|x|+1

(
3

4

)n

.
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Corollary 4.9. Let f and d be as in Definition 4.5. If d is conservative, then d+(x) = d−(x) for
all x ∈ {0, 1}∗.

Proof. Immediate from Lemma 4.8.

Definition 4.10. If f and d are as in Definition 4.5 and d is conservative, then we let df (x) denote
the common value d+(x) = d−(x), and we call df the f -pullback of d.

On input string x, df (x) merely samples d over the the interval ∆x = f(Γx).

Lemma 4.11. If f and d are as in Definition 4.5 and d is conservative, then its f -pullback df is
a martingale.

Proof. To see that df is a martingale, first we notice that

df (λ) ≤ d+(λ; 0) = d(λ) ≤ 1 .

Next, by examining terms in the sums and using Lemma 4.6, we notice that for any x ∈ {0, 1}∗
and n ∈ N,

d−(x0;n) + d−(x1;n) ≤ 2d−(x;n) ≤ 2d+(x;n) ≤ d+(x0;n) + d+(x1;n) .

Taking the limit of all sides as n→∞, we get

d−(x0) + d−(x1) ≤ 2d−(x) ≤ 2d+(x) ≤ d+(x0) + d+(x1) .

All these quantities are equal, since the two extremes are equal. Thus

df (x) =
df (x0) + df (x1)

2
.

The next lemma is key. Here is where we make essential use of the strongly increasing property
of f . (The hypothesis here is slightly weaker, though).

Lemma 4.12. Let f and d be as in Definition 4.5 with d being conservative. Suppose that there
exist r, s ∈ {0, 1}∞ and a real C > 0 such that

f(x)− 0.r

x− 0.s
≥ C (4)

for all x ∈ [0, 1]− {0.s}. If d succeeds on r and 0.s /∈ Q2, then df succeeds on s.

Proof. Note that Equation (4) implies f(x) < 0.r if x < 0.s and f(x) > 0.r if x > 0.s.
Set ` := max(0, dlg(1/C)e). We then have C ≥ 2−`.
Since 0.s /∈ Q2, s has infinitely many 0’s and infinitely many 1’s. This implies that s has

infinitely many occurrences of “01” as a substring, that is, there are infinitely many n ∈ N such
that s[n]s[n + 1] = 01. Fix any real M > 0. Since d succeeds on r and is conservative, d strongly
succeeds on r, and so there is some n0 ∈ N such that d(r[0 . . . (n − 1)]) ≥ M for all n ≥ n0. Fix
some n ≥ n0 such that s[n]s[n+1] = 01. Let x = s[0 . . . (n−1)]. We have |x| = n and x01 @ s. Let
y = r[0 . . . (n+ `+ 1)] be the first n+ `+ 2 bits of r, noting that d(y) ≥M . Here is the situation
at 0.r:
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∆x1∆x01

∆x

0.r

Γy

∆x00

We have 0.r ∈ Γy. Also, since 0.s ∈ Γx01−Q2, we have 0.x01 < 0.s < 0.x01+2−|x01|, which implies
f(0.x01) ≤ 0.r ≤ f(0.x01 + 2−|x01|), as noted above. It follows immediately that 0.r ∈ ∆x01.

Claim 4.13. Γy ⊆ ∆x.

Proof of Claim 4.13. By Equation (4) we have

0.r − f(0.x) ≥ C(0.s− 0.x) ≥ C(0.x01− 0.x) = C2−(n+2) ≥ 2−(n+`+2) .

Since 0.r ∈ Γy, we have

0.r − 0.y ≤ 2−|y| = 2−(n+`+2) .

Combining these two inequalities gives 0.r − 0.y ≤ 0.r − f(0.x), or equivalently, f(0.x) ≤ 0.y.
Similarly, we have

f(0.x+ 2−n)− 0.r ≥ C((0.x+ 2−n)− 0.s) ≥ C(0.x11− 0.x1)

= C2−(n+2) ≥ 2−(n+`+2) = 2−|y| ≥ 0.y + 2−|y| − 0.r ,

whence 0.y + 2−|y| ≤ f(0.x+ 2−n). Thus

Γy = [0.y, 0.y + 2−|y|] ⊆ [f(0.x), f(0.x+ 2−n)] = ∆x

as claimed. This concludes the proof of Claim 4.13.

Continuing with the proof of Lemma 4.12, we use Lemma 4.6 again, noting that |y| = |x|+`+2,
to get

2−(`+2)d(y) = 2|x|−(|x|+`+2)d(y) ≤ d−(x; |x|+ `+ 2) ≤ df (x) .

Since d(y) ≥M , we then get
df (x) ≥ 2−(`+2)M .

Since M is arbitrary, x v s, and ` is a constant independent of x, this means that df succeeds on
s.

Finally, we need a lemma regarding p-computability. The challenge in the proof is in finding
an easy (i.e., polynomial-time) way to approximate the d−(x;n) and d+(x;n).

Lemma 4.14. Let d be a conservative martingale, let f : [0, 1]→ [0, 1] be monotone ascending on
[0, 1], and let df be the corresponding f -pullback of d. Also assume f(1) = 1. If d is p-computable
and f is weakly p-computable on [0, 1], then df is p-computable.

10



Proof. The idea is that, given input x ∈ {0, 1}∗ of length n and accuracy parameter r ∈ N, we will
approximate some number between d−(x;m) and d+(x;m) for some sufficiently large m (but still
polynomial in n and r). We have no hope of computing the sum of Equations (1) or (2) directly,
as there are exponentially many terms. Fortunately, large blocks of the sum can be computed
all at once by evaluating d on shorter inputs. The condition that f(1) = 1 is only for technical
convenience and is not necessary; it is only required that f(1) be p-computable.

Fix polynomial-time functions

d̂ : {0, 1}∗ × {0, 1}∗ → Q and f̂ : {0, 1}∗ × {0, 1}∗ → Q

such that for all w ∈ {0, 1}∗ and r ∈ N,∣∣∣d̂(w, 0r)− d(w)
∣∣∣ ≤ 2−r and

∣∣∣f̂(w, 0r)− f(0.w)
∣∣∣ ≤ 2−r .

Fix an input x ∈ {0, 1}∗ and let n = |x|.
Fix an r ∈ N. We will choose m to be a sufficiently large integer (depending on n and r) to be

determined later. We prove the lemma by describing a procedure (running time polynomial in m)
to compute a number v ∈ Q such that |df (x)− v| ≤ 2−r.

Here is the procedure:

1. Compute dyadic rationals 0 ≤ a ≤ b ≤ 1, both with denominator 2m, so that [a, b] approxi-
mates ∆x to within less than 2−m for each endpoint:

(a) Compute c0 = f̂(x, 0m+2) and round c0 to the nearest a ∈ Q2 with denominator 2m so
that |c0 − a| ≤ 2−(m+1). Notice that

|f(0.x)− a| ≤ |f(0.x)− c0|+ |c0 − a| ≤ 2−(m+2) + 2−(m+1) < 2−m .

In other words,
a− 2−m < f(0.x) < a+ 2−m .

(Note that f(0.x) is the left endpoint of ∆x.)

(b) If x = 1n, then let b := 1. Otherwise, let x′ be the lexicographical successor of x in
{0, 1}n, and compute c1 = f̂(x′, 0m+2). Let b be the dyadic rational with denominator
2m closest to c1. Similarly to a, we have

b− 2−m < f(0.x′) = f(0.x+ 2−n) < b+ 2−m .

(Note that f(0.x+ 2−n) is the right endpoint of ∆x.)

(c) Without loss of generality, we can assume that 0 ≤ a ≤ b ≤ 1: if necessary, reset
a := min(max(a, 0), 1) and b := min(max(a, b), 1). These adjustments don’t affect the
inequalities above.

2. Let S be the set of all v-minimal strings w such that Γw ⊆ [a, b].

3. Finally, compute

v := 2n
∑
w∈S

2−|w|d̂(w, 0m) .
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Notice that no string in S is a proper prefix of any other string in S; hence the sets Γw for
w ∈ S are pairwise disjoint except for endpoints. Further, it is clear that

⋃
w∈S Γw = [a, b] if a < b

(otherwise, S = ∅).
We claim that S, and hence v, can be computed in time polynomial in m. This follows from

three facts:

1. a and b can be computed in time polynomial in m.

2. Every string in S has length at most m.

3. There are at most two strings in S of any given length.

Fact 1 is clear from the procedure description. For Fact 2, notice that, since a and b have denom-
inator 2m, if w is any string such that Γw ⊆ [a, b] and |w| > m, then removing the last bit of w
yields a proper prefix w′ @ w such that Γw′ ⊆ [a, b] as well, and so w is not v-minimal, and thus
w /∈ S.

Similarly for Fact 3, if w1, w2, w3 ∈ S are any three distinct strings given in lexicographical
order, and |w1| = |w3|, then |w2| < |w1|. To see this, suppose |w2| ≥ |w1|. Let w′ be the result of
removing the last bit of w2. Then Γw′ includes Γw2 and another dyadic interval of length 2−|w2|

immediately to the left or right of Γw2 . In either case, the left end point of Γw′ is not to the left of
that of Γw1 , and the right endpoint of Γw′ is not to the right of that of Γw3 . So Γw′ ⊆ [a, b], which
means that w2 is not v-minimal, and thus w2 /∈ S.

Thus S has at most 2m + 1 strings, each of length at most m, and so the following greedy
algorithm for computing S runs in time polynomial in m:

S ← ∅
z ← a
WHILE z < b DO

Let w ∈ {0, 1}∗ be shortest such that z = 0.w and z + 2−|w| ≤ b
S ← S ∪ {w}
z ← z + 2−|w|

END-WHILE
return S

It remains to show that v is sufficiently close to df (x).
First, note that, due to the closeness of our approximations to the endpoints of ∆x,

d−(x;m) ≤ 2n−m
∑

y∈{0,1}m : Γy⊆[a,b]

d(y) ≤ d+(x;m) . (5)

(The sum in the middle includes all the terms of the sum on the left, and the sum on the right
includes all the terms of the sum in the middle.)

Since [a, b] =
⋃

w∈S Γw, and the intervals Γw intersect only at endpoints, we can rewrite the
sum in the middle of (5) as

2n−m
∑
w∈S

 ∑
y∈{0,1}m : wvy

d(y)

 = 2n−m
∑
w∈S

2m−|w|d(w) = 2n
∑
w∈S

2−|w|d(w) ,

12



the equalities owing to the fact that d is a martingale. So Equation (5) becomes

d−(x;m) ≤ 2n
∑
w∈S

2−|w|d(w) ≤ d+(x;m) . (6)

Now we use the fact that
∣∣∣d̂(w, 0m)− d(w)

∣∣∣ ≤ 2−m for all w ∈ S. From (6) we get

d−(x;m)− 2n−m
∑
w∈S

2−|w| ≤ 2n
∑
w∈S

2−|w|[d(w)− 2−m]

≤ 2n
∑
w∈S

2−|w|d̂(w, 0m)

= v ≤ 2n
∑
w∈S

2−|w|[d(w) + 2−m]

≤ d+(x;m) + 2n−m
∑
w∈S

2−|w| .

We have
∑

w∈S 2−|w| = b− a ≤ 1, so the above inequality implies

d−(x;m)− 2n−m ≤ v ≤ d+(x;m) + 2n−m .

Since d−(x;m) ≤ df (x) ≤ d+(x;m) (as follows from Lemma 4.6), it is clear then that

|df (x)− v| ≤ d+(x;m)− d−(x;m) + 2n−m

≤ 2n−m + 2n+1

(
3

4

)m

= 2n−m + 2n−2m+13m

by Lemma 4.8. To bound |df (x)− v| above by 2−r, it suffices that 2n−m ≤ 2−(r+1) and that
2n−2m+13m ≤ 2−(r+1). That is,

m ≥ n+ r + 1 and m ≥ n+ r + 2

2− log2 3
.

So it suffices to set m := 4(n+ r+ 2). This makes the computation time for v polynomial in n and
r, because m is polynomial in n and r.

Proof of Lemma 4.4. Let f and x0 be as in Lemma 4.4. If x0 ∈ Q2, then it is clearly not p-random,
and we are done. Otherwise, let ` = bf(0)c, let h = df(1)e, and let m ≥ 0 be the least natural
number such that 2m ≥ h− `. For all x ∈ [0, 1), define

g(x) := 2−m(f(x)− `) ,

and define g(1) := 1. Then g : [0, 1]→ [0, 1] is monotone ascending, weakly p-computable on [0, 1],
and strongly increasing at x0 on [0, 1] by Observation 4.3. Further, since f(x0) is not p-random,
it follows from Observation 4.2 that g(x0) = 2−m(f(x0) − `) is not p-random, either. Thus there
is a conservative, p-computable martingale d that succeeds on g(x0). By Lemmata 4.12 and 4.14
(letting 0.s be x0), the g-pullback dg of d succeeds on x0 and is p-computable. Thus x0 is not
p-random.
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To prove Theorem 4.1, we first show that the monotonicity assumption in Lemma 4.4 is dis-
pensible. We do this by tweaking a nonmonotone function into a monotone one with the same
desirable properties.

Lemma 4.15. Let f : [0, 1]→ R be weakly p-computable on [0, 1]. Suppose that there exists x0 ∈
[0, 1] such that f strongly increases at x0 on [0, 1]. Then there exists a monotone ascending function
g : [0, 1]→ R that is weakly p-computable on [0, 1], strongly increases at x0 on [0, 1], and satisfies
g(x0) = f(x0).

Proof of Lemma 4.15. We first define g on Q2∩ [0, 1] to be monotone. Extending g to domain [0, 1]
will then be trivial.

The idea is that we give priority to dyadic rationals with smaller denominators, and for any
point x ∈ Q2, we let g(x) := f(x) unless this violates monotonicity with a neighboring point of
higher priority (i.e., lower denominator). If so, we adjust g(x) just enough to avoid the violation.

Here we give a recursive definition of g restricted to Q2∩[0, 1] based on f . For any q ∈ Q2∩(0, 1),
let yq ∈ {0, 1}∗ be the unique string such that q = 0.yq1. We define eq := |yq|+ 1 and call this the
exponent of q. By convention, the exponents e0 of 0 and e1 of 1 are both 0. Define

q− := 0.yq ,

and define

q+ :=

{
1 if yq ∈ {1}∗ ,
0.z1 if (∃z ∈ {0, 1}∗)(∃w ∈ {1}∗)[yq = z0w] .

(Note that z and w are unique if they exist.) The points q− and q+ are the dyadic rationals closest
to q (on the left and right side, respectively) whose exponents are less than that of q.

Now we define g(0) := f(0), g(1) := f(1), and for each q ∈ Q2 ∩ (0, 1),

g(q) := max(g(q−),min(g(q+), f(q))) . (7)

The recursion is well-founded because q− and q+ have smaller exponents than q.

Claim 4.16. The function g is monotone ascending on Q2 ∩ [0, 1].

Proof of Claim 4.16. Let p and q be dyadic rationals with 0 ≤ p < q ≤ 1. We proceed by induction
on e := max(ep, eq) to show that g(p) ≤ g(q). If e = 0, then we have p = 0 and q = 1, and clearly,
g(0) = f(0) < f(1) = g(1) by the constraints on f . If e > 0, we have three cases:

1. If ep < eq, then we have p ≤ q− by the maximality of q−, and so by the inductive hypothesis,
g(p) ≤ g(q−). Then by the recursive definition of g(q), we have g(q−) ≤ g(q), hence g(p) ≤
g(q).

2. If ep > eq, then p+ ≤ q, and so by the inductive hypothesis, g(p−) ≤ g(p+) ≤ g(q). By the
recursive definition of g(p) (and the fact that g(p−) ≤ g(p+)), we have g(p) ≤ g(p+), whence
g(p) ≤ g(q).

3. If ep = eq > 0, then |yp| = |yq|. Let y be the longest common prefix of yp and yq. Then clearly,
y0 v yp and y1 v yq. Let r = 0.y1. Since y is shorter than yp and yq, we have er < ep and
er < eq, and in addition, p < r < q. Thus p+ ≤ r ≤ q−, and so by the inductive hypothesis,
g(p+) ≤ g(r) ≤ g(q−). By an argument similar to the other two cases, we have g(p) ≤ g(p+)
and g(q−) ≤ g(q). Thus g(p) ≤ g(q).
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This ends the proof of Claim 4.16.

Claim 4.17. The function g is p-computable on Q2 ∩ [0, 1].

Proof of Claim 4.17. First g(0) = f(0) and g(1) = f(1), so g is p-computable at 0 and at 1. For
any q ∈ Q2 ∩ (0, 1), we have

g(q) = max(g(q−),min(g(q+), f(q))) .

First notice that for any r ∈ N, if a, b, and c are such that |a − g(q−)| ≤ 2−r, |b − g(q+)| ≤ 2−r,
and |c− f(q)| ≤ 2−r then it is not hard to see that

|max(a,min(b, c))− g(q)| ≤ 2−r .

Thus to approximate g(q) to within 2−r, it suffices to approximate g(q−), g(q+), and f(q) each to
within 2−r.

Let q = 0.yq1 where yq is as above. Unwinding the recursion of Equation 7, it becomes apparent
that g(q) only depends on f at 1 and at points of the form 0.y and 0.y1 for y v yq. So to approximate
g(q) we only need to approximate f on these points. Here is a nonrecursive polynomial-time
algorithm, equivalent to Equation 7, to approximate g on Q2 ∩ [0, 1). It assumes a p-approximator
f̂ for f on [0, 1) and a p-approximator f̂1 for f(1).

Algorithm for ĝ(x, 0r)
// x ∈ {0, 1}∗ and r ∈ N
// Outputs a y ∈ Q such that |y − g(0.x)| ≤ 2−r

Remove any trailing zeros from x

`← f̂(λ, 0r)

h← f̂1(0r)
s← λ
FOR i← 0 TO |x| − 1 DO

b← x[i]
IF b = 0 THEN

h← max(`,min(h, f̂(s1, 0r)))
ELSE // IF b = 1 THEN

`← max(`,min(h, f̂(s1, 0r)))
s← sb

END-FOR
OUTPUT ` and STOP

The algorithm above clearly runs in polynomial time. The proof that it correctly approximates
g(0.x) uses the following key loop invariant: At the start of each iteration of the FOR-loop, s @ x,
and in addition,

|`− g((0.s1)−)| ≤ 2−r and |h− g((0.s1)+)| ≤ 2−r .

We omit the details. This ends the proof of Claim 4.17.

Claim 4.18. There exists a C > 0 such that for all x ∈ [0, 1] ∩Q2 − {x0},

g(x)− f(x0)

x− x0
≥ C . (8)

15



Proof of Claim 4.18. We can let C be any constant witnessing the strong increase of f at x0 on
[0, 1]. We proceed by induction on the exponent ex of x. This is clear when ex = 0. If ex > 0, then

g(x) = max(g(x−),min(g(x+), f(x)))

by Equation 7. If g(x) = f(x), then were are clearly done. Suppose g(x) < f(x). Then Equation 8
is still satisfied if x < x0, so suppose that x > x0. We have g(x) = g(x+), and so, using the
inductive hypothesis,

g(x)− f(x0)

x− x0
=
g(x+)− f(x0)

x− x0
≥ g(x+)− f(x0)

x+ − x0
≥ C .

A similar argument using g(x−) works if g(x) > f(x). This ends the proof of Claim 4.18.

We now extend the definition of g to all of [0, 1] by

g(x) := sup{g(y) | y ∈ Q2 ∩ [0, x]} ,

except that we define g(x0) := f(x0). (If x0 ∈ Q2, then we already have g(x0) = f(x0), because
g(x−0 ) < f(x0) < g(x+

0 ) by Equation 8.) The claims imply that g has all the requisite properties.

Proof of Theorem 4.1. Let I, f , and r be as in the statement of the theorem. We can assume that f
strongly increases at x, for otherwise we apply the foregoing argument to −f , using Observations 4.2
and 4.3 to get that f(r) is p-random. We can choose some dyadic interval Γw = [0.w, 0.w+2−|w|] ⊆ I
containing r on which f is weakly p-computable and strongly increases at x. For all x ∈ [0, 1],
define

g(x) := f(0.w + 2−|w|x) .

By Observation 4.3, g is weakly p-computable on [0, 1] and strongly increases at the point s :=
2|w|(r − 0.w) on [0, 1]. By Lemma 4.15, there is a monotone ascending function h that is weakly
p-computable on [0, 1], is strongly increasing at s on [0, 1], and satisfies h(s) = g(s). By Observa-
tion 4.2, s is p-random. By Lemma 4.4, h(s) is p-random, and clearly, h(s) = g(s) = f(r), which
proves the theorem.

5 Some p-randomness-preserving functions

Here is the class of functions we will consider:

Definition 5.1. Let I ⊆ R be an open interval. A function f : I → R is well-behaved on I if f is
locally weakly p-computable and strongly varying at each of the p-random points in I.

Theorem 4.1 gives us the following corollary:

Corollary 5.2. If a function f is well-behaved on an interval I, then f preserves p-randomness,
i.e., f maps p-random points in I to p-random points.

A wide variety of functions are well-behaved and hence preserve p-randomness, including ad-
dition and multiplication by nonzero p-computable numbers, nonconstant polynomial and ra-
tional functions with p-computable coefficients, and all the familiar transcendental functions—
exponential, logarithmic, trigonometric, etc. (Define a function to be 0 where it would otherwise
be undefined.) Although these functions may not be strongly varying at all points, they are strongly
varying at all p-random points.

16



Definition 5.3. A sequence c0, c1, c2, . . . ∈ R is uniformly p-computable if there exists a polynomial-
time function ĉ : {0, 1}∗ × {0, 1}∗ → Q such that for all n, r ∈ N,

|ĉ(0n, 0r)− cn| ≤ 2−r .

Definition 5.4. Let I ⊆ R be an open interval. We say that a function f : I → R is p-analytic on
I if there exists a p-computable point x0 ∈ I and a uniformly p-computable sequence c0, c1, c2, . . .
such that for all x ∈ I,

f(x) =

∞∑
n=0

cn(x− x0)n ,

and the power series on the right converges absolutely for all x ∈ I.

Note that if f is p-analytic on I, then f is C1 on I. In this section we prove the following
theorem:

Theorem 5.5. Let I ⊆ R be an open interval. If f : I → R is nonconstant and p-analytic on I,
then f is well-behaved on I.

Theorem 5.5 follows from the two lemmas below:

Lemma 5.6. Let J ⊆ R be an open interval and let I be a dyadic interval such that I ⊆ J . If f is
p-analytic on J , then f is weakly p-computable on I.

Proof of Lemma 5.6. Our proof mirrors standard results from calculus. Let c0, c1, c2, . . . be a uni-
formly p-computable sequence witnessed by ĉ, and let x0 ∈ J be such that f(x) =

∑∞
n=0 cn(x−x0)n,

with the right-hand side converging absolutely, for all x ∈ J . Let r = sup{|x − x0| : x ∈ I}, and
let x ∈ I with |x − x0| = r. Since x ∈ J and J is open, there must be an ε > 0 such that∑∞

n=0 |cn|(r + ε)n < ∞. Hence all the terms |cn|(r + ε)n are upper bounded by some constant
C ≥ 1 independent of n. This implies in turn that for all −r ≤ z ≤ r and m ≥ 0, we can bound
the tail of the series:∣∣∣∣∣

∞∑
n=m

cnz
n

∣∣∣∣∣ ≤
∞∑

n=m

|cn|rn ≤
∞∑

n=m

C

(
r

r + ε

)n

= C

(
r

r + ε

)m r + ε

ε
≤ 2k−m/` , (9)

where k = dlg(C(r + ε)/ε)e and ` := d1/ lg((r + ε)/r)e.
Let x̂ be a p-approximator for x0. Fix w ∈ {0, 1}∗ such that I = Γw. For a ∈ {0, 1}∗ and s ∈ N,

define

ms := `(s+ k + 1) ,

bs :=

⌈
lg

(
2 + max

n<ms

{|ĉ(0n, λ)|, |0.wa− x̂(λ)|}
)⌉

,

f̂(a, 0s) :=

ms−1∑
n=0

ĉ(0n, 0s+bsn+2ms+1)
[
0.wa− x̂(0s+bsn+2ms+1)

]n
.
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Clearly, f̂ is polynomial-time computable. We then have, for all a ∈ {0, 1}∗ and s ∈ N, letting
e(n, s) denote s+ bsn+ 2ms + 1,∣∣∣f̂(a, 0s)− f(0.wa)

∣∣∣
=

∣∣∣∣∣
ms−1∑
n=0

ĉ(0n, 0e(n,s))
[
0.wa− x̂(0e(n,s))

]n
−
∞∑
n=0

cn(0.wa− x0)n

∣∣∣∣∣
≤

∣∣∣∣∣
ms−1∑
n=0

[
ĉ(0n, 0e(n,s))

[
0.wa− x̂(0e(n,s))

]n
− cn(0.wa− x0)n

]∣∣∣∣∣
+

∣∣∣∣∣
∞∑

n=ms

cn(0.wa− x0)n

∣∣∣∣∣
≤

ms−1∑
n=0

∣∣∣ĉ(0n, 0e(n,s)) [0.wa− x̂(0e(n,s))
]n
− cn(0.wa− x0)n

∣∣∣
+ 2k−ms/` ,

by Equation (9) because |0.wa − x0| ≤ r. By our choice of ms, we have 2k−ms/` = 2−s−1, which
bounds the tail term. For the term being summed, we use the formula for the difference of two
products as a telescoping sum:

α1 · · ·αn − β1 · · ·βn =

n∑
i=1

α1 · · ·αi−1(αi − βi)βi+1 · · ·βn .

Our choice of bs ensures that

2bs ≥ max
n<ms

{
|ĉ(0n, 0e(n,s))|, |cn|, |0.wa− x̂(0e(n,s))|, |0.wa− x0|

}
.

Combining these gives ∣∣∣ĉ(0n, 0e(n,s)) [0.wa− x̂(0e(n,s))
]n
− cn(0.wa− x0)n

∣∣∣
≤ 2bsn

(∣∣∣ĉ(0n, 0e(n,s))− cn∣∣∣+ n
∣∣∣x0 − x̂(0e(n,s))

∣∣∣)
≤ 2bsn(n+ 1)2−e(n,s) = (n+ 1)2−s−2ms−1

for all n < ms. Thus∣∣∣f̂(a, 0s)− f(0.wa)
∣∣∣ ≤ (ms)

22−2ms2−s−1 + 2−s−1 ≤ 2−s ,

and so f̂(a, 0s) approximates f(0.wa) closely enough.

Lemma 5.7. Suppose f is p-analytic and nonconstant in some open interval I. If r ∈ I satisfies
f(r) = 0, then r is p-computable.
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Proof sketch of Lemma 5.7. Let f(x) =
∑∞

n=0 cn(x − x0)n, where x0 is p-computable, the cn are
uniformly p-computable, and the sum converges absolutely on I. Let r be such that f(r) = 0.
Expressing f(x) as a power series about r gives f(x) =

∑∞
n=1 c

′
n(x − r)n for some constants c′n.

Since f is nonconstant, there is a least m > 0 such that c′m 6= 0. Then f(r) = f ′(r) = f ′′(r) =
· · · = f (n−1)(r) = 0, but f (n)(r) 6= 0.

It is easy to observe that if a function g is p-analytic on I, then so is its derivative g′. Letting
g := f (n−1), we see that: (i) g is p-analytic and thus weakly p-computable; (ii) g(r) = 0; and
(iii) g′(r) 6= 0. Hence there is a neighborhood N of r such that g(x) changes sign at x = r and
nowhere else. This allows us to find r quickly using binary search, testing the sign of g(x) for
various x ∈ N .

Proof of Theorem 5.5. We know already that, since f has a continuous derivative, it strongly varies
at any point r such that f ′(r) 6= 0 (hence if r is p-random then so is f(r)). If f ′(r) = 0, then r is
p-computable by Lemma 5.7, and thus not p-random.

Corollary 5.8. Let r be p-random. Then so are er, sin r, cos r, and tan r. If r > 0, then ln r is
p-random. If f is any fixed rational function whose numerator and denominator have p-computable
coefficients, and f is defined at r, then f(r) is p-random. If c 6= 0 is p-computable, then cr and
c+ r are p-random.

Proof. All these functions are p-analytic in some neighborhood of any point in their domains.

6 The tightness of Theorem 4.1

In this section, we give evidence that the strongly varying property of f in Theorem 4.1 is essentially
tight. To this end, we concoct monotone functions that deviate only slightly from strongly varying,
but none of whose outputs are p-random. For example, one could have f(0.σ) = 0.τ , where the
sequence τ results from the sequence σ by inserting zeros into σ very sparsely but infinitely often,
in places that are easy for a martingale to find and bet on.

Definition 6.1. Fix Z ⊆ N, and define its census function c(i) := |Z ∩ {0, . . . , i}| for all i ∈ N.

1. For every s ∈ {0, 1}∞, define sZ ∈ {0, 1}∞ such that, for all i ∈ N,

sZ [i] =

{
s[i− c(i)] if i /∈ Z,
0 if i ∈ Z.

2. Let fZ : [0, 1)→ R be the function mapping 0.s to 0.(sZ) for every s ∈ {0, 1}∞ with infinitely
many zeros.

Note that sZ results from s by inserting zeros at the positions i ∈ Z, shifting bits of s to the
right to make room.

Observation 6.2. Let Z ⊆ N be arbitrary, and let c be its census function.

1. For any s ∈ {0, 1}∞ with infinitely many zeros,

fZ(0.s) = 0.(sZ) =

∞∑
i=0

s[i]2−(i+c(i)+1) . (10)
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2. The function fZ is monotone ascending, and if N− Z is infinite, then fZ is one-to-one.

3. If the predicate, “n ∈ Z” is computable in time polynomial in n, then fZ is weakly p-
computable.

4. If Z is infinite and the predicate, “n ∈ Z” is computable in time polynomial in n, then f(x)
is never p-random for any x ∈ [0, 1).

Proof sketch. Equation (10) is a routine application of the definition of sZ . Point (2.) is obvious.
For Point (3.), note that the list 〈c(0), c(1), . . . , c(n)〉 is computable in time polynomial in n, which
makes the sum in Equation (10) easy to approximate to polynomially many terms. For Point (4.),
consider a martingale that bets on a string w iff |w| ∈ Z, in which case it puts all its money on the
next bit being 0. This martingale will succeed on any sequence of the form sZ .

Theorem 6.3. Let Z ∈ N be arbitrary, and let c be its census function. For any real x and y such
that 0 ≤ x < y < 1,

fZ(y)− fZ(x)

y − x
> 2−c(d− lg(y−x)e)−1 . (11)

If Z is finite, then its census function c is bounded from above, whence Theorem 6.3 says
that fZ is strongly increasing everywhere. The strength of Theorem 6.3 comes when Z is infinite
but extremely sparse, e.g., Z is the range of the one-argument Ackermann function. Then the
theorem implies that fZ comes very close to being strongly increasing, because the function c grows
very slowly. If, in addition, Z satisfies Observation 6.2(4.), then we get a weakly p-computable,
monotone function fZ that is extremely close to being strongly increasing everywhere, but none of
whose outputs is p-random.

Proof of Theorem 6.3. We first consider the case where n is a positive integer and y = x+ 2−n. In
this case, we prove that

fZ(x+ 2−n)− fZ(x) ≥ 2−c(n)−n . (12)

Once Equation (12) is established, Equation (11) follows easily by the monotonicity of fZ : setting
n := d− lg(y − x)e and noting that x+ 2−n ≤ y < x+ 21−n, we have

fZ(y)− fZ(x)

y − x
> 2n−1[fZ(y)− fZ(x)] ≥ 2n−1[fZ(x+ 2−n)− fZ(x)] ≥ 2−c(n)−1 .

To establish Equation (12), we let s ∈ {0, 1}∞ be such that x = 0.s (and s has infinitely many
zeros). Similarly, let x + 2−n = 0.t for some t ∈ {0, 1}∞ with infinitely many zeros. It is not too
hard to see that t results from s by adding 1 to s in the (n− 1)th position, then carrying 1’s to the
left until a zero is reached: Let k ∈ N be largest such that k < n and s[k] = 0. Such a k must exist
because x+ 2−n < 1 by assumption. Then s and t differ only in positions k through n− 1, where

s[k . . . (n− 1)] = 011 · · · 1,
t[k . . . (n− 1)] = 100 · · · 0.
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Using Equation (10)—and noting that c is monotone ascending—we then get

fZ(x+ 2−n)− fZ(x) = fZ(0.t)− fZ(0.s) =
∞∑
i=1

t[i]2−(i+c(i)+1) −
∞∑
i=1

s[i]2−(i+c(i)+1)

=

n−1∑
i=k

(t[i]− s[i])2−(i+c(i)+1) = 2−(k+c(k)+1) −
n−1∑

i=k+1

2−(i+c(i)+1)

≥ 2−(k+c(k)+1) −
n−1∑

i=k+1

2−(i+c(k)+1) = 2−c(k)

(
2−k−1 −

n−1∑
i=k+1

2−i−1

)
= 2−c(k)−n ≥ 2−c(n)−n ,

which establishes Equation (12).

7 Further research

P-randomness-preserving functions are clearly closed under composition. Are well-behaved func-
tions closed this way also?

Theorem 6.3 notwithstanding, we are at a loss to prove a converse to Theorem 4.1. Is there
even a partial converse? For example, consider the following conjecture about monotone functions:

Conjecture 7.1. If f is weakly p-computable and monotone in a neighborhood of r ∈ R but is not
strongly varying at r, then f(r) is not p-random.

Theorem 6.3 falls short of proving this conjecture, because it assumes that the set Z is easy to
compute. In general, however, if f is not strongly varying, then the violations to strong variation
may come in places that are difficult to detect by a martingale.
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