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MONOCHROMATIC BOXES IN COLORED GRIDS®
JOSHUA COOPER/, STEPHEN FENNER', Axp SEMMY PUREWALS

Abstract. A d-dimensional gridis a set of the form L = [a1]x --- X[ay], where [t] = {1, ...,t} and a; is
a positive integer for j € [d]. A d-dimensional boz is a set of the form {z, y; } x -+ x{z4, y;} for some integers
;, y; with j € [d], where z; # y; for each j. We give conditions on the set of d-tuples (ay, ..., a4) so that, for
every coloring f: L — [c], the grid L = [ay]x - -+ X[a,] contains a box on which f is constant. In particular, we
analyze the set of grids that are minimal with respect to this property. We show that, for d > 3, this set has size
O(c73=1)/2) "and all its elements have volume O(c®'~D/2) as ¢ — oo.
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1. Introduction. Let [¢] denote the set{l, ..., ¢} for any positive integer ¢t. A d-
dimensional gridis a set L = [a;]x --- x[ay]. For ease of notation, we write [aq, ..., ag]
for [ay]x -+ x[ag]. The “volume” of L is [[L, a;- A d-dimensional boz is a set of 2¢
points of the form

{z < - x{zg, 4}

with z; and y; integers so that x; # y; for each j € [d]. A grid Lis (c, t)-guaranteed if, for
all colorings f: L — [c], there are at least ¢ distinct monochromatic boxes in L, i.e., boxes
B; C L, j € [t],sothat |f(B;)| = 1. We say that a grid is c-uncolorable to mean that it is
(¢, 1)-guaranteed. If L is not c-uncolorable, we say it is c-colorable. If, for all i € [d],
b; > a;, then [by, ..., by] is c-uncolorable if [ay, ..., ay] is. Hence, a full description
of the set of c-uncolorable grids is given by its minimal elements with respect to this
partial order. Call the set of minimal c-uncolorable grids O(e, d) the obstruction set
for ¢ colors in dimension d. It is well known from poset theory that this set is always
finite. We focus our attention on monotone grids, i.e., those grids for which
a; <---< ay, since being c-uncolorable (or (¢, t)-guaranteed) is invariant under permu-
tations of the a;.

Our main contribution is a rough description of the obstruction set for ¢ colors in d
dimensions. In the language of hypergraphs, we provide bounds on the multiset of par-
tite sizes of a complete multipartite hypergraph G, every c-coloring of which admits a
monochromatic hypergraph H, for the smallest nontrivial choice of H: K 4(2). A specia-
lization gives bounds on the multipartite Ramsey number of H = K ;(2), defined to be
the smallest N so that every c-coloring of the complete balanced d-partite d-uniform
hypergraph with partite sets of size N contains a monochromatic H. The d = 2 (un-
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MONOCHROMATIC BOXES IN COLORED GRIDS 1055

balanced) case is considered in greater detail in [7], and closely related questions are
treated in [4] and [9] (albeit in the language of graph theory).

The subject of unavoidable configurations in grids has played a prominent role in
combinatorics, not least because it offers many natural generalizations of the celebrated
van der Waerden’s and Szemerédi’s theorems on arithmetic progressions. Often the con-
figuration of concern is a grid which is further required to have the same “spacing” in
each direction; see, for example, [11], where the author shows that every coloring of N2
contains a monochromatic square. Indeed, the famous Gallai-Witt theorem (q.v. [8])
states that every configuration is unavoidable, although no known proofs offer reason-
able bounds.

TureoreM 1 (Gallai-Witt theorem). Let m, n, k be positive integers. If the points of
Z™ are colored with k colors, and A is any m-element subset of ", then there is a mono-
chromatic subset of Z" that is homothetic to (i.e., a dilation and shift of) A.

The Gallai-Witt theorem ensures, in particular, that the quantity N(e, d), defined
to be the least N so that [N]? is c-uncolorable, is finite. An analysis of N(¢, d) (and some
related quantities) appears in the manuscript by Agnarsson, Doerr, and Schoen [1].
Bounds for some configurations in two dimensions are found in [3].

Another reason for interest in unavoidable configurations in grids is the connection
with Ramsey theory. Let G be the complete d-partite d-uniform hypergraph on partite
sets [a1], ..., [ag], and let K 4(2) denote such a complete d-partite hypergraph with ex-
actly two vertices in each partite set. Any point in the grid L = [a4, ..., a4] corresponds
to a hyperedge in G; a box in L corresponds to a K 4(2) subhypergraph of G. To say that
L is c-uncolorable is equivalent to the statement that every c-coloring of G contains a
monochromatic K 4(2). In [5] and [6], the authors prove bounds on multipartite Ramsey
numbers of various (2-uniform) graphs. Little is known about multipartite Ramsey
numbers of hypergraphs, although the bipartite Ramsey numbers of graphs are well
studied. (One notable appearance of (classical) Ramsey numbers for unbalanced multi-
partite hypergraphs is [10].)

In the next section, we show that any grid of sufficiently small volume (approxi-
mately 02(1‘1) is c-colorable. The following section shows that the analysis is tight: there
are grids of this volume which are c-uncolorable. Not all grids of sufficiently large volume
are c-guaranteed, although section 4 demonstrates that any grid, all of whose lower-
dimensional subgrids are sufficiently voluminous, is indeed c-guaranteed. Section 5 gives
a tight upper bound on the volume of minimally c-uncolorable grids, i.e., elements of the
obstruction set. Section 6 then addresses the question of how many obstructions there
are. Finally, as mentioned above, section 7 considers the case of ¢ = 2 and d = 3, where
some computational questions arise. This complements work of the second two authors
[7] for d =2 and 2 < ¢ < 4.

Throughout the present manuscript, we write f = O(g) as t — oo (f = Q(g) as
t — 00), for nonnegative functions f, g: R — R and some parameter ¢, to mean that
there exist nonnegative constants C' and N (possibly depending on d) such that f(z) <
Cyg(z) (respectively, f(z) > Cg(z)) whenever ¢t > N. The expression f = ©(g) as t — oo
means that f = O(g) as t = oo and g = Q(f) as t — oo, and the expression f = o(g) as
t — oo means that, for all € > 0, there exists an N, (possibly depending on d) so that
f(z) < eg(z) whenever t > N,.

2. All small grids are c-colorable. Define V (¢, d) to be the largest integer V so
that every d-dimensional grid L with volume at most V is c-colorable. Below we show
that V(c, d) is ©(¢2'~1) as ¢ — co. Lower and upper bounds were proved for the equi-
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1056 JOSHUA COOPER, STEPHEN FENNER, AND SEMMY PUREWAL

lateral case by Agnarsson, Doerr, and Schoen [1]. The proof of Theorem 2 is quite similar
to that of Theorem 2.2 in [1], although we obtain a slightly stronger lower bound in the
equilateral case. The upper bound is given by Corollary 8.

TrEOREM 2. V(c, d) > 2~ /(e2%), where e = 2.718... is the base of the natural
logarithm.

Proof. We apply the Lovasz local lemma (see, e.g., [2]), which states the following.
Suppose that A, ..., A, are events in some probability space, each of probability at
most p. Let G be a “dependency” graph with vertex set {4;}!_,, i.e., a graph so that,
whenever a set S of vertices induces no edges in G, then § is a mutually independent
family of events. Then P(A’_; A;) > 0 if ep(A + 1) < 1, where A = A(G) is the maxi-
mum degree of G.

Now suppose that L = [aq, ..., ag4] is a grid of volume V and that we color the points
of L uniformly at random from [c|]. Enumerate all boxes in L as By, ..., B;. Define A; to
be the event that B, is monochromatic in this random coloring. We may take G to have
an edge between A; and A; whenever B; N B; # @ since any family of events A; corre-
sponding to mutually disjoint boxes is mutually independent. The degree of a vertex A,
is then the number of boxes B, j # i, which intersect B;. Since we may specify the list of
all such boxes by choosing one of the 2¢ points of B; and then choosing the d coordinates
of its antipodal point, degs(A;) is at most

d d

21 J(a; =) —1<2]Ja;—1=2/V - 1.

i=1 i=1

(The outermost —1 here reflects the fact that B; may be excluded among these choices.)
The probability of each A; is the same: p = ¢~2"+1. Therefore,

ep(A+1) < ec 24124y
which is <1 whenever V < ¢2'~! /(e29).

3. Some large grids are c-uncolorable. Recall the definition of (¢, t)-guaranteed
given in the first paragraph.

TrrorREM 3. Fir ¢, d, define L= [ay, ...,aq], and let M =T[,(%) denote the
total number of boxes in L. Then L is (¢, M(1+ 0(1))/c*\)-guaranteed as
min{a,, ..., a5} — oo.

Theorem 3 follows quickly from the next lemma, whose extra strength is needed
later.

LemMma 4. Suppose ¢ > 1. For d > 1 and integers a,, ...,a; > 2, let M = Hle(’;)
Define A;, 0 < j < d, recursively as follows:

P

2 Aj -1
AO - 1, A] = Aj—l 1 —ﬁ .
J

Then the grid L= [ay, ..., ag] is (¢, MAy /¢ V) -guaranteed provided Ay, ..., Ay > 0.
Proof. We proceed inductively. Suppose d = 1, let f:[a;] — [¢] be a ¢-coloring, and
define

vi= 7100

to be the number of points colored i, 1 < i < ¢. Then the number N of monochromatic
boxes in f is exactly
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N:ZIC;) =%~i(y?—m)=%- (ZZC;V?—%)

i=1

Applying the Cauchy—Schwarz inequality,

2
c
> (Zi:lyz) ﬂfa_%iﬂ

= 2¢ 2 2 2

_a1(6l1—0)_1 a\a—c_1(a A
N 2¢ “e\2/)a -1 c\2)7"

Now suppose the statement of Lemma 4 is true for dimensions less than d + 1, and
consider a coloring f: [ay, ..., a441] — [c]. Consider the a,.; colorings f; of the d-
dimensional grid [ay, ..., a4] induced by setting the last coordinate to j, i.e.,

filzy, oooizg) = fay, o240 )

Let y,(B), for a box B C [ay, ..., a4 and i € [¢], denote the number of j’s so that
fjip = 4. Then the number N of monochromatic (d + 1)-dimensional boxes in f is

zz(”?)
ZZ vi(B)* = yi(B))

(ZBE;M% ) 1 ZZ%

(ZsEii(B) = MYy i vi(B)
N 2Mc ’

where M = []%,(%). Since, by the inductive hypothesis, f; induces at least MA,/c* !
monochromatic boxes,

33 p) = R

i B

so that
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2 2A2 /2012 2 201
a; M°A%/c —ag MAyc/c

N>

2Me
2 27
_agM(ag Ay — ¢ Ay)
- 262d+1_1
2 2d
M (adH) agp1dy — ¢ Ay
- d+1
21 agyp — 1
d+1/a; 2d
_ i (%) A2 ag — ¢ /Ay
- 9d+1_q d _ 1
c Ad+1
d+1/a,
_1li= (5)Ad41
- d+1 .
241

Proof of Theorem 3. Fix ¢, d > 1.1t is clear by induction on j that, forall 1 < j < d,

A; =1+ o(1) asmin{ay, ..., as} — oo, and so, in particular, A; > 0if min{a,, ..., a,}
is large enough.
Note that, in the notation of Lemma 4, if A, ..., A; > 0, then [ay, ..., a4 is not

c-colorable. Therefore we may conclude the following.
CoroLLARY 5. In the notation of Lemma 4, let T';, 0 <j <d, be given by the
recurrence

2i—1 2i—1
C /l—‘7'71 C
Ly =T (1 - —_1> =l (Fﬂ g 1>-

J

IfTy, ...,y >0, then [ay, ..., aq] is c-uncolorable.

Proof. Assume Ty, ...,I'; > 0. A routine induction shows that I'; < A; for 0 <
j<d.

Lemma 6. In the notation of Lemma 4, let €; be given by the recurrence

271

8():0, 8]':28j71+m.
J

If ey <1, then [ay, ..., a4] is c-uncolorable.

Proof. Ttisclearthat 0 = gy < &; < €5 <--- < g4, and so, by assumption, &; < 1 for
all i € [d]. An induction on i shows that I'; > 1 — ¢, for 0 < ¢ < d: This is clearly true for
i = 0. Suppose i < d and I'; > 1 — ¢;. Then setting n := ¢* /(a;4; — 1) and noting that
I; >0, we have
(1) L =TT —n) >Ti(1—¢; —n).

The term in the parentheses is positive:
l—e;—n>1-2¢;,—n=1—-6;,1,>0

by assumption. Thus, continuing (1) and using the inductive hypothesis again,

F(l—e;=n)>0—¢g)(1—e;—n)>1-26;—n=1-¢;.
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Motivated by the preceding lemma, for every ¢, d > 1 and grid L = [aq, ..., a4] with
a; > 2 for all i € [d], we define

=1

~

Lemma 7. If L = [al, ..., ag] is c-colorable, then e.(L) > 1.

Proof. Welet e;:=¢.([ar, ..., a;]) = 31, 271> /(a; — 1) forall j with 0 < j <
d, and notice that the ¢; satisfy the recurrence in Lemma 6.

COROLLARY 8. For any fzxed d>1 and ¢ >2, if n is least such that [n]¢ is c-
uncolorable, then n < (d+2)c* . Furthermore,

Ve, d)

2 de1
ch’l

< (d +2)i2d-) /2

Proof. If we take a; = (d+1)2%7c¢¥" +1 for all 1<j<d, then e.(L)=
d/(d+ 1) < 1. The second result now follows from the fact that

d d
I < Id+2)2¢7¢
j=1 j=1
)a2%im(d-9) i P

=(d+2
= (d+2)"25HT DY
(d+2)d2dd 1)/2, 20— L

The first result follows by taking n = a,.

4. Hereditarily large grids are c-uncolorable. It is possible for grids of arbi-
trarily large volume to be c-colorable. Indeed, one needs to have only one of the dimen-
sions be at most ¢ and then color the grid with this coordinate. However, if we require
that each lower dimensional subgrid be sufficiently voluminous, then the whole grid is
c-uncolorable. This statement is made precise by the following theorem.

TueorREM 9. Fiz d > 0, and define C; = (292" for j > 1. For all integers ¢ >
Landl < ay < ay <---<ay, if[[_ya;> C, =172 for all j € [d], then [ay, ..., ag] is
c-uncolorable.

We require a lemma and a bit of notation. If L = [a;, ..., a4 and 1 < j < d, let L;
denote [ay, ..., a;],and let L denote [a;;, ..., ag]. Note that if L is c-uncolorable, then
L; is as well. Indeed, if f: L — [c] is a c-coloring of L;, then the function g: L — [c]
defined by g(zy, ..., wd) = f(a:l, ..., ;) is a c-coloring of L. We will also make repeated
use of the following easily verified fact: For every integer j > 0, j - 2971 < (3/ — 1) /2
and j -2/ +1 <37,

Levma 10. Let ¢ > 1, let L= [ay, ..., ag4] be a grid, and let j € [d — 1]. Define

i v j
c=c -H(;) <277 .¢ -Haf.
i=1 =1

If L; is c-uncolorable and L is ¢'-uncolorable, then L is c-uncolorable.
Proof. Assume that L; 1s c-uncolorable and that L is ¢’-uncolorable. Suppose that
fi L — [c] is a c-coloring. Con51der the coloring g: L — [/] that assigns the pair (B, s)
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1060 JOSHUA COOPER, STEPHEN FENNER, AND SEMMY PUREWAL

to the point v, B being an arbitrary choice of j-dimensional box which is colored mono-
chromatically by f;: L; — [c], where f;(2,...,2;) = f(z, ..., 2;,v), and s being its
color. (Note that L, is c-uncolorable, so such a B always exists.) Then g is a ¢’-coloring
because there are exactly ¢’ many different (B, s). Since L, is ¢’-uncolorable, g colors
some (d — j)-dimensional box B; monochromatically with color (B, s). But then By x
B, is a d-dimensional box monocolored by f with color s.

Proof of Theorem 9. The statement is clearly true when d = 1 since Cy = 1. Sup-
pose that d > 1 and that the statement is true for all d' < d. Let L = [a4, ..., ay4] be a
monotone grid satisfying the hypothesis of the theorem.

Case 1. ¢,(L) < 1. The result follows immediately from Lemma 7.

Case 2. &,(L) > 1. Then there is some j € [d] such that 2772 /(a; —1)>1/d,
ie.,

a; < d24=7 27 41 < god-itle2

Since 2! < 3! — 1 for all integers t > 1,

-

i
a, < [[ aj < di2iti-+D 2™ < @igitd=i+1) o&-1/2,
=1 i=

and so, for all k € [d — j],

H ;> J+k 31 /2-(3-1) /2 & Cj+k 3B-1) /2

d793(d—j+1) = i9ild—j+1)

Let ¢ = d%22/(d=i+1) 3 (Note that ¢ > ¢ - [[_, a2.) Then, for all k € [d — j],

7+k 4 @-1/2
H Ajti > d123(d=j+1) \ q2i92j(d—j+1)

(d2d) j+k 1 1)
o (d24- ,/+1)j3’*'
(dzd);(w“ 1)-j3¢ (35-1) /2

1(3k-1) /2

Y

v

(de)g(‘aJ***l4)43/‘4)3"/2 /(35 -1) /2

because ¢ < (3" — 1) /2 for all ¢ > 1. Continuing the computation,

H a]+z d2d %3#/&—171),(3/,1)3/:/2 C/(3k71>/2

= (dd)3E 1= (3h-1) /2
(de) (3F1-1) (35-1) /2
_ Ckcl(gk—l)/z_
Therefore Ej = [aj41. ..., ag4] is '-uncolorable by the inductive hypothesis. (It is easy to
see that the C'’s are increasing in d, so taking d’ = d — j causes no problem here.) Since

L; is also c-uncolorable by the inductive hypothesis, we may apply Lemma 10 to con-
clude that L is c-uncolorable.
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5. Upper bounds on the volume of obstruction grids. Before proceeding, we
introduce the following notation. For d > 1 and any monotone grid L = [ay, ..., a4,
where a, > 1,let j € [d] be least such that a; = a,. Then we let L™ denote the monotone
grid obtained from L by subtracting one from a;, that is,

L = [al, ey aj,l, aj — 1, a]-“, ey ad].

Note that if L is monotone and L € O(c, d), then Lis c-uncolorable but L~ is c-colorable.
(Recall that O(c, d) is the obstruction set for ¢ colors in d dimensions, i.e., the set of
minimally c-uncolorable d-dimensional grids.)

The next theorem gives an asymptotic upper bound on the volume H;-lzl a; of any
grid [ay, ..., aq] € O(c, d).

THEOREM 11. For every d > 1 and every grid L = [ay, ..., aq4] € O(c, d),

d

H a; = O(cB~D/2)

=1

as ¢ — oQ.
The theorem follows immediately from the following lemma.
Lemva 12, For every d>1, every c¢>2, and every monotone grid L=
[a1, ..., aq] € O(c, d), there is a set P C [d] such that
(i) de P,
(i) for every ¢ € P,

¢

H a; = O(C(Sf_l)/Z)

i=1
as ¢ — 00, and

(iii) for every k € [d],

a, = 0¥ 27

as ¢ — 00, where € is the least element of P that is >k and j is the biggest
element of P that is <k (j = 0 if there is no such element).

(We call the elements of P pinch points for L.)

Proof. Let d > 1 and ¢ > 2 be given, and let L = [ay, ..., a4] € O(c, d) be a mono-
tone grid. Then L is c-uncolorable, and thus L; is also c-uncolorable for all 1 < j < d.
Since L € O(c, d), we have that L~ is c-colorable, and thus ¢,(L~) > 1. This, in turn,
implies that there is some largest ¢ € [d] such that

/-1
62

24-¢ >

IS

a,f—2

(Note that the denominator is positive because a, > a; > ¢+ 1> 3 since L is ¢
uncolorable.) Thus,

(2) ap < d290 . X 42 < (d+2)270 . 2

El

and thus
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14

3) [ < (ar) < ((d+2)207)0 - 27 < ((d+2)201)7 - D72,
i=1

which implies that # satisfies (ii). We will make ¢ the least element of P, noticing that
(2) and the monotonicity of L imply that a;, satisfies (iii) of the lemma for all k € [¢]
(with j = 0).

If £ = d, then we let P = {/} = {d}, and we are done.

Otherwise, ¢ < d. Note that L~ = L, x (L;)~ up to a possible permutation of the
coordinates. Recall also that L, is not c-colorable, but L~ is. It follows from Lemma 10
that (L,)” is ¢/-colorable, where

¢
li= - ) <
d=c H( 9 > <c
The bound in (3) gives ¢/ = O(c*) as ¢ — oc.

We thus have ecr((f/f)_) > 1, and so there is some largest m with £ < m < d such
that

m—£—1
2(l—m (Cl)2 > 1

Ay — 2 —d-¢
which giVGS
! 0 < (d— )20 (T 4
@ m < ( )
(5) < (d— £+ 2)2d77n . (C/)Qm—t’q
(6) _ o

as ¢ — o0o. For the volume of L,,, we get

m m
[Ta=1e 11 @

i=1 i=+1

||
- :“

Il
—

) (a)™¢

IN
/\
H AN

— O(C 3f 1 /2) . O(c3f.(m7f).2m,/,l)
= O(C (3°-1) /2 cgt’,(?)m—f_l)/Q)
= 0(cB"1/2)

as ¢ — oo. We make # and m the two least elements of P, and the last calculation shows
that m € P satisfies (ii). Further, since a;, < a,, for all £ such that £ < k < m, (iii) is also
satified for all these a; by (4)—(6).

If m = d, then we let P = {¢, m}, and we are done. Otherwise, we repeat the argu-
ment above using m instead of £ to obtain an n with m < n < d such that £, m, and n
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MONOCHROMATIC BOXES IN COLORED GRIDS 1063

being the least three elements of P satisfies (ii) and (iii) and so on until we arrive at d,
whence we set P == {¢,m,n, ..., d}.
The next proposition shows that the bounds in Lemma 12 are asymptotically tight.
PropositioN 13. For ¢ > 2, there is an infinite sequence {1 ;(c) °°_ of positive in-
tegers such that v
(i) pj(e) > 14203 N2 forall j € ZF and
(i) for all d>1, the grid [u,(c), ...,pnq(c)] € O(c,d) with pinch point
set P =1d].
Proof. For all ¢ > 2, define

i) =1+,
c+1
o(c) =1+c - 5 )

Fix ¢ > 2, and let 1 ; denote p ;(c) for short. A routine induction on j shows (i). For the
inductive step, noting that Z] 031 =(3/ —1) /2, we have

i i
ﬂj+1=1+c~H(2>

i=1

J
2511

PR %
21+l 57
27 P 23 1
37
c
=1+ o
For (ii), we use induction on d > 1 to show separately that
(a) [p1, ..., q] is c-uncolorable and
(b) [1s ---,M1g) is not (¢, 2)-guaranteed (i.e., there is a coloring [@y, ..., wq — []

that monocolors exactly one box).

Clearly [p1] = [1 + ¢] is c-uncolorable by the pigeonhole prlnc1ple Now let d > 2,
and assume that [w;,...,p, ] is c-uncolorable. Then letting ¢ = c- [J& ] (% ),
we have pw, =1+ ¢, and hence [ ] is ¢’-uncolorable. But then [wq, ..., 1 ] is ¢
uncolorable by Lemma 10 (letting j = d — 1).

We now show (b). For d =1, clearly the coloring [u;] = [¢] mapping j
(jmodc)+1 has exactly one monochromatic one-dimensional box, namely,
(I;¢) ={1, ¢+ 1}. Now let d > 2, and assume (b) holds for d — 1, i.e., there is a coloring
[1s -+ g_1] = [c] that monocolors exactly one box. We will call such a coloring mini-
mal. This generates exactly [[¢7} (%)) many boxes in [14y, ..., 4] For each of these
boxes B and for each color s, we can find a minimal coloring that monocolors B with s by
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permuting the order of the hyperplanes along each axis and by permuting the colors.
Thus there are exactly ¢’ = ¢ - [[¢Z} (%) many distinct minimal colorings. We overlay
these ¢’ many colorings to obtain a coloring of [i1, ..., (t4_1, ¢'] with no monochromatic
d-boxes. We then duplicate the first (d — 1)-dimensional layer to arrive at a c-coloring of
1y oo sptg1, 1+ ] = [, - - ., pg). This coloring has only one monocolored d-box: the
box corresponding to the duplicated layer of unique monocolored (d — 1)-boxes. This
shows (b).

It follows from (b) that [@y, ..., ®g_1, 04 — 1] is c-colorable for all d > 1 since we
can remove a single hyperplane from the only monocolored d-box in some minimal color-
ingof [y, ..., kg1, by toleave a coloring of [y, ..., g1, g — 1] without any mono-
chromatic (d — 1)-boxes. From this it easily follows that [@q, ..., 14 € O(c, d) because
(1, s Mj_q, j; — 1] is c-colorable, and hence [py ...,y pj — 1, fjiq, ... phg] is c-
colorable for all j € [d].

Finally it is evident that all j € [d] are pinch points for [+, ..., 4]. (It is interesting
to note that [y, ..., 4] is the lexicographically first element of O(c, d).)

6. Upper bound on the size of the obstruction set. It was shown in [7] that
|O(c,2)| < 2c2. We give an asymptotic upper bound for |O(c, d)| for every fixed d > 3.
THEOREM 14. For all d > 3,

O(c. d)| = O(e175 - 72)

as ¢ — 00.

Proof. Fix d > 3. We give an asymptotic upper bound on the number of monotone
grids in O(c, d). The size of O(c, d) is at most d! times this bound, and so it is asymp-
totically equivalent. By Lemma 12, every grid L € O(c, d) has a set P of pinch points.
For each set P C [d] such that d € P, let #,.(P) be the number of monotone grids in
O(ec, d) having pinch point set P. There are 2¢~! many such P, so an asymptotic bound
on max{#.(P)|P C [d] A d € P} gives the same asymptotic bound on |O(c, d)|.

Fix aset P C [d] such that d € P,andlet P = {¢; < ¢y <---< ¢, = d}, where s =
|P|and ¢, ..., 7, are the elements of P in increasing order. For convenience, set £, := 0.
Lemma 12 says that, for any monotone grid L = [ay, ..., ag] € O(¢c, d) having pinch
point set P, for any b € [s], and for any k such that ¢,_; < k<¢;,, we have
ap = O(c*M) as ¢ — oo, where

e(b) = Sfbfl . QKh—fb,l—l.

To bound #,.(P), we first note that, for any choiceof 1 < a; <---< a4_4, there can be at
most one value of a4 such that [ay, ..., a4 € O(c, d) because any two d-dimensional
grids that share the first d — 1 dimensions are comparable in the dominance order
<. Thus #,.(P) is bounded by the number of possible combinations of values of

ai, ..., aq_1. From the bound on each a; given by Lemma 12(iii), we therefore have
s—1 fb d—1
#.(P) < <H H O(Ce(b))> . H O(Ce(s))
b=1 k=2, +1 k=¢, 1 +1

s—1

— O(H (Ce(b))fb—f,,l) . O((ce“))d_l_"’ﬂ*l)
b=1

— O(ch1+h2)

as ¢ — 0o, where hy = e(s)(d —1—7¢,_;) and

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



MONOCHROMATIC BOXES IN COLORED GRIDS 1065

s—1
hy = e(b)(&y — Ch1)

b=1
s—1

= ngb—l L0 =1 (€y— 1)
b=1

< - 3&;71 . 73fb - 1

B b=1 2
1 s—1

= 3% — 30
22 ( )

C3m—1

= 5 ,

where m = ¢,_;. We also have

hy = 371 . 9d=Fa-1 | (d—1—¢,1)
—3m. 2(177n71 . (d —m — 1)’

whence

m

3
h1+h2:

4 3m . 2d77nfl . (d —m — 1)

This expression depends on only the value of m, which satisfies 0 < m < d. It is more
convenient to express hy + hy in terms of n = d — m, where n € [d]:

3 —1 3" 142"(n—1) 1
h1+h2:T+3d’"-2"’1~(n—1):?-%75.

It is easy to check that (1 +2"(n — 1)) /3" is greatest (and thus h; + h, is greatest)
when n = 3. It follows that

39 142%3-1) 1 17-393 -1
By + hy < 2. - =
1 s 33 2 2 ’

which proves the theorem.
The first few values (17 - 373 — 1) /2 are given in Table 1.

7. Three dimensions and two colors. In this section, we extend to three dimen-
sions the result of [7, Theorem 6.2], which states that O(2,2) = {[7, 3], [5,5],[3, 7]}. The

TaBLE 1
Table of upper bounds on e so that |O(c, d)] = O(c®) as ¢ — oo d.

(17343~ 1) /2

8
25
76

229

S O W | el
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following graph (Figure 1, generated using the Jmol module in SAGE) and table (Ta-
ble 2) display upper bounds for the smallest ag so that [a;, as, as] is 2-uncolorable. All
three graphical axes run from 3 to 130; the table includes only 3 < a; <12 and
3 < ay < 12. We believe these values to be very close to the truth; indeed, we have
matching lower bounds in many cases and lower bounds that differ from the upper
bounds by at most 2 in many more cases.

A few different methods were applied to obtain these bounds. First the values A, as
in section 3, were computed, and the least as so that A; > 0 was recorded. In fact, this

Fic. 1. Graph of upper bounds on a3 so that [ay, ag, ag] 2-uncolorable.

TABLE 2
Table of bounds on ay so that [ay, as, as] is 2-uncolorable.

3 4 5 6 7 8 9 10 | 11 | 12
127 | 85 | 73 | 68 | 67 | 67
127 | 85 [ 73 | 68 | 67 | 67
101 | 76 | 53 | 47 | 46 | 46 | 40 | 37
76 | 76 | 53 | 47 | 46 | 46 | 40 | 37
127 | 127 | 53 [ 53 | 53 | 46 | 40 | 37 | 34 | 33
85 85 47 | 47| 46 | 45 | 40 | 37 | 34 | 33
73 73 46 | 46 | 40 | 40 [ 37 | 34 [ 31 | 30
10 | 68 68 46 | 46 | 37 | 37 [ 34 | 33 [ 31 | 30
11 67 67 40 | 40 | 34 | 34 [ 31 ] 31 [ 30| 28
12 | 67 67 37 |37 ] 33 | 33|30 | 30 | 28 [ 28

O |0 [N || || w
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idea was improved slightly by applying the observation that, if some grid is (2, t)-guar-
anteed, then it is (2, [t])-guaranteed. In some cases, this increases the value of A;. Sec-
ond we used the simple observations that c-colorability is independent of the order of the
a; and that L < L' when L is c-uncolorable implies that L’ is c-uncolorable. Third we
applied the following lemma.

Lemma 15. Let M = H?Zl(';f) If the grid L = [aq, ..., a4 is (¢, t)-guaranteed, then
L x [|eM /t] + 1] is c-uncolorable.

Proof. Note that K = |¢M /t] +1 > ¢M /t and is integral. If we think of L x [K]
as K copies of L, then any c-coloring of L x [K] restricts to K c-colorings of L. Since L is
(¢, t)-guaranteed, each of these c-colorings gives rise to ¢ monochromatic boxes. Hence,
in K colorings, there are at least t(|¢M /t] +1) > ¢M monochromatic boxes. Since
there are only M total boxes in each copy of L and any monochromatic box can be
colored only in ¢ different ways, there must be two identical boxes (in two different
copies of L) which are monochromatic and have the same color. This is precisely a mono-
chromatic (d 4 1)-dimensional box in L x [K].

Therefore, in order to obtain upper bounds on [as] in the above table, we need to
know the greatest ¢ for which [a;] X [as] is (2, t)-guaranteed. To that end, we define the
following matrix.

DEFINITION 16. Define f;:[r] — [2],0 < j < 27, to be the function which maps i € [r]
to the coefficient of 2"~ in the base-2 expansion of j. Define M, to be the 2" x 27 integer
matriz whose (i, j)-entry is given by

('fil(l) f;fﬂ(Ul) N ('fi1(2) 2fj1<2)|>.

Then define the quadratic form Q,:R* — R by Q,.(v) = v*M,v. Let
8, = (M(1,1), ..., M,(27,2))

be the diagonal of M, and define 1 to be the all-ones vector of length 27.

ProposiTioN 17. Let t be the least value of (Q.(v) — v*8,) /2 over all nonnegative
integer vectorsv € Z* withv*1 = s. Then[r] x [s] is (¢, t)-guaranteed, and t is the maxi-
mum value so that this is the case.

Proof. Given a vector v = (v, ..., v,) satisfying the hypotheses, consider the r x s
matrix A with v; many columns of type f; for each j € [r]. (We may identify f; with a
column vector in [2]” in the natural way.) It is easy to see that Q,(v) — v*§, exactly
counts twice the number of monochromatic rectangles in A, thought of as a 2-coloring
of the grid [r] x [s].

We applied standard quadratic integer programming tools (XPress-MP) to mini-
mize the appropriate programs. Fortunately, for the cases considered, the matrix M,
was positive semidefinite, meaning that the solver could use polynomial time convex
programming techniques during the interior point search. We conjecture that this is
always the case.

CONJECTURE 18. M, is positive semidefinite for r > 3.

In particular, for r = 3, the eigenvalues of M, are 0, 1, and 4, with multiplicities 2, 4,
and 2, respectively. For 4 < r < 9, the eigenvalues are 0, 2"~2, 2" 73(r — 2), 2"72(r — 1),
and 2"4(r? — r 4 2), with multiplicities 2" — r(r +1) /2, r(r — 1) /2 -1, r — 1, 1, and
1, respectively. We conjecture that this description of the spectrum is valid for all r > 4.
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