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Abstract

We introduce symmetric perfect generic sets. These sets vary from the usual generic sets by
allowing limited infinite encoding into the oracle. We then show that the Berman-Hartmanis
isomorphism conjecture [BH77] holds relative to any sp-generic oracle, i.e., for any symmetric
perfect generic set 4, all NP“-complete sets are polynomial-time isomorphic relative to A. Prior
to this work there were no known oracles relative to which the isomorphism conjecture held.

As part of our proof that the isomorphism conjecture holds relative to symmetric perfect
generic sets we also show that P4 = FewP* for any symmetric perfect generic A.

1 Introduction

Is it possible to define a motion of gemericity such that all NP-complete sets are p-
isomorphic? Judy Goldsmith and Deborah Joseph [GJ86]

We construct an oracle relative to which the Berman-Hartmanis Isomorphism Conjecture [BH76,
BH77] is true. This conjecture holds that any two NP-complete sets are isomorphic to one another
by a polynomial time computable and invertible one-one reduction. The Isomorphism Conjecture
has been the subject of considerable research. We recommend the surveys by Joseph and Young
[JY90] and Kurtz, Mahaney and Royer [KMR90].

The attempt to construct oracles relative to which the isomorphism conjecture either succeeded
or failed began soon after the conjecture was made in 1976.

Success was first obtained in finding oracles relative to which the conjecture fails. In 1983,
Kurtz (in an unpublished manuscript) constructed an oracle relative to which the conjecture failed.
Hartmanis and Hemachandra [HH91] later combined Kurtz’s construction with Rackoff’s construc-
tion [Rac82] of an oracle relative to which P = UP and thus no one-way functions exists [GS88|.
In 1989, Kurtz, Mahaney and Royer [KMR89] showed that the conjecture fails relative to a random
oracle; and Kurtz [Kur88] gave an improved version of his original construction that showed that
the conjecture fails relative to a Cohen generic oracle.

The attempt to construct an oracle relative to which the conjecture succeeds has proven much
more difficult. Even partial successes have been viewed as important advances. In 1986, Goldsmith
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and Joseph [GJ86] constructed an oracle relative to which a partially relativized version of the
isomorphism conjecture holds. Namely, they constructed an oracle A such that all of the p-complete
sets for NP4 are p4-isomorphic.

A m-degree is an equivalence class of sets all many-one reducible to each other. In 1987, Kurtz,
Mahaney and Royer [KMR87| gave a relativized version of their collapsing degree construction
[KMRS88], and showed that there is an oracle A relative to which some m-degree in NP4 collapses.
Finally, in 1989, Homer and Selman [HS89, HS92] gave an oracle relative to which the complete
degree for X% collapsed.

We introduce a new notion of genericity, and define the symmetric, perfect generic sets (a.k.a.
the sp-generic sets), and show

Theorem 1.1 Relative to any symmetric perfect generic set A, all NP-complete sets are polynomial-
time isomorphic.

We improve upon the work of Goldsmith and Joseph [GJ86] by allowing NP-complete sets via
relativized reductions.

After describing the mathematical background needed for this paper, in Section 3 we will
describe sp-generic sets and give some of their properties. In Section 4 we show that P4 = FewP*
for any sp-generic A which will form a necessary part of our proof that the isomorphism conjecture
holds relative to any sp-generic oracle. In Section 5 we will give some intuition for the proof of the
isomorphism conjecture followed by the detailed proof.

2 Mathematical Preliminaries

The natural numbers are denoted by N. The cardinality of a set X is denoted by || X||. Let
¥ ={0,1}.

We will use lower case Greek letters for partial functions from X£* — {0,1}. We say 7 eztends o
to mean that 7 is equal to o everywhere that o is defined. We often identify a language A C ¥* as
its characteristic function, for instance in saying A extends o. The everywhere undefined function
is denoted by . Two functions are compatible if they agree everywhere both are defined. For
compatible o and 7, the smallest partial function extending both is denoted o UT. We use dom(7)
and range(7) to represent the domain and range of 7 respectively.

We say a computation path of an oracle Turing Machine using 7 is defined if 7(z) is defined
for all queries = along that path. If M is an oracle nondeterministic Turing machine, we say that
M7 (z) accepts on a path p if all queries to the oracle made along p are in the domain of 7 and are
answered according to 7, and p ends in an accepting state.

We will sometimes need a machine to know the domain of 7 as well as the values of 7 on its
domain. For these machines we will define the total function 7 : ¥* x {0,1} — {0, 1} as follows:

0 otherwise

e,i) = { 1 if z € dom(7) and 7(z) =4

By abuse of terminology we will on occasion use the expression “f4(z)” to refer to one of: (i)
the value f4(e)f{i{} therfiii}ithe @omputation of a particular machine
g f on input z using oracle A. We will try to make clear which interpretation of “ _fA(:z:)”
when it cannot easily be inferred from context.



A 1-1 polynomial-time function f4 is (left-)invertible relative to A if there exists a polynomial-
time function g# such that for all z € £*, g4(f4(z)) = .

For a function f and an oracle 4, let f4(-1)(2) be the set of strings ¢ such that f4(z) = 2.

Let CNF# be a relativized version of CNF formulae (see [GJ86]). We will also consider the
formulae in a closed form, e.g., instead of a formula looking like (z V y) it will look like Jz3y(z Vy).
This will allow us to talk about “true” and “false” formulae and make it easier to combine formulae
with other expressions. Because we only talk about NP#-completeness, we only allow “3” as a
quantifier. SAT# consists of the true formulae relative to the oracle A.

Using standard encoding tricks and simple modifications of Cook’s theorem [Coo71] and Berman
and Hartmanis [BH77], we get that the following properties of CNF# and SAT# hold for all oracles
A:

1. For every nondeterministic oracle Turing machine M that runs in time O(n?) there exists a
polynomial-time unrelativized function f such that

(a) f reduces L(M*) to SAT#, and
(b) for all z, | £(z) = O(J2/%).

2. Every formula ¢ € CNF# has a representation as a binary string. Every binary string
represents a formula in CNF4,

3. Every formula represented by a binary string of n bits can only depend on A on strings of
length shorter than n.

4. There is an unrelativized polynomial-time padding function p such that for all formulae ¢
and strings z,

(a) P(yp,z) is true if and only if ¢ is true,
(b) [P(p,2)| > max(|g], [2[), and

(c) from P(y,z) we can in unrelativized polynomial time recover ¢ and z.

Berman and Hartmanis [BH77] observed that for any languages B and L such that B is NP4-
complete and has such a padding function and L in NP4, there is a one-to-one length-increasing
invertible reduction from L to B.

Let ¢ = (40,%1) using the standard pairing function. Let fo,... be an enumeration of functions
where f; simulates the deterministic oracle Turing machine with code %y running in time n’. Let
My, ... be an enumeration of nondeterministic oracle machines where A; simulates the Turing
machine with code %; running in time n’.

We use FP to represent the class of polynomial-time computable functions.

3 Symmetric Perfect Generic Sets

Definition 3.1 A sequence (a;);cN of integers form an iterated-polynomial sequence if there exists
a polynomial p such that p(n) > n? for all n, ag > 2, and a;1; = p(a;) for all i.



Definition 3.2 A partial characteristic function 7 : £* — {0,1} is a symmetric perfect forcing
condition if there is a iterated-polynomial sequence (a;);cN such that

( U ¥%)Ndom(7) =0

ieN

In other words T(z) is undefined for all ¢ such that |z| = a; for some i € N. Note that 7(z) may
be undefined on other  as well.

We generally refer to symmetric perfect forcing conditions as sp-conditions. As opposed to most
types of forcing conditions, sp-conditions cannot necessarily be coded into finite objects.

The name symmetric perfect is intended to describe the topological structure of the conditions,
and to honor our intellectual debts.

Topologically, we can view a symmetric perfect condition 7 as a complete binary tree, the
branchings of which correspond to points # at which 7(z) is undefined. The paths of a complete
binary tree form a closed set without isolated points in their natural topology, i.e., they are perfect.

From a scholarly point of view, our symmetric perfect conditions are special cases of Gerald
Sacks’ pointed perfect conditions [Sac71]. The unique contribution of Sacks was to recognize that
forcing conditions need not be recursive (as they are in the standard finite extension arguments or
in the recursion theoretic minimal degree construction). Rather, it is sufficient that 7 be recursive
in each of its members. This is his notion of pointedness. Our conditions are pointed, because they
can be conceived of as complete binary tree which has been pruned at a coinfinite recursive set
of points. This pruning is symmetric, in that we either remove all of the left branchings at = (by
setting 7(z) = 1) or we remove all of the right branchings at z (by setting 7(z) = 0).

Definition 3.3 A set S of symmetric perfect forcing conditions is dense if every sp-condition T,
there exists an sp-condition o in S such that o extends T.

Definition 3.4 A language A is symmetric perfect generic (sp-generic) if for every definable dense
set S of sp-conditions, there is a 0 € S extended by A.

By definable we mean the set {7 | o € S} is a II] class (see [Rog87]).
The following theorem is a simple adaptation of the Baire Category Theorem.

Theorem 3.1 FEvery sp-condition T is extended by an sp-generic language A.

Proof: Let Di,...be an enumeration of the definable dense sets. Let o9 = 7. For every 7 > 0,
let o; = o for some o € D; such that o extends o;_;. For all z € £*, let A(z) = lim; o 03(z,1). O

Definition 3.5 A proposition P(A) is said to be forced by an sp-condition T if P(A) is true for
all oracles A extending T.

Note that this definition is simpler but different from the usual definition of forcing on generic sets.
If P(A) is a first order proposition in A then the set S of conditions that force P(A) is definable
since o € S if and only if for all A extending o, P(A) holds.
We can already see the power of sp-generic sets by the following lemma:



Lemma 3.2 Given any sp-condition T and any language X there is an sp-condition o extending
T such that o forces X € P4.

Proof: Let (a;);cN be the iterated-polynomial sequence such that 7 is undefined on strings
of length (a;);cN. For each i, let b; = ay; and d; = ag;41. Let f(z) = 2017 where j is the smallest
value such that |2017| = d; for some i. Clearly j is bounded by a polynomial in |z|, f is 1-1 and
range(f) N dom(7) = §. Define o(y) as

7(y) if y € dom(7)
)1 ify=f(z)andz € X
o(y) = 0 ify=f(z)andz ¢ X

undefined otherwise

Thus for any A extending o, z € X if and only if f(z) € A. The partial function ¢ is undefined on
strings of length (b;);cN so o is an sp-condition. O

Of course, Lemma 3.2 does not imply that there is an sp-generic set G such that for every set X,
X is polynomial-time Turing reducible to G. For example an sp-generic set G cannot be reducible
to the halting problem relative to G. Lemma 3.2 only implies that all X such that the predicate
“X € P4 is first-order definable are encoded into all sp-generics.

4 P = FewP Relative to sp-Generics

In this section we will show that relative to sp-generics, acceptance of nondeterministic machines
with a small number of accepting paths can be decided in polynomial time.

Theorem 4.1 If A is an sp-generic oracle then P4 = FewP4.

This proof will build on ideas from Blum and Impagliazzo [BI87], Hartmanis and Hemachandra
[HH91] and Rackoff [Rac82].

An immediate corollary is:
Corollary 4.2 For any sp-generic oracle A, P4 = UP4.

Let R; be the requirement: “Either there is some input z such that M#(z) has more than n’
accepting paths, or L(MA) ¢ P4.”

By our enumeration of Turing machines at the end of Section 2, if A satisfies R; for all ¢, then
P4 = FewP4.

Fix i. The set of sp-conditions that force R; is definable since R; is a first-order proposition in
A. We will show that the set of sp-conditions that force R; is dense. Then any sp-generic A will
extend a 7 such that 7 forces R;. We will show these sets are dense by showing how to extend any
sp-condition 7 to another condition o such that o forces R;.

Let M = M; and let 7 be an sp-condition. Suppose 7 does not force “For all z, MiA(m) has at
most |z|* accepting paths.” For some A extending 7 and some z we will have that M4 (z) has more
than |z|* accepting paths. Let o = 7 U (A restricted to strings of length at most |z|*). Clearly &
extends 7 and forces “for some z, M4(z) has more than |z|* accepting paths.” To see that o is an
sp-condition pick a ¢ such that a, > || and let b; = a..; for all j € N.



For the rest of this section we will assume 7 forces “For all z, M4(z) has at most |z|* accepting
paths.”

By Lemma 3.2 there is an sp-condition o extending 7 such that o forces SAT™ € P4.

Suppose A extends o. We will show that L(M4) ¢ P4.

Consider the following algorithm for computing M4(z) using A as an oracle. The idea is the
same as that used in [BI87]. We repeatedly look for some extension a of the partial oracle (not
necessarily compatible with A) which makes M have the maximum possible number of accepting
paths. To ensure consistency with A, we then answer all queries in the domain of a according to

A.

In the algorithm below, we maintain the following invariants for all j:
o A extends v;,

® 741 extends vj,

o [vj41] < lyjl + ¥, and

e dom(v;) Ndom(r) = @ (This fact is not crucial for the proof).

BEGIN ALGORITHM

Yo < 0.
FOR j — 0 TO [z|* -1 DO
Let n be the largest number for which there is an a extending 7; such that
e a is compatible with 7 and
e M>“7(z) has at least n distinct accepting paths.
Choose some a that satisfies these two conditions with minimal domain, meaning that dom(a)
contains only those queries made along n distinct accepting paths which are not in dom(r).
If n =0, then a = 0.
¥j+1 < (A restricted to dom(a)).
/* This trick is borrowed from [BI87]. It will be explained later. */
ENDFOR
Y Vo2 /% Note that A extends y. x/
IF M7“7(z) has an accepting path
THEN accept
ELSE reject.

END ALGORITHM.
Theorem 4.1 now follows from the following two lemmas.
Lemma 4.3 The above algorithm runs in polynomial time relative to SAT™ and thus relative to A.

Proof: We show that there is a fixed polynomial bound on both the size of v; and the running
time of the jth iteration of the FOR loop for all j < |z|?. Assume, inside the jth iteration of the
FOR loop, that 7; has polynomial size. By our assumptions about the behavior of machine M on
oracles extending 7, we have 0 < n < |z|*. For any such n, the question—given v;—of whether
there exists an a extending 7v; compatible with 7 such that M*“7(z) has at least n accepting



paths is an NP7 question and hence can be answered by a single query to SAT” (such an a can
always be chosen to have polynomial size: only include oracle queries not already in dom(7) made
along n distinct accepting paths). Thus n can be determined using polynomially many queries to
SAT™. Once n is found, a polynomial-size a causing M>“"(z) to accept on n distinct paths can
be constructed bit by bit in a straightforward way by making NPT queries of the form, “given a
sequence ¥ of k bits, is there such an a whose first k£ 4+ 1 bits are ¥0?” Similarly, we can construct
the n paths. Once such an a is found, dom(a) can be made to be minimal simply by eliminating
any queries in dom(a) — dom(y;) not made along any accepting path of M*“"(z), thus we can find a
minimal a with at most polynomially many additional NP” queries. The size of dom(a) — dom(7;)
is at most a polynomial in |z| independent of j, so we can compute v;41 by asking polynomially
many queries to A, and its size is the same as that of a. We thus have that for all j < |z|%,
the size of 7; and the running time of the jth iteration of the FOR loop are both bounded by a
fixed polynomial in |z|, and thus the entire FOR loop runs in polynomial time, and 7|z has size
polynomial in |z|.

Since after the FOR loop, 7 has polynomial size, we can determine whether M7“7(z) has
an accepting path by asking one additional NP question. Thus, the entire algorithm runs in
polynomial time relative to A, which proves Lemma 4.3. O

Lemma 4.4 The above algorithm correctly decides M*(z).

Proof: Suppose M4(z) has exactly k accepting paths. Let 8 be the partial function of minimal
domain such that

e A extends 8, and
o MPYT(z) has k distinct accepting paths.

Since k < |z|* and each path of M4(z) can make only |z|* queries, the size of dom(8) is at most

|z|? (if k = 0, then 8 = 0).
Claim 4.5 After the FOR loop, Y|z = 7 extends §.

Lemma 4.4 immediately follows from Claim 4.5 and the fact that A extends . Indeed, since
MPY7(z) and M4(z) have the same number of accepting paths, we know that M7 (z) and M4(z)
have the same number of accepting paths, because extending a partial oracle can never decrease
the number of accepting paths. Thus we accept if and only if M“(z) has at least one accepting
path.

It remains only to prove Claim 4.5. This is similar to the incompatibility argument in [BI87]. It
suffices to show that dom(8) C dom(y), since both 8 and < are compatible with A. Suppose that
for some j < |z|% we have ||dom(8) — dom(y;)|| = £ > 0. If the a chosen in the jth iteration of
the FOR loop does not extend 3, then it must be incompatible with 8, otherwise the union S U a
would cause MPY*"7(z) to have at least one more accepting path than M*V7(z) (the extra path is
“contributed” by 8). This contradicts the fact that a was chosen to allow the maximum possible
number of accepting paths of M*“7(z). Hence 3 and 7,41 share at least one additional point in
their domains, so |[dom(8) — dom(7;41)|| < £~ 1. Since ||dom(8) — dom(7o)|| < |z|*, we must have
||dom(8) — dom(7)|| = 0, which proves the claim. O



5 The Isomorphism Conjecture

5.1 Intuition

In this section we give some of the ideas of the proof that the isomorphism conjecture holds relative
to sp-generic oracles. A full and complete proof is presented beginning in Section 5.2.

We first consider how researchers created oracles for which the isomorphism conjecture fails.
Typically, they would create a hard function f#4 and an oracle A such that fA(SATA) is NP-
complete, but not isomorphic to SAT4. One approach is to have f4 scramble SAT in a way that
no reduction to fA(SATA) could be invertible. Kurtz, Mahaney and Royer used this approach to
show that the isomorphism conjecture fails to a random oracle [KMR89]. However since we know
that P4 = UP# for sp-generic oracles A (Corollary 4.2), any such scrambling function can be
unscrambled.

When Kurtz showed that the isomorphism conjecture fails for regular generic oracles [Kur88]
and Hartmanis and Hemachandra created an oracle A relative to which the isomorphism conjecture
fails while P4 = UP4 # NP4 [HH91] they had to use a different approach. They created functions
f# that work as follows: For ¢ a boolean formula represented as a string, define £A(<p) by

£4(p) = A(p01)A(£011) ... A(£01™)

where n is the number of variables in ¢. Let 6 be a small true instance of SAT4 and define f4 by

A, ) 0 if €4(p) is a satisfying assignment of ¢
() = ¢ otherwise

Note for any oracle A and this kind of f4, fA(SATA) is NP4-complete. Using an A that encodes

solutions to SAT#, Kurtz and Hartmanis and Hemachandra show that f4(SAT4) contains large

gaps and for reasons of density alone cannot be isomorphic to SAT#.

In order to give some intuition to how we prove our main result, we will describe how for
sp-generic sets A, f4(SAT4) must be isomorphic to SAT4,

The oracles designed by Kurtz and Hartmanis and Hemachandra that prevent isomorphisms
to SAT4 work by having £4(p) be a satisfying assignment to @. Since we are trying to create an
oracle A such that the isomorphism conjecture holds, we will call the computation f4(y) bad if
£4(p) is a satisfying assignment to ¢ and all other computations f4(¢) we will call good. Note
that if f4(p) is good then f4(p) = ¢. Whether f4(¢p) is good will, of course, depend on A.

Berman and Hartmanis [BH77] show that in order to have SAT# isomorphic to f4(SAT#) we
need only find a polynomial-time 1-1 length-increasing invertible function g4 that reduces SAT#
to fA(SAT4). Our g4(y) will work as follows: Find a formula ¢ such that

L (9[> [e]

2. 1) is true relative to A iff ¢ is true relative to A

3. fA(¢) is good.

Then g4(yp) = f4(¢) = ¥ is our reduction. The trick is for g4(¢) to find such a .
We use a straight-forward combinatorial argument to show that there exists an invertible
polynomial-time function h(p,w) such that



1. For all w, |h(p, w)| > |¢|
2. For all w and sp-generic A, h(p,w) is true relative to A iff ¢ is true relative to A

3. For all sp-generic A there exists a w such that f4(h(p,w)) is good.

Now all g4 has to do is find a w such that f4(k(p,w)) is good. We will use f4 to help g4 in this
task.

Let s(¢) be the formula that encodes the NP statement: “p is true and there exists a w such
that f4(h(p,w))is good.” Clearly for all A, |s(¢)| > || and s(¢) is true iff ¢ is true because there
always is a w such that f4(h(p,w)) is good.

We now create g4(¢) as follows: Look at the computation of f4(s(p)). If f4(s(¢)) is good
then output f4(s(¢)) = s(p). Otherwise £4(s(y)) is a satisfying assignment to s(y) and thus
from £4(s(¢)) we can obtain a w such that f4(h(p,w)) is good. The function g# then outputs
fA(h(p,w)) = h(p,w) for that w. Notice that g4 is not only length-increasing but also 1-1 and
invertible.

Of course there is no a priori reason that a general reduction has to act like f4. We will however
force a general f4 to look similar to the f4 described above or not be a reduction.

Suppose f4 reduces SAT4 to L(M#4) where f4 is an arbitrary deterministic function running
in time n* and M# is a nondeterministic Turing machine also running in time n*. Let us define
h(p,w) to be a formula that encodes the following:

(p A Jy(p,w,y,1) € A)V Iy(p,y,0) € A

where the y’s are quantified over strings of length exactly |p|*. If we put in at least one string of
the form (p,w,y, 1) into A and no strings of the form (p,y,0) then ¢ is true if and only if h(p, w)
is true.

We now need a notion of goodness for f4(h(p,w)) for arbitrary f4. We would like to call
fA(h(p,w)) good if fA(h(p,w)) fails to find a satisfying assignment to h(p,w). However such
a thing could be hard to verify. We could, however, determine which queries to A are made by
fA(h(p,w)). Thus we call f4(h(p,w)) good if f4(h(p,w)) does not query any string (¢, w,y,1)
such that (p,w,y,1) € 4, ie., f4(h(p,w)) does not find this part of a satisfying assignment to
h(p,w). If f4(h(p,w)) is good then we can alter the truth value of h(yp,w) without affecting the
value f4(h(yp,w)).

Suppose f4(h(p,w)) is good and ¢ = |f4(h(p,w))| < |@|. Then M4(q) cannot ask questions
of the form (p,w,y,1) or (p,y,0) because they are too long. We can prevent f4 from being a
reduction by setting h(¢p,w) to true if M4 (q) rejects or setting h(p,w) to false if M4 (q) accepts.

Suppose fA(h(1,w1)) = fA(h(0,ws)) and neither of these computations ask questions about
whether (1, w1,y,1), (¥,9,0), (8, ws,y,1) or (8,y,0) are in A. Then we can prevent f4 from being
a reduction by setting h(t, w;1) to true and h(6, wsy) to false.

We can combine the above techniques under the auspices of sp-generics to produce a reduction
g that is length-increasing and almost 1-1. Using the fact that P4 = FewP“ for sp-generic A and
applying this construction twice we can produce a 1-1 length-increasing reduction g. Grollmann
and Selman [GS88] show that we get g invertible for free since P4 = UP# for sp-generic A.



5.2 Proof of the Relativized Isomorphism Conjecture

In order to formally prove Theorem 1.1, we need the following technical lemma, whose proof we
defer to Section 5.3.

Lemma 5.1 Let A be an sp-generic set, M? a relativized nondeterministic polynomial-time Tur-
ing machine and f4 a relativized polynomial time reduction from SAT# to L(M A). There is a
polynomial-time function g4 and a polynomial p(n) such that

1. g* reduces SAT4 to L(M*)
2. g4 is length increasing
3. for all g € %, if [|g4"1)(q)|| > 1 then

(a) [|F41 ()] > 1
(b) q is in L(M*)
(¢) lg*1(a)ll < p(lal)-

Proof of Theorem 1.1 (assuming Lemma 5.1): Let L be NP#-complete. There must
exist an nondeterministic polynomial-time machine M and a polynomial-time function f such that
L = L(M*) and f# reduces SAT4 to L. Apply Lemma 5.1 and let g4 be the function that fulfills
the properties of this lemma.

Let T = {q| ||g*-1)(q)|| > 1}. Note that T is in FewP# because of 2 and 3(c) and thus T is in
P4 since P4 = FewP“ relative to sp-generic oracles (Theorem 4.1).

Let 0 be a fixed member of SAT# such as (3z)z V Z. Define f4(y) as follows:

. ] g4(0) ifgh(p)eT
(e) _{ ZA(QD) otlglervfise

Note that f4 is a reduction from SAT# to L because of 3(b).

Apply Lemma 5.1 this time to fA and let g4 be the resulting function. Note that the only
possible ¢ such that ||g4(-1)(q)|| > 1 is ¢ = g*(8) because of 3(a).

Let G4(p) = §4(P(y,q)) where p is the padding function for SAT4. Berman and Hartmanis
[BH77] show that the claim below immediately implies that SAT4 is p4-isomorphic to L. O

Claim 5.2 The function G4 is a 1-1 length increasing reduction from SAT4 to L whose inverse
is computable in FP4.

Clearly G4 is a reduction. Since §4 and p are length increasing then G4 is length increasing. Also
G4 is 1-1: Suppose G4(p) = G4(%) then §4(P(p,q)) = §4(P(¢,q)) = g but this contradicts the
fact that §# is length increasing.

By Corollary 4.2, we know that P4 = UP“. Grollmann and Selman [GS88] show that P4 =
UP# implies that all 1-1 length-increasing polynomial-time functions relative to A are invertible
relative to A. This proves the claim. O
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5.3 Proof of Lemma 5.1

We define requirement R; as follows: “Lemma 5.1 holds for f4 = f#4 and M4 = MA.” Note that
by the definitions of f; and M; in Section 2, all pairs of reductions and machines will be covered
by some R;.

Fix ¢. Let S; be the set of sp-conditions that force R;. Since Lemma 5.1 is first-order definable
in A, we have that 5; is a definable set of conditions. We need now show that S; is dense. Then
any sp-generic A will extend a 7 such that 7 forces R;. We will show 5; is dense by showing how
to extend any sp-condition 7 to another condition o such that o forces R;.

Fix ¢ and let 7 be an sp-condition and (a;);cN be the corresponding iterated-polynomial se-
quence. We will create an sp-condition o with corresponding sequence (b;);cN that forces R;. Let
f=Ffiand M = M;.

Suppose 7 does not force “f4 reduces SAT4 to L(MA).” For some A extending 7 and some
v, we will have that either ¢ is true and f4(p) € L(M#) or ¢ is false and f4(p) € L(M4). Let
m = max(|p|’,|f4(@)[}). Let 0 = 7 U (A restricted to strings of length at most m). Clearly o
extends T and forces “f4 does not reduce SAT4 to L(M#),” and thus forces R;. To see that o is
an sp-condition pick a ¢ such that a. > m and let b; = a.; for all j € N.

For the remainder of this proof we will assume that 7 forces “f4 reduces SAT4 to L(M4).”

Pick an e such that a;;. > a?" for all j. Since p(n) > n? for all n by Definition 3.1, any
e > log,(37) will suffice. Pick a ¢ such that a. is sufficiently large to avoid all the degenerate cases
in this proof. For all 7, let b; = act2¢; and d;j = a@cy2ej4+e. This proof will never do any encoding
on strings of length b;, guaranteeing that o is an sp-condition. In fact all of the interesting coding
for o will occur for strings of length d;. Initially, set 0 = 7 and also define o(z) = 0 for every
¢ ¢ dom(7) such that  does not have length b; or d; for some j.

Let ¢ be an arbitrary CNF4 formula. Pick the smallest j such that d; > 4|p[*. We will define
special tupling functions (p,y,0), (p,w,y,1) and (p, w, y,2) where we are only interested in w and
y as they range over strings of length |d;/4|. We design these tupling functions so that they have
disjoint ranges over strings of length exactly d;. Since d;/4 is at least |¢|, |y| and |w|, such an
encoding is not hard to achieve.

Let h(p,w) be the formula that encodes:

(p A Jy({p,w,y,1) € A) V Iy(p,y,0) € A

In other words, create a nondeterministic oracle Turing Machine M such that M* accepts if
this expression is true and apply the relativized version of Cook’s Theorem mentioned in Section 2.
We will have |h(p, w)| = O(d2).

Define f4(h(p,w)) as follows: Simulate f4(h(yp,w)). Whenever f4(h(yp, w)) queries a string of
the form (', w’, z,1), £ will query (¢, w', z,2).

We say the computation f4(h(yp,w)) is good if, for all z, if £4(h(p, w)) queries (¢, w, z,2) then
(p,w,2,2) ¢ A. Note that whether f4(h(p,w)) is good does not depend on whether any string of
the form (¢',w’,2,1) is in A.

Let r(¢) be the formula that encodes:

Jw[(Jy(p, w,y,1) € A) and 4(h(p,w)) is good].
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Let s(¢) be the formula that encodes:

(e Ar(p))V Iy(p,y,0) € A

By suitable padding in Cook’s theorem [Coo71], we can construct s and h such that each is 1-1
and range(h) Nrange(s) = . Note that h, r and s can be computed in unrelativized polynomial
time.

Lemma 5.3 There is a way to set o on the strings of length (d;);cN such that

1. o forces “For every formula ¢, r(p) is true.”
2. For every @ and w there is exzactly one y such that o((p,w,y,1)) = 1.
3. For all ¢ and y, o({p,y,0)) = 0.

4. Forallp, y and w, o({p,w,y,1)) = o({p,w,¥y,2)).

This is a combinatorial lemma that follows mainly because there are many more ways to set
o than there are extensions to o that f4(h(yp,w)) could query. We will give a complete proof of
Lemma 5.3 in Section 5.4.

Note that f4(h(p,w)) = f4(h(p,w)) for all w and A where A extends o. Also note that o
forces “For every ¢ and w, ¢ is true if and only if h(p,w) is true if and only if s(y) is true”.

We now describe the algorithm for g4 (¢):

BEGIN ALGORITHM

(1) Simulate f4(s(p)) and let S be the set of w such that f4(s(p)) queried a string of the form
(p,w,9,1).

(2) If for some w € S, f4(h(p,w)) is good then output f4(k(p,w)) for the first such w.

(3) Otherwise output f4(s(¢)).

END ALGORITHM.

Claim 5.4 For any A eztending o, the function g* is a reduction from SAT4 to L(MA).

Proof: The fact that g4 is a reduction now follows from the construction of g4 and the fact
that 7 forces f4 to be a reduction. O

We now show that o forces g4 to fulfill conclusions (2) and (3a-c) of Lemma 5.1. We will show
that if there exists an oracle A extending o such that g fails to fulfill these conditions, then there
exists an oracle B extending 7 such that f2 does not reduce SAT® to L(MPB). This contradicts
the assumption that 7 forces 2 to be such a reduction.

We will create a B that disagrees with A only on strings longer than formulas involved in the
assumed failure of some part of (2) or (3a-c) for g4. This will guarantee that the truth values of
these formulas will remain unchanged.

First we show that the sp-condition o forces that g4 is length-increasing thus fulfilling condition
(2) of Lemma 5.1.

Suppose by way of contradiction that |g#4(p)| < |¢|. Let ¢ = g“(y). Note that M#(g) cannot
look at any string of the form (p,y,0), (p,w,y,1) or (p,w,y,2) because they are too long.

We have two cases each with two subcases:
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1. ¢ = f4(h(p,w)) output by the algorithm for g4(yp) in step (2):

(a) M“4(q) rejects: There must be some y such that f4(h(p,w)) did not query (p,y,0).
Then with B = AU {(y,y,0)}, 2 would not be a reduction.

(b) M4(q) accepts: By the definition of g*, f4 and parts 3 and 4 of Lemma 5.3 we have
that f4(h(p,w)) queries {p,w,z,1) only if (p,w,2z,1) ¢ A. Then with B equal to A
minus all strings of the form (¢, w, z,1) then fB would not be a reduction.

2. ¢ = f4(s(p)) output by the algorithm for g4(y) in step (3):

(a) M*(q) rejects: There must be some y such that f4(s(¢)) did not query (¢,y,0). Then
with B = AU {{p,¥,0)}, fZ would not be a reduction.

(b) M#(q) accepts: Let S be the set from the definition of g4. Let B equal A minus all
strings of the form (p, w, z,1) for w ¢ S. If r(¢) is false relative to B then f2 is no longer
a reduction since fB(s(¢)) = fA(s(p)) = g, s(¢p) is false relative to B, and ¢ € L(M?P).
Suppose r(p) is true relative to B. By the definition of r(¢) we have that for some
w € S, f5(h(p,w)) is good. Note that the computation of £2(h(yp,w)) is identical to
the computation of £4(h(y,w)). Since 2 (h(p,w)) is good then £4(h(p,w)) also is good,
and so the algorithm for g4 would have output £4(h(p,w)) in step (2).

Thus g4 is length-increasing.

Suppose for some A extending o and some g, ||g4(~1)(¢)|| > 1. Clearly by the definition of g4
and the fact that A and s are both 1-1 with range(h) N range(s) = 0, ||f4(-1(g)|| > 1. Thus we
have fulfilled condition (3a) of Lemma 5.1. We need to show how to fulfill conditions (3b) and (3c).

Suppose ¢ ¢ L(M#). Let ¢ and 7 be such that g4(¢) = g4(n) = ¢. We can assume without
loss of generality that |¢| < |n| < |g|. There must be some y such that neither g4(¢) nor g4(7)
queries (7,¥,0). Let B = AU {(n,y,0)}. Suppose g4(¢) = f4(v) and g%(n) = f4(p) for some
formulas g and v. Then fB(v) = fB(u) = ¢ but v is false and u is true relative to B and thus f2
is not a reduction. Thus we have fulfilled condition (3b) of Lemma 5.1.

We will now show how to fulfill condition (3c) with p = ¢ + 2 where ¢ is the running time of g4.
Suppose ¢ € L(M4) and ||g4(-1)(q)|| > p(|q|) = t(|g|) + 2. Let ¢ be a minimum length formula
such that g#4(v) = ¢. By the pigeonhole principle there is some formula 7 # 1 such that g4(n) = ¢
and g# () does not ask any queries of the form (n,w, z,1) or (,w, z,2). Suppose g4(¥) = f4(v)
for some formula ».

Note that the value f#4(v) and the truth value of v cannot depend on whether strings of the
form (n,w, z,1) are in A: Since g“(¢) simulates f4(v) and g#(%) does not ask any queries of the
form (n,w,z,1) then f4(v) does not ask any queries of the form (5, w,z,1). The truth value of
v can only depend on whether strings of the form (¢,y,0), (¢, w,y,1) and (¢, w,y,2) are in A
and the truth value of ¥ and whether f4(A(¢,w)) is good for some w. None of these depend on a
whether strings of the form (7, w, z,1) are in A.

We have two cases:

1. ¢ = g*(n) = f4(h(n, w)) output by the algorithm for g4(n) in step (2): By the definition of
g4, 4, and Lemma 5.3, we have that FfA(h(n,w)) queries (n,w,z,1) only if (n,w,z,1) & A.
Thus if we let B equal A minus all strings of the form (1, w, z, 1) the following four properties
hold:
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(a) h(n,w) is false relative to B,
(

() P (h(n,w)) = FA((n, w)) = £A(h(n, w)) = g4(n) = g, and
(d) ¢=g%(¥) = F4(v) = FP(v).

Thus fB will not be a reduction.

)

b) v is true,
) |
)

2. ¢ = f4(s(n)) output in step (3) of the algorithm: Let S be the set from the definition of
g“. Let B equal A minus all strings of the form (5, w, z,1) for w ¢ S. Note that fB(s(n)) =
f4(s(n)). Also r(n) is false relative to B for the same reasons as in case 2b of the proof of
condition (2) above and thus s(7n) is also false relative to B. Thus

B (s(m) = FA(s(m) = g*(n) = ¢ = g*(¥) = F4(v) = P (v)
and v is true relative to B and thus f? is not a reduction.

Thus we have fulfilled condition (3c). We have now fulfilled all of the conditions of Lemma 5.1.
O

5.4 Proof of Lemma 5.3

We will use relativized Kolmogorov complexity for this proof. For an excellent background in
Kolmogorov complexity see the book by Li and Vitanyi [LV93].

We need to find a o extending 7 that fulfills the conditions of Lemma 5.3. Note that by our
construction of the d; sequence, we have that d; > d?i_zl. Fix 7 and let £ be the least integer such
that d;_; < 4£* and u be the greatest integer such that d; > 4u’. For j = 0 let £ = 0. The values
£ and u bound the lengths of formulae ¢ such that (p,y,0), (¢, w,y,1) and (p,w,y,2) all have
length d;.

Let z = |w| = |y| = |d;/4]. Let m = 22 %, .., 2°. Let z be a string of length m such that
K™(z) > m, i.e., z is Kolmogorov random with respect to 7.

View z as a concatenation of strings z,, of length z where ¢ ranges over all formulae of
length between £ and u, and w ranges over all strings of length z. Set o((p,w,zpw,1)) =
o({¢,w, Ty w,2)) =1 for all ¢ and w, and set o to zero for all other strings of length d;.

Clearly this o fulfills conditions 2, 3 and 4 of Lemma 5.3. We still need to show that o forces
“For all formula ¢, r(p) is true”.

Suppose there is some oracle A extending o such that for some formula ¢, r(¢p) is false relative
to A. We will show how to describe z with a string of length much shorter than z contradicting
the fact that # is Kolmogorov random.

Recall that h(p,w) has length O(d3). Thus £4(h(p, w)) has running time at most O(d?z) Thus
f4 can only depend on the strings in A’ = A<bi+1,

Initialize B to be A’ with all the strings of the form (p,w, y, 2) removed.

Create a string v as follows:

1. Initially set v = e.

2. For w ranging over strings of length z do
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(a) For j = 1 to [h(g, w)]
If the jth query of f4(h(p,w)) exists and is a string (¢, w’,y,2) € A’ — B then mark
7 and add (p,w’,y,2) to B.

(b) Concatenate to v the number of marked j followed by a list of marked j. Write these
numbers with leading zeros if necessary to keep the lengths consistent in order to make
the encoding simpler.

The orders in which w and j are chosen in this procedure play an important role in allowing us
to keep the description of A’ small.

At the end of this procedure we will have B = A’: Since 7(y) is false relative to A then for
every w, fA(h(cp, w)) queries the unique string of the form (p,w,y,2) in A (and thus in A’). Thus
every such string will be added to B in step w of the above procedure if not before.

The length of v is bounded by O(27log d;) because there are 27 strings in A’ — B initially. Note
that each (¢, w,y,2) € A’ can only contribute to one marking.

Now we claim we can construct A’ and thus z using an oracle for 7 with the following description:
ASbi v, @ and z’ where 2’ is the concatenation of z, ,, for all formulae 1 # ¢ of length between £
and u, and w ranging over all strings of length z. We can reconstruct A’ by repeating the procedure
above using v to tell us which queries of the form (p,w,y,2) are in A’.

We can encode the tuple (4<% v, ¢, z') as a string of length |A<b%| + |v| 4 |¢| + |2'| plus an
additional O(d;) bits to encode the length of each piece.

The total length is bounded by O(d;) + 2%+ 4+ 0(2?logd;) + d; + m — 22 < m — O(1). There
might exist a finite number of 7 such that this inequality fails. We can eliminate this possibility by
an appropriate choice of a. in the beginning of Section 5.3.

We have created a fixed Turing machine that outputs  with oracle 7 and input <A5bi U0, 2),
a tuple whose length is strictly less than |z|. This contradicts the fact that # was Kolmogorov
random relative to 7. O

6 Conclusions and Open Questions

Later work by Fenner, Fortnow, Kurtz and Li [FFKL93] show that relative to sp-generics, P =
BPP = NP N co-NP = SPP but the polynomial-time hierarchy is proper. They also look at
notions of genericity in a broader sense and show several interesting oracle results based on these
ideas.

We have shown that relative to sp-generic oracles the isomorphism conjecture holds. Several
obvious open questions remain:

e Does the isomorphism conjecture hold in the unrelativized world? Despite Theorem 1.1,
the authors believe the evidence supports the position that the conjecture does not hold.
Theorem 1.1 show that a proof of this result will require nonrelatizing techniques.

e How complicated must an oracle A be such that the isomorphism conjecture holds relative
to A? By Lemma 3.2 we can easily see that there are no sp-generic oracles in the arith-
metic hierarchy. However we can fulfill just the requirements necessary for the isomorphism
conjecture with a set recursive in the halting problem.
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Is there a recursive oracle A? One could wonder whether we could recursively fulfill all the
necessary requirements. We could use time-bounded Kolmogorov complexity in Section 5.4
but determining whether 7 forces f to be a reduction is not decidable. However, we believe
that a careful finite injury argument could lead to a recursive oracle.

e Is there an oracle relative to which the isomorphism conjecture is true and P # UP, i.e.,
there exist one-way functions?

e Is there an oracle relative to which the isomorphism conjecture is true and the polynomial-
time hierarchy collapses? A related question is whether there exists an oracle A such that
P4 = UP# and NP# = EXP#. This oracle A also would imply that the isomorphism
conjecture holds (see [HS92]).
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