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Abstract. A d-dimensional grid is a set of the form L ¼ ½a1�× · · · ×½ad�, where ½t� ¼ f1; : : : ; tg and aj is
a positive integer for j ∈ ½d�. A d-dimensional box is a set of the form fx1; y1g× · · · ×fxd; ydg for some integers
xj, yj with j ∈ ½d�, where xj ≠ yj for each j. We give conditions on the set of d-tuples ða1; : : : ; adÞ so that, for
every coloring f : L → ½c�, the grid L ¼ ½a1�× · · · ×½ad� contains a box on which f is constant. In particular, we
analyze the set of grids that are minimal with respect to this property.We show that, for d ≥ 3, this set has size
Oðcð17·3d−3−1Þ∕ 2Þ, and all its elements have volume Oðcð3d−1Þ ∕ 2Þ as c → ∞.
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1. Introduction. Let [t] denote the setf1; : : : ; tg for any positive integer t. A d-
dimensional grid is a set L ¼ ½a1�× · · · ×½ad�. For ease of notation, we write ½a1; : : : ; ad�
for ½a1�× · · · ×½ad�. The “volume” of L is

Q
d
i¼1 ai. A d-dimensional box is a set of 2d

points of the form

fx1; y1g× · · · ×fxd; ydg

with xj and yj integers so that xj ≠ yj for each j ∈ ½d�. A grid L is ðc; tÞ-guaranteed if, for
all colorings f : L → ½c�, there are at least t distinct monochromatic boxes in L, i.e., boxes
Bj ⊆ L, j ∈ ½t�, so that jf ðBjÞj ¼ 1. We say that a grid is c-uncolorable to mean that it is
ðc; 1Þ-guaranteed. If L is not c-uncolorable, we say it is c-colorable. If, for all i ∈ ½d�,
bi ≥ ai, then ½b1; : : : ; bd� is c-uncolorable if ½a1; : : : ; ad� is. Hence, a full description
of the set of c-uncolorable grids is given by its minimal elements with respect to this
partial order. Call the set of minimal c-uncolorable grids Oðc; dÞ the obstruction set
for c colors in dimension d. It is well known from poset theory that this set is always
finite. We focus our attention on monotone grids, i.e., those grids for which
a1 ≤ · · ·≤ ad, since being c-uncolorable (or ðc; tÞ-guaranteed) is invariant under permu-
tations of the aj.

Our main contribution is a rough description of the obstruction set for c colors in d
dimensions. In the language of hypergraphs, we provide bounds on the multiset of par-
tite sizes of a complete multipartite hypergraph G, every c-coloring of which admits a
monochromatic hypergraph H , for the smallest nontrivial choice of H : Kdð2Þ. A specia-
lization gives bounds on the multipartite Ramsey number of H ¼ Kdð2Þ, defined to be
the smallest N so that every c-coloring of the complete balanced d-partite d-uniform
hypergraph with partite sets of size N contains a monochromatic H . The d ¼ 2 (un-
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balanced) case is considered in greater detail in [7], and closely related questions are
treated in [4] and [9] (albeit in the language of graph theory).

The subject of unavoidable configurations in grids has played a prominent role in
combinatorics, not least because it offers many natural generalizations of the celebrated
van der Waerden’s and Szemerédi’s theorems on arithmetic progressions. Often the con-
figuration of concern is a grid which is further required to have the same “spacing” in
each direction; see, for example, [11], where the author shows that every coloring of N2

contains a monochromatic square. Indeed, the famous Gallai–Witt theorem (q.v. [8])
states that every configuration is unavoidable, although no known proofs offer reason-
able bounds.

THEOREM 1 (Gallai–Witt theorem). Let m, n, k be positive integers. If the points of
Zn are colored with k colors, and A is anym-element subset of Zn, then there is a mono-
chromatic subset of Zn that is homothetic to (i.e., a dilation and shift of) A.

The Gallai–Witt theorem ensures, in particular, that the quantity Nðc; dÞ, defined
to be the least N so that ½N �d is c-uncolorable, is finite. An analysis of Nðc; dÞ (and some
related quantities) appears in the manuscript by Agnarsson, Doerr, and Schoen [1].
Bounds for some configurations in two dimensions are found in [3].

Another reason for interest in unavoidable configurations in grids is the connection
with Ramsey theory. Let G be the complete d-partite d-uniform hypergraph on partite
sets ½a1�; : : : ; ½ad�, and let Kdð2Þ denote such a complete d-partite hypergraph with ex-
actly two vertices in each partite set. Any point in the grid L ¼ ½a1; : : : ; ad� corresponds
to a hyperedge inG; a box in L corresponds to a Kdð2Þ subhypergraph ofG. To say that
L is c-uncolorable is equivalent to the statement that every c-coloring of G contains a
monochromatic Kdð2Þ. In [5] and [6], the authors prove bounds on multipartite Ramsey
numbers of various (2-uniform) graphs. Little is known about multipartite Ramsey
numbers of hypergraphs, although the bipartite Ramsey numbers of graphs are well
studied. (One notable appearance of (classical) Ramsey numbers for unbalanced multi-
partite hypergraphs is [10].)

In the next section, we show that any grid of sufficiently small volume (approxi-
mately c2

d−1) is c-colorable. The following section shows that the analysis is tight: there
are grids of this volume which are c-uncolorable. Not all grids of sufficiently large volume
are c-guaranteed, although section 4 demonstrates that any grid, all of whose lower-
dimensional subgrids are sufficiently voluminous, is indeed c-guaranteed. Section 5 gives
a tight upper bound on the volume of minimally c-uncolorable grids, i.e., elements of the
obstruction set. Section 6 then addresses the question of how many obstructions there
are. Finally, as mentioned above, section 7 considers the case of c ¼ 2 and d ¼ 3, where
some computational questions arise. This complements work of the second two authors
[7] for d ¼ 2 and 2 ≤ c ≤ 4.

Throughout the present manuscript, we write f ¼ OðgÞ as t → ∞ (f ¼ ΩðgÞ as
t → ∞), for nonnegative functions f , g: R → R and some parameter t, to mean that
there exist nonnegative constants C and N (possibly depending on d) such that fðxÞ ≤
CgðxÞ (respectively, f ðxÞ ≥ CgðxÞ) whenever t > N . The expression f ¼ ΘðgÞ as t → ∞
means that f ¼ OðgÞ as t → ∞ and g ¼ ΩðfÞ as t → ∞, and the expression f ¼ oðgÞ as
t → ∞ means that, for all ϵ > 0, there exists an N ϵ (possibly depending on d) so that
f ðxÞ ≤ ϵgðxÞ whenever t > N ϵ.

2. All small grids are c-colorable. Define V ðc; dÞ to be the largest integer V so
that every d-dimensional grid L with volume at most V is c-colorable. Below we show
that V ðc; dÞ is Θðc2d−1Þ as c → ∞. Lower and upper bounds were proved for the equi-
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lateral case by Agnarsson, Doerr, and Schoen [1]. The proof of Theorem 2 is quite similar
to that of Theorem 2.2 in [1], although we obtain a slightly stronger lower bound in the
equilateral case. The upper bound is given by Corollary 8.

THEOREM 2. V ðc; dÞ > c2
d−1 ∕ ðe2dÞ, where e ¼ 2.718 : : : is the base of the natural

logarithm.
Proof. We apply the Lovász local lemma (see, e.g., [2]), which states the following.

Suppose that A1; : : : ; At are events in some probability space, each of probability at
most p. Let G be a “dependency” graph with vertex set fAigti¼1, i.e., a graph so that,
whenever a set S of vertices induces no edges in G, then S is a mutually independent
family of events. Then Pð⋀t

i¼1 ĀiÞ > 0 if epðΔþ 1Þ ≤ 1, where Δ ¼ ΔðGÞ is the maxi-
mum degree of G.

Now suppose that L ¼ ½a1; : : : ; ad� is a grid of volumeV and that we color the points
of L uniformly at random from [c]. Enumerate all boxes in L as B1; : : : ; Bt. Define Ai to
be the event that Bi is monochromatic in this random coloring. We may take G to have
an edge between Ai and Aj whenever Bi ∩ Bj ≠ ∅ since any family of events Ai corre-
sponding to mutually disjoint boxes is mutually independent. The degree of a vertex Ai

is then the number of boxes Bj, j ≠ i, which intersect Bi. Since we may specify the list of
all such boxes by choosing one of the 2d points of Bi and then choosing the d coordinates
of its antipodal point, degGðAiÞ is at most

2d
Yd
i¼1

ðai − 1Þ− 1 < 2d
Yd
i¼1

ai − 1 ¼ 2dV − 1:

(The outermost −1 here reflects the fact that Bi may be excluded among these choices.)
The probability of each Ai is the same: p ¼ c−2dþ1. Therefore,

epðΔþ 1Þ < ec−2dþ12dV

which is ≤1 whenever V ≤ c2
d−1 ∕ ðe2dÞ.

3. Some large grids are c-uncolorable. Recall the definition of ðc; tÞ-guaranteed
given in the first paragraph.

THEOREM 3. Fix c, d, define L ¼ ½a1; : : : ; ad�, and let M ¼ Q
iðai2 Þ denote the

total number of boxes in L. Then L is ðc;Mð1þ oð1ÞÞ ∕ c2d−1Þ-guaranteed as
minfa1; : : : ; adg → ∞.

Theorem 3 follows quickly from the next lemma, whose extra strength is needed
later.

LEMMA 4. Suppose c ≥ 1. For d ≥ 1 and integers a1; : : : ; ad ≥ 2, let M ¼ Q
d
i¼1ðai2 Þ.

Define Δj, 0 ≤ j ≤ d, recursively as follows:

Δ0 ¼ 1; Δj ¼ Δ2
j−1

�
1−

c2
j−1

Δj−1
− 1

aj − 1

�
:

Then the grid L ¼ ½a1; : : : ; ad� is ðc;MΔd ∕ c2
d−1Þ-guaranteed provided Δ1; : : : ;Δd > 0.

Proof. We proceed inductively. Suppose d ¼ 1, let f∶½a1� → ½c� be a c-coloring, and
define

γi ¼ jf−1ðiÞj
to be the number of points colored i, 1 ≤ i ≤ c. Then the number N of monochromatic
boxes in f is exactly
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N ¼
Xc
i¼1

�
γi

2

�
¼ 1

2
·
Xc
i¼1

ðγ2
i − γiÞ ¼

1

2
·
�Xc

i¼1

γ2
i − a1

�
.

Applying the Cauchy–Schwarz inequality,

N ≥

�P
c
i¼1 γi

�
2

2c
−

a1
2

¼ a21
2c

−
a1
2

¼ a1ða1 − cÞ
2c

¼ 1

c

�
a1
2

�
a1 − c

a1 − 1
¼ 1

c

�
a1
2

�
Δ1:

Now suppose the statement of Lemma 4 is true for dimensions less than dþ 1, and
consider a coloring f : ½a1; : : : ; adþ1� → ½c�. Consider the adþ1 colorings f j of the d-
dimensional grid ½a1; : : : ; ad� induced by setting the last coordinate to j, i.e.,

f jðx1; : : : ; xdÞ ¼ f ðx1; : : : ; xd; jÞ:

Let γiðBÞ, for a box B ⊂ ½a1; : : : ; ad� and i ∈ ½c�, denote the number of j’s so that
f jjB ≡ i. Then the number N of monochromatic (dþ 1)-dimensional boxes in f is

N ¼
X
i

X
B

�
γiðBÞ
2

�

¼ 1

2
·
X
i

X
B

ðγiðBÞ2 − γiðBÞÞ

≥

�P
B

P
i γiðBÞ

�
2

2Mc
−

1

2
·
X
B

X
i

γiðBÞ

¼
�P

B

P
i γiðBÞ

�
2
−Mc

P
B

P
i γiðBÞ

2Mc
;

where M ¼ Q
d
i¼1ðai2 Þ. Since, by the inductive hypothesis, f j induces at least MΔd ∕ c2

d−1

monochromatic boxes,

X
i

X
B

γiðBÞ ≥
adþ1MΔd

c2
d−1

so that
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N ≥
a2dþ1M

2Δ2
d ∕ c2

dþ1−2 − adþ1M
2Δdc ∕ c2

d−1

2Mc

¼ adþ1Mðadþ1Δ2
d − c2

dΔdÞ
2c2

dþ1−1

¼ M

c2
dþ1−1

�
adþ1

1

�
adþ1Δ2

d − c2
dΔd

adþ1 − 1

¼
Q

dþ1
i¼1 ðai2 Þ
c2

dþ1−1
· Δ2

d

�
adþ1 − c2

d ∕ Δd

adþ1 − 1

�

¼
Q

dþ1
i¼1 ðai2 ÞΔdþ1

c2
dþ1−1

:

Proof of Theorem 3. Fix c; d ≥ 1. It is clear by induction on j that, for all 1 ≤ j ≤ d,
Δj ¼ 1þ oð1Þ asminfa1; : : : ; adg → ∞, and so, in particular, Δj > 0 ifminfa1; : : : ; adg
is large enough.

Note that, in the notation of Lemma 4, if Δ1; : : : ;Δd > 0, then ½a1; : : : ; ad� is not
c-colorable. Therefore we may conclude the following.

COROLLARY 5. In the notation of Lemma 4, let Γj, 0 ≤ j ≤ d, be given by the
recurrence

Γ0 ¼ 1;

Γj ¼ Γ2
j−1

�
1−

c2
j−1 ∕ Γj−1

aj − 1

�
¼ Γj−1

�
Γj−1 −

c2
j−1

aj − 1

�
:

If Γ1; : : : ;Γd > 0, then ½a1; : : : ; ad� is c-uncolorable.
Proof. Assume Γ1; : : : ;Γd > 0. A routine induction shows that Γj ≤ Δj for 0 ≤

j ≤ d.
LEMMA 6. In the notation of Lemma 4, let εj be given by the recurrence

ε0 ¼ 0; εj ¼ 2εj−1 þ
c2

j−1

aj − 1
:

If εd < 1, then ½a1; : : : ; ad� is c-uncolorable.
Proof. It is clear that 0 ¼ ε0 < ε1 < ε2 < · · · < εd, and so, by assumption, εi < 1 for

all i ∈ ½d�. An induction on i shows that Γi ≥ 1− εi for 0 ≤ i ≤ d: This is clearly true for
i ¼ 0. Suppose i < d and Γi ≥ 1− εi. Then setting η ≔ c2

i ∕ ðaiþ1 − 1Þ and noting that
Γi ≥ 0, we have

Γiþ1 ¼ ΓiðΓi − ηÞ ≥ Γið1− εi − ηÞ:ð1Þ

The term in the parentheses is positive:

1− εi − η ≥ 1− 2εi − η ¼ 1− εiþ1 > 0

by assumption. Thus, continuing (1) and using the inductive hypothesis again,

Γið1− εi − ηÞ ≥ ð1− εiÞð1− εi − ηÞ ≥ 1− 2εi − η ¼ 1− εiþ1:
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Motivated by the preceding lemma, for every c, d ≥ 1 and grid L ¼ ½a1; : : : ; ad�with
ai ≥ 2 for all i ∈ ½d�, we define

εcðLÞ ≔
Xd
i¼1

2d−i c2
i−1

ai − 1
:

LEMMA 7. If L ¼ ½a1; : : : ; ad� is c-colorable, then εcðLÞ ≥ 1.
Proof. We let εj ≔ εcð½a1; : : : ; aj�Þ ¼

Pj
i¼1 2

j−ic2
i−1 ∕ ðai − 1Þ for all j with 0 ≤ j ≤

d, and notice that the εj satisfy the recurrence in Lemma 6.
COROLLARY 8. For any fixed d ≥ 1 and c ≥ 2, if n is least such that ½n�d is c-

uncolorable, then n < ðdþ 2Þc2d−1
. Furthermore,

2−de−1 <
V ðc; dÞ
c2

d−1
< ðdþ 2Þd2dðd−1Þ ∕ 2:

Proof. If we take aj ¼ ðdþ 1Þ2d−jc2
j−1 þ 1 for all 1 ≤ j ≤ d, then εcðLÞ ¼

d∕ ðdþ 1Þ < 1. The second result now follows from the fact that

Yd
j¼1

aj <
Yd
j¼1

ðdþ 2Þ2d−jc2
j−1

¼ ðdþ 2Þd2
Pd

j¼1ðd−jÞc
Pd

j¼12
j−1

¼ ðdþ 2Þd2
Pd−1

j¼1
jc

Pd−1
j¼0

2j

¼ ðdþ 2Þd2dðd−1Þ ∕ 2c2d−1:

The first result follows by taking n ≔ ad.

4. Hereditarily large grids are c-uncolorable. It is possible for grids of arbi-
trarily large volume to be c-colorable. Indeed, one needs to have only one of the dimen-
sions be at most c and then color the grid with this coordinate. However, if we require
that each lower dimensional subgrid be sufficiently voluminous, then the whole grid is
c-uncolorable. This statement is made precise by the following theorem.

THEOREM 9. Fix d > 0, and define Cj ¼ ðd2dÞ32ð3j−1−1Þ for j ≥ 1. For all integers c ≥
1 and 1 ≤ a1 ≤ a2 ≤ · · ·≤ ad, if

Qj
i¼1 ai > Cjc

ð3j−1Þ∕ 2 for all j ∈ ½d�, then ½a1; : : : ; ad� is
c-uncolorable.

We require a lemma and a bit of notation. If L ¼ ½a1; : : : ; ad� and 1 ≤ j < d, let Lj

denote ½a1; : : : ; aj�, and let L̄j denote ½ajþ1; : : : ; ad�. Note that if L is c-uncolorable, then
Lj is as well. Indeed, if f : Lj → ½c� is a c-coloring of Lj, then the function g: L → ½c�
defined by gðx1; : : : ; xdÞ ¼ f ðx1; : : : ; xjÞ is a c-coloring of L. We will also make repeated
use of the following easily verified fact: For every integer j ≥ 0, j · 2j−1 ≤ ð3j − 1Þ ∕ 2
and j · 2j þ 1 ≤ 3j.

LEMMA 10. Let c ≥ 1, let L ¼ ½a1; : : : ; ad� be a grid, and let j ∈ ½d− 1�. Define

c 0 ≔ c ·
Yj
i¼1

�
ai
2

�
≤ 2−j · c ·

Yj
i¼1

a2i :

If Lj is c-uncolorable and L̄j is c 0-uncolorable, then L is c-uncolorable.
Proof. Assume that Lj is c-uncolorable and that L̄j is c 0-uncolorable. Suppose that

f : L → ½c� is a c-coloring. Consider the coloring g: L̄j → ½c 0� that assigns the pair ðB; sÞ
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to the point v, B being an arbitrary choice of j-dimensional box which is colored mono-
chromatically by f j: Lj → ½c�, where f jðx1; : : : ; xjÞ ¼ fðx1; : : : ; xj; vÞ, and s being its
color. (Note that Lj is c-uncolorable, so such a B always exists.) Then g is a c 0-coloring
because there are exactly c 0 many different ðB; sÞ. Since L̄j is c 0-uncolorable, g colors
some (d− j)-dimensional box B1 monochromatically with color ðB2; sÞ. But then B2 ×
B1 is a d-dimensional box monocolored by f with color s.

Proof of Theorem 9. The statement is clearly true when d ¼ 1 since C 1 ¼ 1. Sup-
pose that d > 1 and that the statement is true for all d 0 < d. Let L ¼ ½a1; : : : ; ad� be a
monotone grid satisfying the hypothesis of the theorem.

Case 1. εcðLÞ < 1. The result follows immediately from Lemma 7.
Case 2. εcðLÞ ≥ 1. Then there is some j ∈ ½d� such that 2d−jc2

j−1 ∕ ðaj − 1Þ ≥ 1 ∕ d,
i.e.,

aj ≤ d2d−jc2
j−1 þ 1 < d2d−jþ1c2

j−1
:

Since t2t ≤ 3t − 1 for all integers t ≥ 1,

Yj
i¼1

ai ≤
Yj
i¼1

aj < dj2jðd−jþ1Þcj2j−1 ≤ dj2jðd−jþ1Þcð3j−1Þ ∕ 2;

and so, for all k ∈ ½d− j�,
Yk
i¼1

ajþi >
Cjþk

dj2jðd−jþ1Þ c
ð3jþk−1Þ∕ 2−ð3j−1Þ∕ 2 ≥

Cjþk

dj2jðd−jþ1Þ c
3jð3k−1Þ∕ 2:

Let c 0 ¼ d2j22jðd−jþ1Þc3j . (Note that c 0 ≥ c ·
Qj

i¼1 a
2
i .) Then, for all k ∈ ½d− j�,

Yk
i¼1

ajþi >
Cjþk

dj2jðd−jþ1Þ

�
c 0

d2j22jðd−jþ1Þ

�ð3k−1Þ∕ 2

¼ ðd2dÞ32ð3jþk−1−1Þ

ðd2d−jþ1Þj3k c 0ð3k−1Þ∕ 2

≥ ðd2dÞ32ð3jþk−1−1Þ−j3kc 0ð3k−1Þ∕ 2

≥ ðd2dÞ32ð3jþk−1−1Þ−ð3j−1Þ3k ∕ 2c 0ð3k−1Þ ∕ 2

because t ≤ ð3t − 1Þ ∕ 2 for all t ≥ 1. Continuing the computation,

Yk
i¼1

ajþi > ðd2dÞ32ð3jþk−1−1Þ−ð3j−1Þ3k ∕ 2c 0ð3k−1Þ ∕ 2

¼ ðd2dÞ32ð3jþk−1−1−3jþk−1þ3k−1Þc 0ð3k−1Þ∕ 2

¼ ðd2dÞ32ð3k−1−1Þc 0ð3k−1Þ∕ 2

¼ Ckc
 0ð3k−1Þ∕ 2:

Therefore L̄j ¼ ½ajþ1; : : : ; ad� is c 0-uncolorable by the inductive hypothesis. (It is easy to
see that the Cj’s are increasing in d, so taking d 0 ¼ d− j causes no problem here.) Since
Lj is also c-uncolorable by the inductive hypothesis, we may apply Lemma 10 to con-
clude that L is c-uncolorable.
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5. Upper bounds on the volume of obstruction grids. Before proceeding, we
introduce the following notation. For d ≥ 1 and any monotone grid L ¼ ½a1; : : : ; ad�,
where ad > 1, let j ∈ ½d� be least such that aj ¼ ad. Then we let L− denote the monotone
grid obtained from L by subtracting one from aj, that is,

L− ¼ ½a1; : : : ; aj−1; aj − 1; ajþ1; : : : ; ad�:

Note that if L is monotone and L ∈ Oðc; dÞ, then L is c-uncolorable but L− is c-colorable.
(Recall that Oðc; dÞ is the obstruction set for c colors in d dimensions, i.e., the set of
minimally c-uncolorable d-dimensional grids.)

The next theorem gives an asymptotic upper bound on the volume
Q

d
i¼1 ai of any

grid ½a1; : : : ; ad� ∈ Oðc; dÞ.
THEOREM 11. For every d ≥ 1 and every grid L ¼ ½a1; : : : ; ad� ∈ Oðc; dÞ,

Yd
i¼1

ai ¼ Oðcð3d−1Þ∕ 2Þ

as c → ∞.
The theorem follows immediately from the following lemma.
LEMMA 12. For every d ≥ 1, every c ≥ 2, and every monotone grid L ¼

½a1; : : : ; ad� ∈ Oðc; dÞ, there is a set P ⊆ ½d� such that
(i) d ∈ P,
(ii) for every l ∈ P,

Yl
i¼1

ai ¼ Oðcð3l−1Þ∕ 2Þ

as c → ∞, and
(iii) for every k ∈ ½d�,

ak ¼ Oðc3j·2l−j−1Þ

as c → ∞, where l is the least element of P that is ≥k and j is the biggest
element of P that is <k (j ¼ 0 if there is no such element).

(We call the elements of P pinch points for L.)
Proof. Let d ≥ 1 and c ≥ 2 be given, and let L ¼ ½a1; : : : ; ad� ∈ Oðc; dÞ be a mono-

tone grid. Then L is c-uncolorable, and thus Lj is also c-uncolorable for all 1 ≤ j ≤ d.
Since L ∈ Oðc; dÞ, we have that L− is c-colorable, and thus εcðL−Þ ≥ 1. This, in turn,
implies that there is some largest l ∈ ½d� such that

2d−l c2
l−1

al − 2
≥

1

d
:

(Note that the denominator is positive because al ≥ a1 ≥ cþ 1 ≥ 3 since L is c-
uncolorable.) Thus,

al ≤ d2d−l · c2
l−1 þ 2 ≤ ðdþ 2Þ2d−l · c2

l−1
;ð2Þ

and thus
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Yl
i¼1

ai ≤ ðalÞl ≤ ððdþ 2Þ2d−lÞl · cl·2
l−1 ≤ ððdþ 2Þ2d−1Þd · cð3l−1Þ∕ 2;ð3Þ

which implies that l satisfies (ii). We will make l the least element of P, noticing that
(2) and the monotonicity of L imply that ak satisfies (iii) of the lemma for all k ∈ ½l�
(with j ¼ 0).

If l ¼ d, then we let P ¼ flg ¼ fdg, and we are done.
Otherwise, l < d. Note that L− ¼ Ll × ðL̄lÞ− up to a possible permutation of the

coordinates. Recall also that Ll is not c-colorable, but L− is. It follows from Lemma 10
that ðL̄lÞ− is c 0-colorable, where

c 0 ≔ c ·
Yl
i¼1

�
ai
2

�
≤ c ·

�Yl
i¼1

ai

�2

:

The bound in (3) gives c 0 ¼ Oðc3lÞ as c → ∞.
We thus have εc 0 ððL̄lÞ−Þ ≥ 1, and so there is some largest m with l < m ≤ d such

that

2d−m ðc 0Þ2m−l−1

am − 2
≥

1

d− l
;

which gives

am ≤ ðd− lÞ2d−m · ðc 0Þ2m−l−1 þ 2ð4Þ

≤ ðd− lþ 2Þ2d−m · ðc 0Þ2m−l−1ð5Þ

¼ Oðc3l·2m−l−1Þð6Þ

as c → ∞. For the volume of Lm, we get

Ym
i¼1

ai ¼
Yl
i¼1

ai ·
Ym

i¼lþ1

ai

≤
�Yl

i¼1

ai

�
· ðamÞm−l

¼ Oðcð3l−1Þ ∕ 2Þ · Oðc3l·ðm−lÞ·2m−l−1Þ
¼ Oðcð3l−1Þ ∕ 2 · c3l·ð3m−l−1Þ∕ 2Þ
¼ Oðcð3m−1Þ∕ 2Þ

as c → ∞. We make l andm the two least elements of P, and the last calculation shows
thatm ∈ P satisfies (ii). Further, since ak ≤ am for all k such that l < k ≤ m, (iii) is also
satified for all these ak by (4)–(6).

If m ¼ d, then we let P ¼ fl;mg, and we are done. Otherwise, we repeat the argu-
ment above using m instead of l to obtain an n with m < n ≤ d such that l, m, and n
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being the least three elements of P satisfies (ii) and (iii) and so on until we arrive at d,
whence we set P ≔ fl;m; n; : : : ; dg.

The next proposition shows that the bounds in Lemma 12 are asymptotically tight.
PROPOSITION 13. For c ≥ 2, there is an infinite sequence fμjðcÞg∞j¼1 of positive in-

tegers such that
(i) μjðcÞ ≥ 1þ 2ð1−3j−1Þ ∕ 2 · c3j−1

for all j ∈ Zþ and
(ii) for all d ≥ 1, the grid ½μ1ðcÞ; : : : ;μdðcÞ� ∈ Oðc; dÞ with pinch point

set P ¼ ½d�.
Proof. For all c ≥ 2, define

μ1ðcÞ ≔ 1þ c;

μ2ðcÞ ≔ 1þ c ·
�
cþ 1

2

�
;

..

.

μjþ1ðcÞ ≔ 1þ c ·
Yj
i¼1

�
μiðcÞ
2

�
;

..

.

Fix c ≥ 2, and let μj denote μjðcÞ for short. A routine induction on j shows (i). For the
inductive step, noting that

Pj−1
i¼0 3

i ¼ ð3j − 1Þ ∕ 2, we have

μjþ1 ¼ 1þ c ·
Yj
i¼1

�
μi

2

�

≥ 1þ c

2j

Yj
i¼1

ðμi − 1Þ2

≥ 1þ c

2j

Yj
i¼1

c2·3
i−1

23
i−1−1

¼ 1þ c3
j

2ð3j−1Þ ∕ 2 :

For (ii), we use induction on d ≥ 1 to show separately that
(a) ½μ1; : : : ;μd� is c-uncolorable and
(b) ½μ1; : : : ;μd� is not ðc; 2Þ-guaranteed (i.e., there is a coloring ½μ1; : : : ;μd� → ½c�

that monocolors exactly one box).
Clearly ½μ1� ¼ ½1þ c� is c-uncolorable by the pigeonhole principle. Now let d ≥ 2,

and assume that ½μ1; : : : ;μd−1� is c-uncolorable. Then letting c 0 ¼ c ·
Q

d−1
i¼1 ðμi

2 Þ,
we have μd ¼ 1þ c 0, and hence ½μd� is c 0-uncolorable. But then ½μ1; : : : ;μd� is c-
uncolorable by Lemma 10 (letting j ¼ d− 1).

We now show (b). For d ¼ 1, clearly the coloring ½μ1� → ½c� mapping j ↦
ðjmod cÞ þ 1 has exactly one monochromatic one-dimensional box, namely,
ð1; cÞ ¼ f1; cþ 1g. Now let d ≥ 2, and assume (b) holds for d− 1, i.e., there is a coloring
½μ1; : : : ;μd−1� → ½c� that monocolors exactly one box. We will call such a coloringmini-
mal. This generates exactly

Q
d−1
i¼1 ðμi

2 Þ many boxes in ½μ1; : : : ;μd−1�. For each of these
boxes B and for each color s, we can find a minimal coloring that monocolors B with s by
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permuting the order of the hyperplanes along each axis and by permuting the colors.
Thus there are exactly c 0 ¼ c ·

Q
d−1
i¼1 ðμi

2 Þ many distinct minimal colorings. We overlay
these c 0 many colorings to obtain a coloring of ½μ1; : : : ;μd−1; c

 0� with no monochromatic
d-boxes. We then duplicate the first (d− 1)-dimensional layer to arrive at a c-coloring of
½μ1; : : : ;μd−1; 1þ c 0� ¼ ½μ1; : : : ;μd�. This coloring has only one monocolored d-box: the
box corresponding to the duplicated layer of unique monocolored (d− 1)-boxes. This
shows (b).

It follows from (b) that ½μ1; : : : ;μd−1;μd − 1� is c-colorable for all d ≥ 1 since we
can remove a single hyperplane from the only monocolored d-box in some minimal color-
ing of ½μ1; : : : ;μd−1;μd� to leave a coloring of ½μ1; : : : ;μd−1;μd − 1� without any mono-
chromatic (d− 1)-boxes. From this it easily follows that ½μ1; : : : ;μd� ∈ Oðc; dÞ because
½μ1; : : : ;μj−1;μj − 1� is c-colorable, and hence ½μ1 : : : ;μj−1;μj − 1;μjþ1; : : : ;μd� is c-
colorable for all j ∈ ½d�.

Finally it is evident that all j ∈ ½d� are pinch points for ½μ1; : : : ;μd�. (It is interesting
to note that ½μ1; : : : ;μd� is the lexicographically first element of Oðc; dÞ.)

6. Upper bound on the size of the obstruction set. It was shown in [7] that
jOðc; 2Þj ≤ 2c2. We give an asymptotic upper bound for jOðc; dÞj for every fixed d ≥ 3.

THEOREM 14. For all d ≥ 3,

jOðc; dÞj ¼ Oðcð17·3d−3−1Þ∕ 2Þ
as c → ∞.

Proof. Fix d ≥ 3. We give an asymptotic upper bound on the number of monotone
grids in Oðc; dÞ. The size of Oðc; dÞ is at most d! times this bound, and so it is asymp-
totically equivalent. By Lemma 12, every grid L ∈ Oðc; dÞ has a set P of pinch points.
For each set P ⊆ ½d� such that d ∈ P, let #cðPÞ be the number of monotone grids in
Oðc; dÞ having pinch point set P. There are 2d−1 many such P, so an asymptotic bound
on maxf#cðPÞjP ⊆ ½d� ∧ d ∈ Pg gives the same asymptotic bound on jOðc; dÞj.

Fix a set P ⊆ ½d� such that d ∈ P, and let P ¼ fl1 < l2 < · · · < ls ¼ dg, where s ¼
jPj and l1; : : : ;ls are the elements of P in increasing order. For convenience, set l0 ≔ 0.
Lemma 12 says that, for any monotone grid L ¼ ½a1; : : : ; ad� ∈ Oðc; dÞ having pinch
point set P, for any b ∈ ½s�, and for any k such that lb−1 < k ≤ lb, we have
ak ¼ OðceðbÞÞ as c → ∞, where

eðbÞ ≔ 3lb−1 · 2lb−lb−1−1:

To bound#cðPÞ, we first note that, for any choice of 1 ≤ a1 ≤ · · ·≤ ad−1, there can be at
most one value of ad such that ½a1; : : : ; ad� ∈ Oðc; dÞ because any two d-dimensional
grids that share the first d− 1 dimensions are comparable in the dominance order
≼. Thus #cðPÞ is bounded by the number of possible combinations of values of
a1; : : : ; ad−1. From the bound on each ak given by Lemma 12(iii), we therefore have

#cðPÞ ≤
�Ys−1

b¼1

Ylb
k¼lb−1þ1

OðceðbÞÞ
�

·
Yd−1

k¼ls−1þ1

OðceðsÞÞ

¼ O

�Ys−1

b¼1

ðceðbÞÞlb−lb−1

�
· OððceðsÞÞd−1−ls−1Þ

¼ Oðch1þh2Þ

as c → ∞, where h2 ¼ eðsÞðd− 1− ls−1Þ and
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h1 ¼
Xs−1

b¼1

eðbÞðlb − lb−1Þ

¼
Xs−1

b¼1

3lb−1 · 2lb−lb−1−1 · ðlb − lb−1Þ

≤
Xs−1

b¼1

3lb−1 ·
3lb−lb−1 − 1

2

¼ 1

2

Xs−1

b¼1

ð3lb − 3lb−1Þ

¼ 3m − 1

2
;

where m ¼ ls−1. We also have

h2 ¼ 3ls−1 · 2d−ls−1−1 · ðd− 1− ls−1Þ
¼ 3m · 2d−m−1 · ðd−m− 1Þ;

whence

h1 þ h2 ¼
3m − 1

2
þ 3m · 2d−m−1 · ðd−m− 1Þ:

This expression depends on only the value of m, which satisfies 0 ≤ m < d. It is more
convenient to express h1 þ h2 in terms of n ≔ d−m, where n ∈ ½d�:

h1 þ h2 ¼
3d−n − 1

2
þ 3d−n · 2n−1 · ðn− 1Þ ¼ 3d

2
·
1þ 2nðn− 1Þ

3n
−

1

2
:

It is easy to check that ð1þ 2nðn− 1ÞÞ∕ 3n is greatest (and thus h1 þ h2 is greatest)
when n ¼ 3. It follows that

h1 þ h2 ≤
3d

2
·
1þ 23ð3− 1Þ

33
−

1

2
¼ 17 · 3d−3 − 1

2
;

which proves the theorem.
The first few values ð17 · 3d−3 − 1Þ ∕ 2 are given in Table 1.

7. Three dimensions and two colors. In this section, we extend to three dimen-
sions the result of [7, Theorem 6.2], which states that Oð2; 2Þ ¼ f½7; 3�; ½5; 5�; ½3; 7�g. The

TABLE 1
Table of upper bounds on e so that jOðc; dÞj ¼ OðceÞ as c → ∞ d.

d ð17 ⋅ 3d−3 − 1Þ∕ 2
3 8
4 25
5 76
6 229

MONOCHROMATIC BOXES IN COLORED GRIDS 1065

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



following graph (Figure 1, generated using the Jmol module in SAGE) and table (Ta-
ble 2) display upper bounds for the smallest a3 so that ½a1; a2; a3� is 2-uncolorable. All
three graphical axes run from 3 to 130; the table includes only 3 ≤ a1 ≤ 12 and
3 ≤ a2 ≤ 12. We believe these values to be very close to the truth; indeed, we have
matching lower bounds in many cases and lower bounds that differ from the upper
bounds by at most 2 in many more cases.

A few different methods were applied to obtain these bounds. First the values Δj, as
in section 3, were computed, and the least a3 so that Δ3 > 0 was recorded. In fact, this

FIG. 1. Graph of upper bounds on a3 so that ½a1; a2; a3� 2-uncolorable.

TABLE 2
Table of bounds on a3 so that ½a1; a2; a3� is 2-uncolorable.

3 4 5 6 7 8 9 10 11 12

3 127 85 73 68 67 67

4 127 85 73 68 67 67

5 101 76 53 47 46 46 40 37

6 76 76 53 47 46 46 40 37

7 127 127 53 53 53 46 40 37 34 33

8 85 85 47 47 46 45 40 37 34 33

9 73 73 46 46 40 40 37 34 31 30

10 68 68 46 46 37 37 34 33 31 30

11 67 67 40 40 34 34 31 31 30 28

12 67 67 37 37 33 33 30 30 28 28
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idea was improved slightly by applying the observation that, if some grid is ð2; tÞ-guar-
anteed, then it is ð2; dteÞ-guaranteed. In some cases, this increases the value of Δj. Sec-
ond we used the simple observations that c-colorability is independent of the order of the
ai and that L ≼ L 0 when L is c-uncolorable implies that L 0 is c-uncolorable. Third we
applied the following lemma.

LEMMA 15. Let M ¼ Q
d
j¼1ðaj2 Þ. If the grid L ¼ ½a1; : : : ; ad� is ðc; tÞ-guaranteed, then

L× ½bcM ∕ tc þ 1� is c-uncolorable.
Proof. Note that K ¼ bcM ∕ tc þ 1 > cM ∕ t and is integral. If we think of L× ½K �

as K copies of L, then any c-coloring of L× ½K � restricts to K c-colorings of L. Since L is
ðc; tÞ-guaranteed, each of these c-colorings gives rise to t monochromatic boxes. Hence,
in K colorings, there are at least tðbcM ∕ tc þ 1Þ > cM monochromatic boxes. Since
there are only M total boxes in each copy of L and any monochromatic box can be
colored only in c different ways, there must be two identical boxes (in two different
copies of L) which are monochromatic and have the same color. This is precisely a mono-
chromatic (dþ 1)-dimensional box in L× ½K �.

Therefore, in order to obtain upper bounds on ½a3� in the above table, we need to
know the greatest t for which ½a1�× ½a2� is ð2; tÞ-guaranteed. To that end, we define the
following matrix.

DEFINITION 16. Define f j∶½r� → ½2�, 0 ≤ j < 2r, to be the function which maps i ∈ ½r�
to the coefficient of 2i−1 in the base-2 expansion of j. Define Mr to be the 2r × 2r integer
matrix whose ði; jÞ-entry is given by

�jf−1
i ð1Þ ∩ f−1

j ð1Þj
2

�
þ
�jf−1

i ð2Þ ∩ f−1
j ð2Þj

2

�
.

Then define the quadratic form Qr∶R2r → R by QrðvÞ ¼ v�Mrv. Let

δr ¼ ðMrð1; 1Þ; : : : ;Mrð2r; 2rÞÞ

be the diagonal of Mr, and define 1 to be the all-ones vector of length 2r.
PROPOSITION 17. Let t be the least value of ðQrðvÞ− v�δrÞ ∕ 2 over all nonnegative

integer vectors v ∈ Z2r with v�1 ¼ s. Then ½r�× ½s� is ðc; tÞ-guaranteed, and t is the maxi-
mum value so that this is the case.

Proof. Given a vector v ¼ ðv1; : : : ; vrÞ satisfying the hypotheses, consider the r × s

matrix A with vj many columns of type f j for each j ∈ ½r�. (We may identify f j with a
column vector in ½2�r in the natural way.) It is easy to see that QrðvÞ− v�δr exactly
counts twice the number of monochromatic rectangles in A, thought of as a 2-coloring
of the grid ½r�× ½s�.

We applied standard quadratic integer programming tools (XPress-MP) to mini-
mize the appropriate programs. Fortunately, for the cases considered, the matrix Mr

was positive semidefinite, meaning that the solver could use polynomial time convex
programming techniques during the interior point search. We conjecture that this is
always the case.

CONJECTURE 18. Mr is positive semidefinite for r ≥ 3.
In particular, for r ¼ 3, the eigenvalues ofMr are 0, 1, and 4, with multiplicities 2, 4,

and 2, respectively. For 4 ≤ r ≤ 9, the eigenvalues are 0, 2r−2, 2r−3ðr − 2Þ, 2r−2ðr − 1Þ,
and 2r−4ðr2 − r þ 2Þ, with multiplicities 2r − rðr þ 1Þ∕ 2, rðr − 1Þ ∕ 2− 1, r − 1, 1, and
1, respectively. We conjecture that this description of the spectrum is valid for all r ≥ 4.
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