Notions of resource-bounded
category and genericity
Preliminary Report

Stephen A. Fenner
University of Chicago

January 23, 1991

Abstract

Generic sets, like random sets, have proved useful in providing a coherent picture of relativized
computation. Unfortunately, they are not decidable. Lutz [Lut87, Lut89, Lut90] has studied the
notions of resource-bounded measure and category, and has shown that there are decidable sets
similar to generic sets (“pseudogeneric sets”) which are of reasonably low complexity. Lutz’s original
definition has drawbacks, however: pseudogenerics (in the sense of Lutz) are often not strong enough
even to ensure basic oracle separations, such as P # NP. We modify Lutz’s definition to create
much more powerful pseudogenerics that are better at performing these oracle separations, and we
further show that these sets exist in the same complexity classes as with Lutz’s definition.

On the negative side, we show that results of Blum and Impagliazzo regarding NP N co-NP
and one-way functions, which hold for true generics, cannot be guaranteed even by very powerful
pseudogenerics. We thus isolate a crucial difference between generic and pseudogeneric sets.

1 Introduction

Both Lebesgue measure and Baire category provide useful and differing notions of “smallness” for a set
of reals. In Lebesgue measure, the small sets are those with measure zero (null sets). In Baire category,
the small sets are those of first category (meager sets). Both notions of smallness satisfy the following
basic properties [Oxt80].

1. All countable sets are small.

2. Any subset of a small set is small.

3. The countable union of small sets is small.
4. The complement of a small set is dense.

We say that a set of reals is “large” if its complement is small. A real number X is “typical” with
respect to a countable collection I' of large sets if X € NI'. By properties 3 and 4 above, the reals
typical for any fixed I' comprise a dense set. In Lebesgue measure, typical reals are called “random;”
in Baire category, they are called “generic.”

A recursive notion of category was introduced by Mehlhorn in 1973, and was also investigated by
Lisagor in 1979 (see [Lut90]). In a series of seminal papers, Lutz has introduced resource-bounded
versions of both measure and category, then studied the notions of typicality that result. The chief
advantage of these ideas is that the typical sets now exist in subrecursive complexity classes, and one can

then study the typical sets for a given complexity class. Lutz has concentrated mostly on the measure
theoretic side; in the present paper, we are interested in the category side. In particular, we wish
to study the power of resource-bounded generics—compared to full generics—in determining certain
questions of relativized resource-bounded computation. We will show that generic oracles produced
by Lutz’s original notion of polynomial time-bounded category are not strong enough to separate NP
from P, but that minor modifications of his idea are indeed adequate.

Minor adjustments of this sort are often needed when a recursion theoretic notion is borrowed for
use in complexity theory. For example, the distinction between unary and binary representations for
input—irrelevant in recursion theory—becomes crucial in complexity theory. Another example is the
oracle Turing machine model (compare [Soa87], pp. 46-47 with [BGS75]). One can make a number
of different changes, with varying strengths, to Lutz’s definition of category while still adhering to
the spirit of Lutz’s original ideas. In the present paper we concentrate on one such improvement: we
define category and genericity not in terms of strings (which is good enough for recursion theory), but
rather in terms of finite functions. The two ideas are equivalent in the classical and recursion theoretic
settings, but are quite different in the context of complexity theory.

We show that polynomial time-bounded generics (in our sense) are strong enough to separate P
from NP, and that these generics exist in exponential time. Thus the typical exponential time set
(in the sense of polynomial time-bounded category) separates P and NP. This is not true for Lutz’s
original definition of resource-bounded category based on strings.

We also prove a negative result. In [BI87], Blum and Impagliazzo show that if P = NP (unrel-
ativized), then with respect to a (full) generic set, P = NP N co-NP and P = UP. We show that
the degree of genericity needed for these results is essentially tight; no reasonable notion of resource-
bounded genericity is strong enough to guarantee either P = NP N co-NP or P = UP, regardless of
whether P = NP in the unrelativized case.

2 Preliminaries

We let w be the set of natural numbers. We define a finite function to be a partial function from w to
{0,1} whose domain is finite. A binary string is a finite function whose domain is an initial segment
of w. We use A to denote the empty function. Departing from custom, we let 2<% denote the set of all
finite functions (others reserve 2< for the set of binary strings). We return to custom by letting 2¢
denote the set of all total functions from w to {0,1}, which we also call real numbers. We identify a
subset of w with its characteristic function in 2*. We use X,Y, Z, ... to denote sets of reals, 4, B,C, ...
to denote subsets of w (real numbers), lower case Roman letters to denote natural numbers, and lower
case Greek letters to denote finite functions. We sometimes identify w with {0, 1}* via the usual dyadic
representation, and if z is a natural number, we let |z| be the length of the dyadic representation of z.
If f is any function, we use dom(f) and rng(f) to denote the domain and range of f, respectively.
Let o be a finite function. If z is a natural number, we write o(z) | to mean z € dom(c), and we
write o(z) T to mean z ¢ dom(o). We let ||o|| denote the cardinality of dom(c), we let min(o) denote
the smallest not in dom(c), and we let max(o) denote the smallest « such that (Vy > z)o(y)T. If
b€ {0,1}, we write c”b to mean o U {(min(c), b)}. If f is any partial or total function from w to {0,1},
we write o C f to mean, “o is extended by f,” and we write o C f to mean, “o is properly extended by
f.” Let B, = {A € 2¥ | 0 C A} (we assume the Cantor topology on 2%, for which the B, form a basis).
If 7 is a finite function, we say o and 7 are compatible if o(z) = 7(z) for all z € dom(o) Ndom(7). It is
useful to define a “fill-with-zeros” operator: for any o € 2<% and any k € w, define zfill(o, k) to be the
unique 7 D o such that dom(7) = dom(e)U{0,...,k—1} and 7(¢) = 0 for all z < k such that o(¢)T. In
other words, zfill(o, k) is the result of filling any gaps in o with zeros up to the kth position. Finally,

we will sometimes have occasion to use a finite function o as an oracle, in which case we interpret o as
the set {z | o(z) = 1}.

We fix a bijection (-,):w X w — w that is computable in polynomial time and polynomial time
invertible. For convenience we further assume that (-,-) is a bijection on the set of numbers of the
form 0% for k € w (numbers whose dyadic representation consists solely of 0’s). If f is a function with
domain w and k is a natural number, we define fy(z) = f((0%,2)) for all z € w.

The central concept in the study of resource-bounded category is that of a finite extension strategy.

Definition 1 A finite extension strategy is a function h:2<¥ — 2<% such that ¢ C h(o) for all
o € 2<“. A finite function T meets h if there is a o € 2<% such that h(c) C 7. If A is a real number,
we say that A meets h if some 7 C A meets h. The set A avoids h if A does not meet h.

For brevity, we will use the word “strategy” to refer to a finite extension strategy. The following
definitions are adapted from classical point-set topology.

Definition 2 A set X of reals is nowhere dense if there ezists a strategy h such that X N Bp,) = O for
all ¢ € 2<%, FEquivalently, X is nowhere dense if and only if there is a single strategy that is avoided
by every element of X.

Definition 3 A set X of reals is meager (of first category) if X is contained in a countable union of
nowhere dense sets. Equivalently, X is meager if and only if there is a countable family ho, h1, ho, . ..
of strategies such that every A € X avoids one or more of the h;’s.

2.1 Encodings of Finite Functions

We are interested in resource-bounded versions of these notions. We do this by restricting the resources
allowed by a Turing machine to compute finite extension strategies. The remaining ambiguity is how
we encode finite functions as inputs and outputs to a machine. We consider two encodings:

String Encode a finite function o as a string of symbols from the alphabet {0, 1, T}, where the (i +1)st
symbol (0, 1, or T) of the encoding determines the value of o(z) (0, 1, or undefined, respectively).
For uniqueness, we require that the encoding not have T as its last symbol.

List-of-pairs Identify a finite function with its graph and encode it as a list of ordered pairs, using
any fixed reasonable encoding scheme over a finite alphabet X.

We also assume that finite functions encoded either by the Strings or List-of-pairs scheme are further
encoded as natural numbers. We thus have the following diagram:

2<w

/ N
{0,1,1} Dy
N

w

We denote the Strings encoding (following the left path) as St: 2<“ — w, and the List-of-pairs encoding
(following the right path) as Lp:2<“ — w. Both encodings can also be assumed to be bijections and
still be “reasonable” in the sense that the basic operations on finite functions—o(z), |||, min(o),
max(o), union of compatible functions, etc.—are all computable in polynomial time. Furthermore, it
is natural to require that |St(o)| be polynomially related to max(o), and that |Lp(o)| be polynomially

related to ||o|| + | max(c)|. We fix once and for all a nondecreasing polynomial go such that for all
o€ 2,

[St(e)] < go(max(c)) (1)
max(a) < go(|St(e)[) (2)
ILp(o)l < go(llol| + [max(a)]) (3)
o]l + |max(a)| < go(|Lp(a)])- (4)

We allow inputs and outputs of a strategy to be encoded independently of each other, possibly
by different encodings. If each of e; and e; is one of the above encodings and h:2<% — 2<% is a
strategy, we call the map es 0 h o el_l:w — w, the eq, es-encoding of the strategy k. In other words, the
e1, ez-encoding of h (mapping numbers to numbers) represents h where the inputs are encoded by e;
and the outputs are encoded by e;. In the present paper we will limit our attention to three encoding
combinations:

A. St,St
B. Lp,Lp
C. St, Lp.

We will see in section 4 that for A = py, (A) and (B) are of incomparable strength, and (C) is strictly
stronger than both.

2.2 Function Classes

The following definitions are adapted from [Lut89]. If P(z) is a predicate, we write P(z) a.e. to mean
“P(z) holds for all but finitely many z € w,” and P(z) i.o. to mean “P(z) holds for infinitely many
z € w.” We define a class of growth rates {G;}c., as follows:

Go {f| (3k)f(n) < knae.}
Giyi = {f|(3g€Gy)f(n) <2908 5}

It is easy to show that all the G; are closed under composition, and only contain functions of subexpo-
nential growth. Our underlying model of computation will be the deterministic Turing Machine, but
all our results will hold with respect to any other reasonable model of uniform computation. We are
interested in the following function classes:

w' = {f|fiw—-w}

rec = {f € w”| fisrecursive}

pi = {few’|feDTIME(G;)} (:>1)
pspace; = {few”|fec DSPACE(G;)} (i>1)

We write p for p; and pspace for pspace;. It is well-known that for every 7, p;11 and pspace;,; contain
universal functions for p; and pspace; respectively, where a universal function for a class A is a function
g such that A = {g; | ¢ € w}. From now on in this paper, unless stated otherwise, A and A’ will be
either w®, rec, p; for ¢ > 1, or pspace; for ¢ > 1.

We now define meagerness with respect to A.

Definition 4 Let e; and es be encodings taken from the two possibilities described above. A set X C 2%
is A®1°2_meager if there is a function h € A such that

e For all i € w, h; is the e1, es-encoding of some strategy g;.
o For every A € X, there exists a k € w such that A avoids gj.
A set X is A®1®2.comeager if 2° — X s A°°2-meager.

If A = w¥, then definition 4 coincides with definition 3. If we take e; = e3 = St, we get an equivalent
formulation of Lutz’s original definition of A-meagerness in [Lut87, Lut90]. (There, Lutz defines A-
meagerness using binary strings rather than finite functions.) For A = rec, the choice of encodings
does not matter. In section 4, however, we show that for A = p,, the choice of encodings does matter:

Lp,L . St,St . St,L;
there are p,>’ ©-meager sets which are not p, "~ -meager and vice versa, and there are p, ' *-meager
Lp

sets which are neither pgt’St-meager nor pgp’ -meager. These results can also be extended to p; for

i > 2 as well.! In any event, the notion of AS“1P.meagerness is no less inclusive than the other two.
Proposition 5 For any X C 2¢, if X is AS%St_meager or AYPLP_meager, then X is AS“IP-meager.

Proof. Note that the function Lp o St™! is computable in polynomial time. If X is AStSt-meager as
witnessed by k € A, then the function Lp o St~ o A witnesses that X is AStIP.meager. Likewise, the
function

d((z,y)) = (=, Lp(St~"(y)))

is computable in polynomial time. If X is A'PMP.meager as witnessed by h € A, then X is AStLP.
meager witnessed by hod € A. ||

We now define resource-bounded genericity for countable classes A.

Definition 6 Let A be a countable function class, and let e1, e3: 2<¥ — w be encodings. A real number
G € 2% is A®*2-generic if G is an element of every A®°>-comeager set (equivalently, the singleton
{G} is not A*1*2-meager).

3 Basic properties of A®“2-meager sets

In this section we present properties of A®1°2-meager sets analogous to those of classical meager sets
mentioned in the introduction. These results generally follow Lutz [Lut87, Lut90] with some occasional
alterations. These results also hold for all combinations of the String and List-of-pairs encodings except
Lp, St, so in this section only we will fix implicit encodings e; and ez (e; # Lp or e; # St), and identify
strategies g with their e;, e;-encodings. We will also identify 2<% and w via e; for inputs to strategies,
and we will use ey to make the identification for outputs. We will also dispense with the superscripts

on A.

3.1 Resource-bounded Baire category theorem

A constructor is a finite extension strategy § € A such that for all binary strings o, §(c) = 07b, where
b € {0,1}. Given a binary string ¢, define R,(§) to be the unique real number extending §%(¢) for all
i € w. Define R(§) to be Rx(§), and let R(A) = {R(6) | 6§ € A}. Notice that « C R,(6) and that

R(A) = U {R,(6)| 6 € A}.

all binary strings ¢

!The fourth possible combination, Lp,St, will not be considered. For the time-bounded classes A, even the Lp, St-
encoding of the identity function id:2<“ — 2<¢ is not computable in A, thus no sets are A'P3*_meager.

Lemma 7 ([Lut87, Lut89])

1. R(w®) =2%.

2. R(rec) = REC =4¢ {A C w | A is recursive}.

3. Fori>1, R(p;) = E; =¢t DTIME(2%i1).

4. Fori>1, R(pspace;) = ESPACE; =3 DSPACE(2¢i-1).
Definition 8 ([Lut87, Lut89])

o A subset X C R(A) is A-countable if there is a function § € A such that by is a constructor for
each k € w and X C {R(é) | k € w}.

o A A-union of A-meager sets is a subset X C 2 such that X = |J
such that h; witnesses the A-meagerness of X; for each <.

X; and there is an h € A

iCw

Theorem 9
1. All A-countable sets are A-meager.
2. All subsets of a A-meager set are A-meager.

3. The A-union of A-meager sets is A-meager.

Proof.

1. Let X C R(A) be A-countable as witnessed by the function § € A. Let h be a function such
that for all 1 € w and o € 2<%,

hi(o) = o™ [1 — [R(é)](min(c))].

We can compute [R(§;)](min(c)) by composing §; with itself min(o) 4 1 times starting with the
empty function A, then taking the result on argument min(o). It follows that & is in A. Also,
R(6;) avoids h; for all ¢ € w. Thus X is A-meager as witnessed by h.

2. Immediate by the definition.

3. Let X =
that

X; and h € A such that X; is A-meager witnessed by h; for all i € w. Define g so

i€w

9({(z,9),2)) = h((z, (y,2)))

for all z,y,z € w. Clearly, g € A, and g is a strategy for all k. Given A € X, choose iy such
that A € X;,. Then X, is A-meager via h;,, so there is a jo such that A avoids h; j, = g(iy o)
Thus g witnesses that X is A-meager.

We now prove the resource-bounded version of the Baire category theorem.
Theorem 10 If X C 2 is A-meager, then R(A) — X 1is dense.

Proof. Given h € A witnessing that X is A-meager, we describe a constructor § € A such that for any
initial binary string ¢, R,(6) ¢ X . For this, it suffices to build § so that R,(§) meets all of kg, by, ha, .. .,
that is, for every n € w there exists a binary string o such that h,(o) C R,(6). The constructor § is
computed by the following algorithm:

1. Given as input a binary string o of length £, compute
ng <« min[n < { & (V binary strings a C o) h,(a) Z o].

(hn, is the next function that R(§) must meet.)
2. If no such ng exists, return o™ 0.
3. Otherwise, find the shortest binary string 7 C ¢ such that o and h,,(7) are compatible.
4. Let 4 < hyp (7). If v(£) |, return 0”7 y(£); otherwise return o™0.

It is clear that h € A = § € A for A being any of the classes that we are considering. A
straightforward induction argument shows that R,(§) meets all the h,. [

Lemma 11 ([Lut87]) If X is A-meager, and A C A/, then X is A'-meager.

Proof. Immediate.]

3.2 Resource-bounded Banach-Mazur games

Meager sets can be alternatively defined in terms of winning strategies of Banach-Mazur games (see
[Oxt80]). An effective version of the Banach-Mazur game was introduced by Lisagor in 1979 (see
[Lut90]). Lutz [Lut87, Lut90] has shown that if A is one of the space-bounded classes, then A-meager
sets can likewise be characterized in terms of Banach-Mazur games where the second player must follow
a strategy based on an algorithm in A. We extend this equivalence to the time-bounded classes as well.
Thus resource-bounded category and resource-bounded Banach-Mazur games are equivalent for all of
the classes we are considering. Banach-Mazur games are extremely useful in studying resource-bounded
category because they allow us to work with single strategies rather than uniform families of them.
The following definitions are adapted from [Lut87] and [Lut90].

Definition 12 ([Lut90])

o A play of a Banach-Mazur game is an ordered pair (f,g) of finite extension strategies such that
min(o) # min(g(c)) for every o € 2<%.

o The result of the play (£, g) is the unique real number R(f,g) that extends (go f)(A) for alli € w.

If X C 2% and Aj, Ay are function classes, then G[X; A1, Ag] is the Banach-Mazur game with
distinguished set X, where Player I must choose a finite extension strategy f € A1, and Player II must
choose a finite extension strategy g € Ay. We imagine a play as starting with the empty function A,
then players move alternately (starting with Player I), each applying her strategy to the result of the
previous moves. Note that after each player plays s times, the resulting finite function is defined at
least on all numbers r < s. Player I wins the play (f, g) if R(f,g) € X; Player II wins otherwise. A
winning strategy for Player II is a strategy g € Ay such that Player II wins (f, g) for every strategy
f € Ar

Theorem 13 is a major improvement of theorem 4.3 of [Lut90] (also theorem 2 of [Lut87]). There,
Lutz showed the equivalence under a strong hypothesis that does not appear to hold for the time-
bounded classes (the Mazur property). We can avoid having to assume this hypothesis by allowing our
requirements to be satisfied slowly.

Theorem 13 Let X be a set of reals. The following are equivalent:
1. Player II has a winning strategy for G[X;w", A].

2. X is A-meager.

Proof. (1 = 2): The classical form of this implication was first proved by Banach in a different setting
(see [Oxt80], pp. 27-30). The proof here uses the essential ideas of theorem 2 in [Lut87], adapted to
handle finite functions instead of strings. Assume g € A is a winning strategy for Player II. Define h
so that, for all k € w and all o € 2<%,

hi(o) = g(=fill(o, k)).

Clearly, h € A. Suppose A € 2% meets hy for all k. We show that A ¢ X, which implies that X is
A-meager as witnessed by h. For this, it suffices to show that for every o C A there is a 7 such that
o C 1 C g(r) C A. If this is the case, then Player I has a strategy f to ensure that R(f,g) = A: given
o, Player I simply extends to a corresponding 7. We therefore must have A ¢ X, otherwise g would
not be a winning strategy for Player II.

Given o C A, we find 7 as follows: Let k = max(o). We know that A meets hj, which implies that
there is a 0’ C A such that

zfill(o’, k) C g(zfill(o’, k)) = hi(0') C A.

Since dom(o) C dom(zfill(¢”, k)), and both o and zfill(¢’, k) are extended by A, it must be that
o C zfill(o', k). We can then take 7 to be zfill(¢’, k).

(2 = 1): Suppose X is A-meager as witnessed by h € A, that is, for every A € X there exists 1 € w
such that A avoids h;. We define a winning strategy g € A for Player II in the game G[X;w*, A]. For
this, it suffices to ensure that for any strategy f € w*, R(f, g) meets all the h;, and hence R(f,g) ¢ X.
It is no problem to force R(f, g) to meet any given h; just by letting g simulate h; at some turn of the
play. The problem is knowing which h; to simulate at each turn so as to make sure that we eventually
simulate all of them. Our advantage is that we can wait as long as we want before we choose which h;
to simulate.

Let t:w — w be a divergent function that grows sufficiently slowly and is computable in time
polynomial in the walue of its input. (For all the classes A that we are considering, the function

t(n) = |logn|

is good enough.) The strategy g is computed as follows: given an input o € 2<%,

1. ¢/ « 70. (This is only to ensure that min(o) # min(g(c)).)

2. Compute

T < min n <o &
n | (V7 € 2%%)[max(r) < t([lof]) — ha(r) £ o]

(hn, is the next strategy we must simulate.)

3. If no such ng exists, return ¢’. Otherwise, return h,,(o').

Suppose there is a strategy f € w* and a least k such that R(f, g) avoids hg. Then there is some
finite point in the play (f, g) where

e it is Player II’s turn,
e the play so far has met all the h; for i < k, and
e Player II has the computational resources to recognize this fact.

In other words, there is an s € w such that (letting o = f((g o f)*(}))),
kE<|lo|| & (Vi< k)(37)[max(r) < t(||o|]) & hi(T) C o].

We then have ng = k in step 2 of the computation of g(o), so g(o) = hg(o’), where ¢’ is computed in
step 1. Thus R(f, g) meets hg, contradicting the choice of k, so g is a winning strategy for Player II as
long as g € A.

There are 34/1°) many 7 with max(7) < t(||o||). If t is given as above, this number is polynomial
in ||o||. Thus in step 2 we only need to compute h at most a polynomial in ||o|| many times, with all
inputs uniformly bounded by a polynomial in ||o||. From this it follows that g € A.]

3.3 A-generic sets

Lemma 14 Let A be one of the countable classes. A real number G is A-generic if and only if G
meets every strategy in A.

Proof. Suppose h € A is a strategy avoided by G. Then letting f((z,y)) = h(y), we see that f € A
and G avoids f; for all ¢ € w. Thus, {G} is A-meager as witnessed by f, so G is not A-generic.

Conversely, if {G} is A-meager as witnessed by f € A, then by definition there is an ¢ such that G
avoids the strategy f; € A. Thus G does not meet every strategy in A. [|

The next lemma describes relationships between resource-bounded category and genericity.

Lemma 15 Suppose A’ contains a universal function for A. Then for every X C 2“ we have
o X is A-meager —> X contains no A-generic sets.

o X contains no A-generic sets —> X is A'-meager.

Proof. Suppose G € X is A-generic. Then {G} C X is not A-meager, so X is cannot be A-meager by
theorem 9.
Let g € A’ be a universal function for A, and let

h((z,0)) = { 9({z,0)) if o < g((z,0)),

o otherwise,

for all z and o. Clearly h € A’, and h; is a strategy for all z. Suppose X is not A’-meager. Then h
cannot witness that X is A-meager, which means that there is a G € X that meets h; for all . But
every strategy in A is of the form h; for some i, so G is A-generic. ||

It is easy to show that for ¢ > 1, p;-generics exist in E;;; and that pspace;-generics exist in
ESPACE;,;, using the same techniques as theorem 10 and the fact that p;;; contains universal
functions for p;. See theorem 6.2 of [Lut89] for a similar statement about p;-random sets. It is also
not hard to show that the rec-generic sets are exactly the weakly 1-generic sets defined in [Kur83].

4 Encoding-Dependent Results

In this section we compare the relative power of the different encoding combinations for defining A-
meagerness for a time-bounded class A. First we show that the definitions of A-meagerness using the
St, St and Lp, Lp combinations are of incomparable strength. To prove one direction of incomparability,
we show that St, St-encodings of strategies are better than Lp, Lp-encodings at producing large gaps
in a language. The other direction is much more drastic; we show that pStSt-generic oracles cannot
ensure the separation of P from NP, but that p“P:*P-generics can.

These results and proposition 5 imply that the St, Lp combination is strictly more inclusive than
either the St,St or Lp,Lp combinations. This provides a strong argument for adopting St,Lp as the
proper means of encoding strategies for defining resource-bounded category.

We first present a basic lemma limiting the growth rates of time-bounded strategies.

Lemma 16 Fiz i > 1 and let f be a strategy. If the St,St-encoding of f is in p;, then there is a
function h € G; such that
max(f(o)) < h(max(o)).

If the Lp, Lp-encoding of f is in p;, then there is a function h € G; such that
1£(o)ll + |max(f(o)) = A(||o[| + | max(a)]).

Proof. We prove the first inequality; the second inequality is similar. Let f’ be the St, St-encoding of
f, and let A’ € G; be nondecreasing such that for all z, |f'(z)| < h'(|z|). By equations (1) and (2), we
have

max(f(e)) < go(ISt(f(7))])
9(|F'(8t(o))1)
< qo(K'([St(o)]))

< go(R'(go(max()))).

We take h(n) = go(h'(go(n))). Since go € G; and G; is closed under composition, it follows that & € G;.
I

10

4.1 Making Gaps

St,St

Here we show that there are p°***-meager sets which are not pZI-Jp’Lp-meager for any i.

Lp,Lp

1

Theorem 17 The set X = {A| (Vn € w)(3z € A) |z| = n} is p>t5t-meager but not p
any i > 1.

-meager for

Proof. The function
g9(0) = #fill(, 0lm=x(2)1+2)

St,St] (

is a winning strategy for Player II in the game G[X;w¥,p its St, St-encoding is clearly in p). Thus

X is pStSt-meager by theorem 13.
Fix 7 > 1 and let g be a strategy whose Lp, Lp-encoding is in p;. By lemma 16, there is an increasing
function h € G; such that

[£(o)ll + |max(f(o))] < h(||o]| + [max(e)]).

We describe a strategy f for Player I in the game G[X; w“’,pzr-‘p’Lp] so that R(f,g) € X. Given o € 2<¢,
let f(o) be as follows:

1. Let N be least such that N > | max(c)| and A(2N + ||o||) < 2V. [Such an N exists since h grows
subexponentially.]

2. Call a number n € w critical if

e for no z of length n does o(z) =1, and
o there exists a y of length » not in the domain of o.

3. Let ny1,n3,...,n, be all the critical numbers less than N, and for 1 < j < m let z; be the least
number of length n; not in dom(o).

4. Let f(o) =0 U {(z;,1) |1 <j<m}.

The number N is chosen so that on Player II’s next turn, she does not have time to define [g(f())](z)
0 for all z of length N, and for all n < N there is some z of length n with [f(o)](z) = 1.
straightforward induction on the number of turns of the play (f, g) shows that for every n there is an

z € R(f,g) of length n. |l

&l

4.2 P versus NP

In this section we show that for the time-bounded classes, the St, St-encodings and Lp, Lp-encodings
differ in a crucial way: pStSt-generics are not strong enough to guarantee separation of P from NP,
whereas pP'IP_generics always separate P from NP. When we relativize PSPACE in the following
theorem, we include the space used to make oracle queries in the space bound. Thus a PSPACE
oracle machine can only make polynomial length oracle queries.

Theorem 18 The set X = {A | P4 = PSPACE“} is not pgt’St-meager.

11

Proof. Fix any strategy g whose St, St-encoding is in p;. We describe a strategy f € w* for Player I
that forces
pE(f9) — PSPACER(fyg),

and thus g cannot be a winning strategy for Player II in the game G[X; w*, p5*5t]. Then by theorem 13,
X is not pgt’St-meager. The function f uses a standard coding technique to identify P and PSPACE,
while leaving gaps between codings large enough to let Player II play without interfering with the
codings.

Let M be an alternating oracle Turing machine which recognizes some categorical PSPACE-
complete language L4, e.g., for every oracle A4,

L4 = L(M*) = {(i,=,0" | N/ accepts z in less than ¢ steps},

where { Ny, N1, N, ...} is some appropriate enumeration of all alternating oracle Turing machines. We
can assume that M runs in time p for all oracles, where p is a polynomial and p(n + 1) > p(n) > n for
all n. It follows from lemma 16, by letting ¢ = 2 and taking the length of both sides, that there is a
strictly increasing polynomial g such that g(n) > n for all n, and

| max(g(0))| < g(| max(s)])

for all ¢ € 2<¥. Define the constants

Cop = 1

¢ = ‘1(1)

ca = q(q(1))
civ1 = q(ci)

For every n € w, let F(n) be the least c; greater than p(n). Note that F(n) is polynomially bounded
in n, and computable in time polynomial in n. Furthermore, F(n) > n 4 1 for all n. Player I does all
her coding on numbers of length ¢;, letting Player II play strategy g in between.

Given o € 2<¢, let c(c) be the least ¢; greater than | max(c)|, and let 7 = zfill(o, 05(*)). Define

flo) =T u{ (210 I7(2)) [z € w & F(lz]) = ¢(0) }.
Note that ¢(A) = ¢o, and if ¢(o) = ¢; for some ¢ € w, then | max(f(o))| = ¢;, and thus
| max(g(f(e)))] < ale:) = cita-

Therefore, on each successive turn for Player I, she codes L”(z) on numbers of length ¢; for successive
i, while padding any previously uncommitted gaps with zeros, forcing the computations of M7 (z). In
other words, for all # € w we have

LRU9)(z) = [R(f, g))(a107(=D-IeI-1),

and so LE(#9) is polynomial time many-one reducible to R(f,g), which proves the theorem. ||

Corollary 19 There ezists a pS*St-generic set G such that PG = PSPACEC.

Proof. Apply lemma 15 with X = {4 | P4 = PSPACE4}. |

12

Theorem 20 If G is p'P1P_generic, then PC +# NPC.

Proof. For all A C w, let
L4 ={z|(3y) |yl = le| & 2"y € 4},

where ¢y is the concatenation of the binary representations of ¢ and y. Clearly, L4 € NP4 for all A.
Let p be a polynomial, and let M be a deterministic oracle Turing machine running in time p for all
oracles. Also let mg be the least number such that p(m) < 2™ for all m > mgy. We compute a strategy
h as follows: given an input o,

1. Let z be smallest such that || > mo and o(z"y) T for all y of length |z|.

2. Let {q1,...,qr} be the set of oracle queries made by M7(z) that are not in the domain of o.
[Note that k£ < p(|z|).]

3. Set 7 — o U{(g:;0)[1<i<Ek}

4. Let y be the least number of length |z| not in dom(7). [Such a y exists by the choice of my.]
5. If M?(z) rejects, return 7 U {(z"y,1)}.

6. If M7(z) accepts, return 7 U {(272,0) | |z| = |z| & (2" 2)T}.

We show that the Lp, Lp-encoding of h is in p. The input o is given to us encoded as a list of
pairs. In step 1, = can be found in polynomial time by searching for the least z of length at least mg
whose binary representation does not occur as the first half of some element of dom(s). Steps 2, 3,
4, and 5 can likewise be done in polynomial time by simulating the machine M. The only problem is
step 6. We must add up to 2/*| pairs to 7. Notice, however, that for all u < z, there is a v such that
u”v € dom(o) (except possibly if |u| < mg) by the choice of z. Therefore,

lo|| > & — 2m0 > 2lel _gmo _ 1,

which implies that step 6 can be done in polynomial time after all. It is also clear that for all o, h
forces M™?) to compute L™?) incorrectly on at least one input. Therefore, for any A that meets h,

LA # L(M*4).

If G is p"®P-generic, G meets all strategies & whose Lp, Lp-encodings are in p. Thus L¢ # L(M©®)
for any polynomial-time deterministic TM, and so L¢ ¢ P®. |

Corollary 21 The set {A | P4 = NP4} is pgp’Lp-meager.

Proof. Apply lemma 15.]

Corollary 21 and theorem 17 together show that the notions of AStSt-meagerness and AL®P.LP.
meagerness are incomparable. This together with proposition 5 implies that the notion of AStLP.
meagerness is strictly more inclusive than both.

13

5 P versus UP and NP Nco-NP

In [BI87], Blum and Impagliazzo proved a rather counterintuitive result about generic sets as oracles.
They showed, given the assumption P = NP (unrelativized), that

P% = UP% = (NP n co-NP)®

for any generic G.2 This result runs against the common wisdom that a generic oracle separates
complexity classes whenever possible.

A natural question to ask is: What degree of genericity is needed to prove this result? We show in
theorem 22 that no recursively bounded notion of genericity is strong enough to ensure the statement
above.

In the following theorem, the choices of encodings are irrelevant, so we again assume implicit
encodings by identifying 2<* and w and omitting the superscripts on function classes.

Theorem 22 The set X = {A | P4 £ (UP N co-UP)4} is not rec-meager.

Proof. Let g be a recursive strategy. It suffices to describe a strategy f such that R(f,g) € X. We use
a typical oracle construction to put a language in (UP N co-UP) — P, except that we provide for large
gaps where the language does not depend on the oracle at all. We only allow Player II to play inside
these gaps. Since g is recursive, we can make these gaps recognizable in polynomial time.

Let § be a recursive function such that for all n € w, we have §(n) > n and

g(n) > | max(g(a))|

for all o with | max(o)| = n. Define

h(n+1) = g(h(n)+1).

Clearly, h is recursive. Choose k to be a strictly increasing recursive function so that given =, iL(TI,) >

h(n), and one can test if n € rng(h) in time polynomial in n. It is well known that such functions exist
(for example, take h to be time-constructible). Let U = rng(h). Finally, given an oracle A, define the
languages

S4={0"|(3z) |z| =n—1 & z0 € A}

and

T = {0*|ue U},

and let L4 = S4 N T. It follows from the remarks above that T is polynomial-time computable, and
thus L4 is categorically in NP4, Throughout the construction, we will guarantee that for all u € U,
there is exactly one element of R(f,g) of length u. This implies that

(e)llz] =w—-1 & 20 € R(f,9)] = ~(F)lly| =v -1 & y1 € R(f,9)],

and also that
LE(19) ¢ (UP N co-UP)ES9),

2 Although they did not state it explicitly, their proof actually shows that if P = NP, then NP has no P%-inseparable
sets, from which the equalities P¢ = UP® and P¢ = (NP N co-NP)G follow as corollaries. For information on P-
inseparable sets, see [HS89] for example.

14

Let My, M1, My, ... be a list of all deterministic polynomial time oracle Turing machines, each
machine M; running in time p; (we assume p;(n) > n). Let R; be the requirement that LA(f.9) £

L(Mf(f’g)). A finite function 7 satisfies requirement R; if there is an n € w such that
L7(0") # M7 (n),

and 7 is defined on all numbers of length up through p;(n). Note that if 7 satisfies R;, then any
extension of 7 also satisfies R;.
Given o € 2<%, we define f(o) as follows:

1. Let R; be the least requirement that o does not satisfy. (We will define f(o) to satisfy R;.)

2. Let £ = |max(0)|.

3. Let u € U be least such that £ < u and p;(u) < 2“7!, and let v € U be least such that p;(u) < v.
4. Let oy = o U{(0¥,1) |[L<u' <v & W €U & u # u}.

5. Let z and y be the least numbers of length u — 1 such that neither 0 nor y1 is queried by M; in
the computation M;*(0*). (Both z and y exist by the choice of u.)

6. If M71(0") accepts, let o3 = 01 U {(y1,1)}; otherwise, let o3 = oy U {(20,1)}.
7. Let f(o) = zfill(o, 0°T1).

At step 3 we choose a length u at which to diagonalize against the machine M;. Step 4 is needed
to ensure our guarantee of unique elements of R(f,g) of length v’ € U. We perform the actual
diagonalization at step 6.

The last step fills all remaining holes in the finite function up through length v, satisfying re-
quirement R; and preventing Player II from disturbing the diagonalization on the next turn. By the
definition of iz, Player II is also forced to play entirely within the gap between v and the next larger
element v’ of U. Thus Player II cannot void our guarantee on her next turn, i.e., g(f(o)) is defined
only on numbers of length less than v'. Our guarantee remains valid throughout the play, and all the
requirements R; are satisfied. Therefore,

LE(19) ¢ [(UP N co-UP) — PJE(F9),

and so R(f,g9) e X. 1

Corollary 23 If there exists a recursive universal function for the class A, then there are A-generic
sets G such that
P% # (UP N co-UP)®.

Proof. Apply lemma 15.]

15

6 Further Research

One can show that 1-generic sets (see [Joc80]) are adequate for proving the results of Blum & Impagli-
azzo. We have shown here that subrecursive generics are not adequate. This leaves open the question
of rec-generics: are rec-generics adequate to prove these results? This question seems difficult.

One can define resource-bounded strategies in other ways besides the two we have studied. To
satisfy a requirement, we often only need to pad our output with zeros. We may take advantage of
this compressibility to define a more compact encoding scheme. We may also decide to change the
way a strategy accesses its input and writes its output. For example, we may define a strategy as
a function f:2<“ x w — {0,1,1}, where f(o,z) =7 for cofinitely many z, and f(o,z) represents the
value at = of the strategy’s output (given o as input). We obtain notions of resource-bounded category
by restricting the resources allowed to compute f. Another idea would be to let o be accessed as an
oracle which answers queries either with 0, 1, or T. We will investigate these ideas further and settle
more pseudogeneric oracle questions in a future paper.

7 Acknowledgments

I wish to thank my advisor, Stuart Kurtz, for suggesting this line of research, and for a great many
helpful discussions. I also wish to thank Jack Lutz for posing several interesting problems regarding
resource-bounded generic sets.

References

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P = NP question. SIAM J. Comp.,
4:431-442, 1975.

[BI87] M. Blum and R. Impagliazzo. Generic oracles and oracle classes. In Proceedings of the 28th
Annual IEEE Symposium on Foundations of Computer Science, pages 118-126, 1987.

[HS89] S. Homer and A. L. Selman. Oracles for structural properties: The isomorphism problem
and public-key cryptography. In Proceedings of the 4th Annual IEEE Structure in Complexity
Theory Conference, pages 3—14, 1989.

[Joc80] C. G. Jockusch. Degrees of generic sets. In Recursion Theory: Its Generalizations and Appli-
cations. (F. R. Drake and S. S. Warner, Editors), Cambridge University Press, Cambridge,
1980.

[Kur83] S. A. Kurtz. Notions of weak genericity. Journal of Symbolic Logic, 48:764—-770, 1983.

[Lut87] J. H. Lutz. Resource-bounded baire category and small circuits in exponential space. In
Proceedings of the 2nd Annual IEEFE Structure in Complexity Theory Conference, pages 81—
91, 1987.

[Lut89] J. H. Lutz. Almost everywhere high nonuniform complexity. In Proceedings of the 4th Annual
IEEFE Structure in Complexity Theory Conference, pages 37-53, 1989.

[Lut90] J. H. Lutz. Category and measure in complexity classes. STAM J. Comp., 1990. To appear.
[Oxt80] J. C. Oxtoby. Measure and Category. Springer-Verlag, 1980.

[Soa87] R. Soare. Recursively Enumerable Sets and Degrees. Springer-Verlag, 1987.

16

