Almost Weakly 2-Generic Sets*

Stephen A. Fenner!
Computer Science Department
University of Southern Maine

August 12, 1996

Abstract

There is a family of questions in relativized complexity theory—weak analogs of
the Friedberg Jump-Inversion Theorem—that are resolved by 1-generic sets but which
cannot be resolved by essentially any weaker notion of genericity. This paper defines
aw2-generic sets, i.e., sets which meet every dense set of strings that is r.e. in some
incomplete r.e. set. Aw2-generic sets are very close to 1-generic sets in strength, but
are too weak to resolve these questions. In particular, it is shown that for any set
X there is an aw2-generic set G such that NP% N co-NP°¢ ¢ PS®X_ (On the other
hand, if G is 1-generic, then NP¢ N co-NP¢ C PG6®SAT ywhere SAT is the NP-
complete Satisfiability problem [6].) This result runs counter to the fact that most
finite extension constructions in complexity theory can be made effective. These results
imply that any finite extension construction that ensures any of the Friedberg analogs
must be noneffective, even relative to an arbitrary incomplete r.e. set. It is then shown
that the recursion theoretic properties of aw2-generic sets differ radically from those of
1-generic sets: every degree above 0’ contains an aw2-generic set; no ew2-generic set
exists below any incomplete 1.e. set; there is an aw2-generic set which is the join of two
Turing equivalent aw2-generic sets. Finally, a result of Shore is presented [30] which
states that every degree above 0’ is the jump of an aw2-generic degree.

1 Introduction

The Friedberg Completeness Criterion [14] states that any Turing degree above 0’ is rela-
tively complete, i.e., it is the jump of another degree. One can prove this result by looking at
1-generic sets (i.e., sets Cohen generic for one-quantifier first order arithmetic) [20, 19, 31].

*Journal of Symbolic Logic, 59(3):868—-887, 1994. An earlier version appeared in Proceedings of the Sixth
Annual IEEE Structure in Complexity Theory Conference, 1991

tPartially supported by NSF Grant CCR 92-09833. Some of these results also appeared in [Fen91al,
[Fen91b], and [Fen91c], and were proved while the author was a graduate student in the University of
Chicago Computer Science Department, with the support of a University of Chicago Fellowship. Email:
fenner@usm.maine.edu



It is well-known [19, Lemma 2.6 (ii)] that for any 1-generic set G,
GI ST G S] K: (1)

where K denotes the halting problem. Then, for any set S with K <t S, a 1-generic set G
can be constructed such that

G@KETS. (2)

See [31, pp. 97-98] for a complete proof along these lines.

There are interesting complexity theoretic analogs of equation (1). In the current paper
we look at equation (1) and its analogs to determine “how much” genericity is actually
needed to prove them. We will show that 1-genericity is necessary in the following sense:
essentially no weaker notion of genericity suffices. Later, we will also show that the same
question about equation (2) yields the same answer.

A natural candidate for a complexity theoretic version of (1) would state that if G is
1-generic, then some NPC-complete set is polynomial-time Turing reducible to G @ SAT,
where SAT encodes the NP-complete Satisfiability problem. In other words,

NPG g PGG)SAT‘ (3)

This statement is unfortunately false, as can be shown by a straightforward forcing argument
(see [28] for example). There are, however, a number of results in complexity theory which
approximate equation (3) and whose proofs are similar to that of equation (1). The best
known of these is due to Blum & Impagliazzo [6], which in essence states that for every

1-generic set G,
NP€ N co-NPE C pPEOSAT (4)

See Appendix A for a list of the known results of this type.

Since equation (4) relates to polynomial time-bounded computations, it is natural to ask
if it holds for generic sets in some weaker, perhaps polynomial time-bounded sense. Several
recursive and subrecursive notions of genericity have been studied and applied successfully
in complexity theory [3, 13, 23, 25, 9]. For example, Ambos-Spies, Fleischhack, & Huwig
introduced p-generic sets in [2, 3] as those having all properties enforcible by “p-standard
diagonalizations,” e.g., nonmembership in P, p-immunity, non-p-selectivity, etc. Building
on earlier work of Mehlhorn and Lisagor in recursive Baire category, Lutz [23, 25] introduced
the alternate notion of a I'-generic set for any function class I', subrecursive or otherwise.
He showed, for example, that initial segments of PSPACE-generic sets have high circuit
size complexity and high space-bounded Kolmogorov complexity infinitely often [25].} The
present author has shown [9] that for certain time-bounded complexity classes I', I'-generic
oracles suffice for proving many routine separation results in relativized complexity. For
example, if we let FP denote the class of polynomial-time functions, then

(V FP-generic G)P® £ NP # co-NP€. (5)

!Lutz has also developed resource-bounded notions of Lebesgue measure and randomness [24, 25].



Stronger resource-bounded generic sets are also enough to separate the polynomial hierarchy
8].

One important reason for studying these weak, subrecursive notions of genericity is that
there are recursive sets which fit the definitions. Resource-bounded genericity is closely
tied to the notions of resource-bounded Baire category studied in [23, 9, 26]. They lead to
satisfactory “almost all” theories of many common complexity classes—even though these
classes are countable. We might call sets which are generic in some resource-bounded sense
‘pseudogeneric’. Truly generic and n-generic sets, their relationship to Baire category, and
their uses in recursion theory have been known for a long time (see [19, 29]).

Another important reason for studying pseudogeneric sets is that they provide a way to
measure quantitatively the inherent difficulty of a finite extension argument in complexity
theory. Generic and n-generic sets embody the method of diagonalization by finitely ex-
tending initial segments in recursion theory. As with truly generic sets, pseudogeneric sets
also embody methods of diagonalization via finite extension, but only those using limited
computational resources. Results such as equation (5) above express the fact that most
finite extension constructions in complexity theory can be made effective and use limited
resources—usually no more than an exponential blowup in the bounds used to define the
complexity classes involved.

With the success pseudogeneric oracles have had in complexity theory, it is perhaps sur-
prising that no recursive or subrecursive notion of genericity is strong enough to guarantee
equation (4). In fact, we will argue that essentially no notion of genericity weaker than
1-genericity suffices to guarantee equation (4) or any of the results of similar type listed
in Appendix A. To do this, we define a particular type of genericity, which we call almost
weakly 2-genericity (or aw2-genericity for short), in a fashion similar to the weakly n-generic
sets studied by Kurtz [22]. Given an arbitrary set X, we then construct an aw2-generic set
G such that

NP N co-NPC¢ ¢ pGeOX (6)

(Theorem 8), and our construction can easily be altered to defeat all of the other results
listed in Appendix A simultaneously.

We define aw2-genericity precisely in Section 4. In short, an aw2-generic set must meet
every dense set of strings which is r.e. in some incomplete r.e. degree. Restricting the
requirement so that only dense r.e. sets of strings need be met yields exactly the weakly
1-generic sets. Expanding the requirement a little bit to include meeting dense sets r.e. in
0’ yields the weakly 2-generic sets, which are themselves all 1-generic (the hierarchy of weak
n-generic sets interleaves with the hierarchy of n-generic sets [22]). Thus by merely adding
0’ to the requirement, we reverse the status of (4) from false to true.

Equation (4) and the similar results in Appendix A thus stand far apart from other
results in relativized complexity: the diagonalizations used to prove them are inherently
noneffective, even relative to any incomplete r.e. set. By contrast, there are exponential-
time computable FP-generics, so those resources are all that are needed for equation (5).

As a consequence, we may classify finite extension arguments in complexity theory as either



easy or hard, depending on whether or not recursive or subrecursive notions of genericity
suffice to prove them.

Section 5 consists mainly of our proof that equation 4 does not hold for aw2-generic sets.
This proof is the only part of the paper that is chiefly complexity theoretic, and nothing
later in the paper depends on it. Thus, the proof may be safely skipped.

In Sections 6 and 7 we turn our attention to the purely recursion theoretic properties of
aw2-generic sets. Comparing the degrees of aw2-generic sets with the 1-generic degrees in
Section 6, we observe that the two notions are incomparable and very different: Whereas it
is known that 1-generic degrees exist below every nonzero r.e. degree, we show that no aw2-
generic degree exists below any incomplete r.e. degree. Above 0’ the tables are completely
turned; no degree above 0’ is 1-generic, but every degree above 0’ is aw2-generic. Qur proof
bears an interesting contrast with the proof of equation (2) above: there, the set S is coded
into the 1-generic set G, but K is needed to find where the set S is actually coded; in our
construction, we make an ew2-generic G =71 S by coding the bits of § together with the
information needed to find them all into G itself. Thus S is computable from G without
the use of K. All our proofs make crucial use of the Arslanov Completeness Criterion (see
[31]). We obtain as a corollary that every degree a > 0’ is hyperimmune with respect to
every r.e. degree b < 0, by adapting a result in [22] (see [22] for definitions).

We further contrast aw2-generic sets with 1-generic sets in Section 7 by constructing
an aw2-generic set G which can be computed in any nonrecursive B <,, G. This G is
then the join of two Turing equivalent aw2-generic sets, and also the join of infinitely many
aw?2-generic sets, all Turing equivalent to G. Finally, we reproduce an unpublished proof by
Shore that aw2-generics can also be used to prove the Friedberg Completeness Criterion,
which immediately implies the existence of low aw2-generic sets below 0’.

There are several remaining open questions regarding aw2-generic sets which we pose
in Section 8.

2 Preliminaries

We adopt more or less the notation of [31]. We let w be the set of natural numbers, we
let 2<¢ denote the set of finite 0-1 sequences (binary strings), and we let 2* denote the
set of infinite 0-1 sequences, which we identify with the power set of w. We also identify
strings with natural numbers by the usual binary representation. We normally denote
strings using lower case Greek letters, except when we use them as inputs to computations
(natural numbers), in which case they are usually denoted with lower case Roman letters.
We further identify a set A C w with its characteristic function x4:w — {0,1}. If 0 is a
string, we let |o| denote the length of o (likewise, || is the length of the binary representation
for the natural number z), and we denote the empty (length 0) string by §. Note that if
z < y, then |z| < |y|. If T is a string, we write 6"7 to mean the concatenation of o followed
by 7. We use 0™ or 1™ to denote the concatenation of n 0’s or n 1’s, respectively. Note that
0™ represents the least natural number of length n. If f € 2<“ U2¥, we write ¢ < f to mean



that o is extended by (is a prefix of) f, and we write ¢ < f to mean that o < f and o # f.

If ¢ is a (partial) function, we denote the domain and range of ¥ by dom(%) and
range(v), respectively. We write ¢(z) | or ¥(z) T to mean that z is or is not in dom(%))
respectively. We extend this notation to strings by identifying them with functions with
domain a finite initial segment of w and range {0,1}. We define the join A @ B of two
sets A,B Cwas {2z |z € A}U{2z+ 1| z € B}. We will also have occasion to join a
string o with a set X, as in o @ X. In this case, we always interpret o as the finite set
{tcw|o(z)|=1}.

We let po, ¢1, @2, ... and {0}, {1}, {2},... be acceptable numberings of partial recursive
functions and relativized partial recursive functions, respectively. As is customary, we define
W, = dom(y,). We let {e}4 denote the eth function partial recursive in the set A C w,
and we let AN denote the set {z € w |z € A & z < k}. We fix a recursive enumeration
Ko, K1,K>, ... of K. Finally, we fix a one-to-one pairing function (-,-) from w X w onto w
which is recursive and recursively invertible; the one defined in [29] will do. Other recursion
theoretic concepts and definitions used can be found in [29] or [31].

Our complexity theoretic notation is standard. We use the usual Turing machine model
for resource-bounded computation, with input, intermediate calculation, and output all in
binary. We say a machine accepts its input if the output is nonzero; otherwise it rejects. A
machine recognizes a set S if it accepts an input z if # € S and rejects # otherwise. For
relativized computation, we assume the machine explicitly writes its queries in binary on
a separate tape; the query is then replaced by the oracle answer in one step. We define
P (NP) as the class of all sets recognized in deterministic (nondeterministic) polynomial
time. The class co-NP consists of the complements of NP sets. For a set A C w, P4 is the
class of sets recognizable in polynomial time with oracle A. NP4 and co-NP# are defined
similarly. See [17] for more details.

3 n-Generic and Weakly n-Generic Sets
A set § C 2<% is dense if every string has an extension in S, i.e.,
(Vo € 2<¢)(3T € S)o < 7.

If S is a set of strings and A € 2¢, we say that A meets S if there is a 0 € S such that o < A.
We say that A strongly avoids S if there is a ¢ < A such that forall7 > o, 7 ¢ §. We
now give recursion theoretic definitions of two types of genericity. The first was originally
defined in [16], and further studied in [19].

Definition 1 (Hinman) For n > 1, a set G is n-generic if G either meets or strongly
avoids every X0 set of strings. In particular, a 1-generic set meets or strongly avoids every
r.e. set of strings.

The second type of genericity was defined and studied in [22].



Definition 2 (Kurtz) For n > 1, a set G is weakly n-generic if G meets every dense £

set of strings. In particular, a weakly 1-generic set meets every dense r.e. set of strings.

Kurtz [22] showed that the weakly 1-generic degrees are exactly the hyperimmune de-
grees, and also that the notions of n-genericity and weak n-genericity strictly interleave in
strength.

We are mainly interested in the following theorem (equation (4) above), which was

essentially proven in [6]:

Theorem 3 (Blum, Impagliazzo) If G is a 1-generic set, then
NP® N co-NPC C pCOSAT

where SAT is the NP-complete set of satisfiable Boolean formulae.

As was mentioned above, their proof technique is similar to that used to prove (1), and
has been used to prove several other results with the same flavor (see Appendix A). One of
our aims is to show that 1-genericity is necessary to prove Theorem 3, i.e., that a reasonable,
slightly weaker notion of genericity does not suffice to prove Theorem 3 or any result similar
to it. To do this, we will define aw2-generic sets (Definition 7), then show (Theorem 8)
that there is an aw2-generic set G which fails to satisfy the conclusion of Theorem 3. To
do this, we will first generalize the above notions of genericity by defining a I'-generic set

for an arbitrary class of partial functions I'.

4 TI-Generic and Aw2-Generic Sets

Definition 4 A partial genericity requirement is a partial function h: 2<% — 2<% such that
o = k(o) for all 0 € 2<% such that h(c)|. A genericity requirement is a partial genericity
requirement that is total. A string T meets a partial genericity requirement h if there is a
o < 7 such that either h(c)T or h(c) < 7. If A € 2¥, we say that A meets h if someT < A
meets h.

Note that A meets the partial genericity requirement A if and only if A meets or strongly

avoids range(h) as a set of strings.

Definition 5 Let I' be an arbitrary countable class of partial functions. A set G € 2% is

I'-generic if G meets every partial genericity requirement in T'.

This definition originates out of the work of Lutz in resource-bounded Baire category
[23, 25]. It is useful to define I'-genericity in terms of meeting functions rather than sets
of strings, as this definition works particularly well for subrecursive classes I'. Despite the
change of emphasis, I'-genericity includes the other definitions of genericity given above:

Forn > 11let IT',, and f‘n be the @(”_1)-partia1 recursive and ("~ 1)-total recursive functions,



respectively. It is easy to show that the I',,-generic sets are exactly the n-generic sets, and
the I',,-generic sets are exactly the weakly n-generic sets.
We now define aw2-genericity.

Definition 6 Ifd is a Turing degree, define the class of total functions
rec(d) £ {f | (34 € d)f <1 A4}.
Definition 7 A set G is aw2-generic if G is rec(d)-generic for every r.e. degree d < 0'.

If we included 0’ itself in Definition 7, we would define a rec(0’)-generic set, which is
the same as a weakly 2-generic set; for this reason, we call aw2-generic sets ‘almost weakly
2-generic’.2 All weakly 2-generic sets are 1-generic (not conversely [22]), so Theorem 3
holds for them. It is interesting that merely adding this last r.e. degree produces enormous
differences in the properties of the resulting generic sets. We will look at more of these
differences in Sections 6 and 7.

We will restrict our attention to the r.e. degrees only, and not concern ourselves with the
properties of sets which are rec(d)-generic for every incomplete AJ degree d. We currently
know little about such sets, and we pose as an open question whether they are the same as

weakly 2-generic sets.

5 Theorem 3 Fails for Aw2-Generic Sets

We now state one of our two main results, which says that aw2-genericity is not sufficient
for proving Theorem 3. In fact, our result generalizes for an arbitrary set joined with G,
not necessarily SAT. The proof can be modified easily to construct an aw2-generic G to
cause all the results listed in Appendix A to fail simultaneously.

Theorem 8 For every set X C w, there exists an aw2-generic set G such that
NPC® nco-NPC ¢ PCOX,

Corollary 9 There exists an aw2-generic set G such that
NP% N co-NPC¢ ¢ PEOSAT,

We will prove Theorem 8 by an initial segment construction with no injury. To do
this, we will need Lemma 12, which itself depends on two crucial facts regarding functions
recursive in r.e. sets. The first of these is a generalization of the recursion theorem called
the Arslanov Completeness Criterion (see [31, page 88]).

Theorem 10 (Arslanov) Anr.e. set A is complete if and only if there is a function f <1 A
such that Wy, # W, for all z.

2These sets were originally called inc-generic in [10].



The second fact is a result of Jockusch relating Arslanov’s criterion with the existence
of diagonally nonrecursive functions (see [31, page 90, exercise V.5.8]).

Theorem 11 (Jockusch) If A is an arbitrary set, then
(31 <1 A)Ve)W. # W) <= (3h <z A)(Ve)[h(e) # pe(e)]
The two facts together immediately imply the following lemma:

Lemma 12 If d is an incomplete r.e. degree and f € rec(d), then there exist infinitely
many e such that f(e) = p.(e).

Proof: Suppose there are only finitely many such e. Then there exists an f differing from

f on only finitely many values such that (Ve)[f(e) # @e(e)]. Let A € d be an r.e. set. Since
f <t A, A must be complete. O

Proof of Theorem 8: Fix an arbitrary set X C w. The basic idea is that we build G by
alternating between meeting genericity requirements and diagonalizing against polynomial-
time deterministic oracle Turing machines. We diagonalize by a standard NP hiding trick
played in infinitely many coding regions. We meet genericity requirements between the
coding regions. For these two tasks not to conflict with each other, we must be able to
tell in polynomial time whether or not we are inside a coding region. We ensure this by
meeting each genericity requirement A only on an input e where h(e) = pe(e) (we also
encode e into the oracle). A polynomial-time oracle machine can then recognize the coding
regions (without knowing h) by computing pe(e).

Let {go, 91,92, - .} be the set of all genericity requirements g such that there exists an
r.e. degree d < 0’ with g € rec(d). (The particular enumeration we choose for this set is
not important, since at this point we do not seek to control the complexity of G. In the
proof of Theorem 14, however, we do need to control the complexity of G, so there we will
proceed more carefully.) For any o € 2<% let £(o) be the least n such that o(z) 1 for all
z with |z| > n. It will be convenient in this proof to define a function Z so that for any
string o and number n, Z(o,n) = o if n < {(0), and otherwise Z(o, n) is o extended with
just enough 0’s so as to be defined on exactly those numbers of length strictly less than n.
Let {Ce}ecw be a set of partial recursive functions such that

1. (Ve,z € w) pe(z) | <= Ce(z) |,
2. (Ve,z € w) pe(z) |=> we(z) < Ce(z), and

3. the predicate “Ce(u) | < v” is computable in time bounded by a polynomial in |e|, u,

and v.



The set {Ce}ecw corresponds to a Blum complexity measure [5] with certain additional
restrictions on its values and running time. Such C, clearly exist; for example, we may define
Ce(z) & gp(e)+1  where p(e,z) is the running time of the eth Turing machine on input z
(we assume the input and output of the machine are both in binary). Also let Py, Py, Ps,. ..
be an enumeration of all polynomial-time deterministic oracle Turing machines (see [17] for
example), each P; running in time p;(n) & i + ¢ for all oracles. Finally, for all ¢ let m; be
least such that p;(n) < 2"~! for all n > m,.

We construct G as a limit of binary strings 7;,
D=v0<m1 <72<...<G.

We build 7,71, . .. so that for all 4, v;4; meets g; (and thus G meets g;, which makes G
aw2-generic). Also, ;41 ensures that the set L defined below is not recognized by PZ-G@X.

LE{0?e D|(Fe)|e| =d-1& 20 € G},

where D & {0%,0%,0%, ...}, and the d; are defined below in the construction of G. We
will show that D € P®, thus evidently L € NP®. We will also ensure that for all 0¢ € D,

(Fz)[|lz|=d—-1 & 20€ G] <= —-(Iy)llyl=d—-1 & y'1eqG], (7

so L € co-NPC as well. We keep L out of PG®X by the explicit diagonalization mentioned
above, which will prove the theorem.
Let yo & 0. Given v;, we define v;,; as follows:

1. Define f; df AnL(gi(Z(7i,n)1)). Note that f; <t gi, so f; satisfies the hypothesis of
Lemma 12.

2. Let n; & (pn)n > m; & n > Lv) & fi(r) = ¢n(n)]. The number n; exists by
Lemma 12.
3. Let y A Z(%i,m;)"1. Notice that y; < v and y(0™) = 1.

4. Let v’ & gi(7). Note that v < v’ and 4’ meets g;. In step 8, we will define ;41 as an

extension of ¥', so ;11 meets g; as well. Notice also that
Uy') = fi(ni) = pn;(ni) < Cpy(ni) |
by our assumptions about C,,; above.

5. Let d; & Cr;(n;). By the remark in step 4, 7' is undefined on all numbers of length
d;, and since d; > n; > m;, we have p;(d;) < 2di—1, (The ¢th coding region consists of
all numbers of length d;.)

6. Let 7" £ Z(v,pi(ds) +1).



7. Let z and y be the least numbers of length d; — 1 such that the machine P{Y”@X on
input 0% queries neither z'0 nor y'1. (See the Section 2 regarding the meaning of
7" @® X.) Such z and y exist by the previous remark about d;.

8. If %317”@)((0‘1") accepts, let v;41 be the same as 7" except that v;41(y’1) = 1. If
Py ®X (0%) rejects, let ;41 be the same as 7" except that yi41(20) = 1. Here we
diagonalize against P;, preserving its erroneous computation. Note that v’ < 7;41,

and that 7,1 preserves all queries made by PZ-'YHGBX(Od").

The set G £ Uicw v meets all the g; by step 4, thus G is rec(d)-generic for allr.e. d < 0/,

and thus G is aw2-generic. Recall that D & {0%,0% 0%, ...} from the construction above,
and

L={0e D|(3z)]|z|=d—-1& 0 e G]}.

By the diagonalization step 8, we have L(0%) # PE®X(0%) for every i, thus L ¢ PG®X,
Also by step 8, equation (7) above is maintained for all 09 € D. This implies that L €
NP%Nco-NPC, provided D is easy to compute from G. We complete the proof by showing
that D € PC.

First, notice that ng < dg < n; < di < .... Fix an input 0¢. We reconstruct k and
do,...,dy such that d < d < dg; 1. Then 0% € D if and only if d = d. The algorithm
is given in the next paragraph. Since we coded a 1 into G at each point 0™ for 7 < k, we
can tell exactly where G meets each g;—at the vy defined in step 3. Since by step 4, g;(7v)
is defined only on strings strictly shorter than £(Cy;(n;)), we can then “skip over” g;(y) by
computing the value d; = Cp,(n;) and ignoring the oracle between length n; and d;. This
computation runs in time polynomial in n; by our assumptions about {Ce}ec.. [For this to
work, it was crucial in the construction of G that we could choose n; so that £(g;(y)) was
bounded by Cp,(n;). This in turn relied on Lemma 12.]

We start with n & 0 and let n increase throughout the algorithm up to d. To find dp,
we query G on 0,0,00,...,0",... until either n = d or query 0™ returns 1. If n = d, reject;
otherwise n = ng by step 3, and so dg = Cp,(ng) = Cp(n) from step 5. If C,(n) > d, reject;
if Cp(n) = d, accept. Otherwise compute the actual value of dy = Cp(n) by linear search
using the predicate P(y) & [Cp(n) < y]. Now to find dy, query G on 0%*1 0d+2 o ...
until either n = d or query 0™ returns 1. If n = d, reject; otherwise n = n; by step 3, so
di = Cp,(n1) = Cr(n). If Cp(n) > d, reject; if Cp(n) = d accept. Otherwise, compute
d; = Cnh(n) < d as before. We continue this process to find ny, ds, ns, ds, etc., stopping
when we get up to d. The entire procedure takes time polynomial in d, and accepts if and
only if 04 € D. This completes the proof. O

If we neglect the non-r.e. degrees below 0’ and restrict our attention just to the r.e.
degrees, then Theorem 8 gives the best possible lower bound on genericity for guaranteeing
(4). As was mentioned above, if we include the complete degree 0’, then rec(0’)-generics
are exactly the weakly 2-generics, and hence they are 1-generics as well, and so Theorem 3

holds for them.

10



With a little care, the construction above can be altered to make G <t 0" @ X as
follows: replace the g; with the partial functions v; & {7 }"* where i & (7, k). We need not
worry about whether any particular ¢; is a genericity requirement with W}, incomplete, as
long as we make sure in step 2 that n; exists. That is, given y; we check if there exists an
n > max(m;, £(y;)) such that

1. %:(2(7i,m)'1) > 7, and
2. 6(i(2(7i,n)1)) = gn(n).

If no such n exists, set v;41 & 7;. Otherwise, set n; to be the first such n we find and
continue with the algorithm. Questions 1 and 2 above can both be answered in (”. The set
X is needed in steps 7 and 8.

We can do better than G <1 0" @ X, however. The proof of Theorem 14 in the next
section can be modified easily to get G <1 K @ X, or more strongly, G =1 5 @ X for any
set § such that K <t 5. See the remark following Theorem 14.

6 Degrees of Aw2-Generic Sets

The degrees of aw2-generic sets differ drastically from 1-generic degrees inside the arithmetic
hierarchy. As mentioned before, below every nonrecursive r.e. set there is a 1-generic set,
but no ew2-generic set exists below any incomplete r.e. set by Proposition 13 below. On
the other hand, no 1-generic sets exist above 0’ by virtue of equation (1), but as we show
in Theorem 14, aw2-generic sets exist in all degrees above 0’. Therefore, equation (1) does
not hold for all aw2-generic sets, although it holds for “enough” of them, as we show by
Theorem 19.

Proposition 13 If A is an incomplete r.e. set, then there is no aw2-generic G <t A.

Proof: Suppose G <1 A. Define h(0o) 4 5°b where b < 1 — G(|o|). Clearly h <1 G <7 A,
and h is a genericity requirement unmet by G. Thus G cannot be aw2-generic. O

The crucial property of our construction in the proof of Theorem 8 was that there were
infinitely many regions (the numbers of length d;) where we could perform arbitrary coding
without affecting the aw2-genericity of G. Moreover, these regions were decidable in P¢,
independent of what we put in them. We can adapt this technique to code an arbitrary
set S into G while meeting all the other aw2-genericity requirements. This will allow us in
Theorem 14 to construct an aw2-generic set in every degree d > 0’. Thus aw2-genericity is
essentially the strongest notion of genericity which is ‘dense upwards’ in the Turing degrees.

Theorem 14 is the second of our two main results. It bounds the complexity of G as
tightly as possible, combining the self-coding technique from the proof of Theorem 8 with
a permitting argument adapted from Shore’s construction of a 1-generic set below every

nonrecursive r.e. degree.

11



Theorem 14 (Kurtz, Fenner) For every degree d > 0 there exists an aw2-generic set

Ged.

Proof: Fix an arbitrary set S such that K <t §. We will construct an ew?2-generic
G =1 §. We build G to satisfy the requirements

Ry If K £1 We and {i}We is a genericity requirement, then G meets {i}"<

for all e, 7 € w. This implies that G is aw2-generic. We build G in stages 0,1,2, ... by initial
segments. At each stage s we define a string 7, so that

D=v40<71 <72 <...<G.

We code S(s) as the last digit of 7,41, and as in Theorem 8, we code into 7,41 the information
on where to find S(s). At each stage, we act upon at most one requirement, and each
requirement, never being injured, is acted upon at most once, after which it is satisfied
forever. The whole construction is recursive in S.

Define the function
f

&

t(z) ¥ (u2)[K.)e = K)al.

Clearly, t =1 K.

Stage 0: 7o .
End of Stage 0.

Stage s+ 1: Let t & t(s). Given v, we define y,41 > 7, as follows: let (e,7) < s be least
such that R ;) has not yet been acted upon and there exists a least z < ¢ such that (letting

pZ 90741,
1. {i}"<(p) halts in no more than ¢ steps, and

2. p 2 {i}"(p) = pa(z) < t.

If no such (e, %) exists, set 7,41 = 75"1"5(s). Otherwise, we act upon requirement R ; by
setting vy,41 = 7°5(s), where 7 & {i}"¢(p) = pz(z). (Note that in this case 7,;; meets

{i}"-.)
End of Stage s+ 1.

The construction above is recursive in S: since K <1 S we can use S to compute ¢ = ¢(s)
and W, uniformly in e, from which condition (1) is effectively checkable. Condition (2) is
checkable in S by asking if ¢,(z)|. It follows that G <t S.

Computing S from G can be done in a way similar to the proof of Theorem 8. To find the
value of S(y) we reconstruct 7o, ...,¥y+1, then read off the last digit of y,11. Suppose we

12



are giveny; < G for ¢ < y, and |y;| = m. We find 7,41 by examining G(m), G(m+1), G(m+
2),...to find the least j such that G(m+ j) = 1. If j = 0, then ;41 = 7;,"1"G(m + 1) (that
is, no requirement was acted upon at stage ¢ + 1). If j > 0, then compute 7 & wi—1(7 — 1)
from which v;41 = 7°G(|7]) (the computation ¢;_1(j — 1) must halt by our construction).
Therefore, we can reconstruct 7o, . ..,¥y41 to find S(y),so G =1 S.

Now we need only show that G satisfies all requirements. Suppose that R ; is the least

esi
requirement not satisfied by G. Since each requirement is acted upon at most once, there is
a stage so > (e, ) after which no lesser requirement is acted upon. Because Ry is never
satisfied, it must be the case that W, is incomplete and {i}"e is a genericity requirement,
otherwise R ;y would be satisfied vacuously. We now describe how to compute the function
t from W,, which contradicts the fact that W, is incomplete. Note that ¢ is recursive in
any function that dominates ¢, so it suffices to compute from W, a function f such that

f(s) > t(s) for all s > so.
Fix an arbitrary string v € 2<%. Define the function

ry(2) E {i} 7 (y0° 1),

The function . is clearly We-recursive. Since W, is incomplete, by Lemma 12 there is an
z such that 7,(z) = p,(z). Using We, we can search for such an z. Let z., be the first such
z we find, and let ¢, be the number of steps it takes for {i}"<(y°02771"1) to halt. Both z.,
and c, can be computed from 7 using W,. Define the function
df
f(7) = max(y, 24, ¢y, 7y (24))-

It is clear from the arguments above that f <t W,.

We know that no requirement less than (e, ) is acted upon at any stage later than sq.
Therefore, for any s > sg it must be the case that

F(vs) > t(s), (8)

otherwise conditions (1) and (2) would hold for z = =,,, and R ; would be acted upon
and satisfied at stage s + 1, contradicting our hypothesis. We would now be done if we
could only use W, to compute v, for all s > sg, but unfortunately we cannot hope to do
this: we cannot compute the value of S(s) from W,, nor can we determine whether or not
some greater requirement R ;1) is acted upon in any given stage.

Fortunately, without knowing -y, directly, we can still get an upper bound on f(v,) for
s > 89, which is then sufficient to compute ¢(s). Notice that at stage s + 1 > so, we have

[Yat1] < max(lys| +2, [¢(s)[ + 1) < [f(7s)] + 2

by condition (2), the definition of f, and equation (8). This implies that given 7, there is
only a finite set of possibilities for 7,1, which we can compute using f. To bound #(s + 1),
we guess a string v from among these possibilities, compute f(7) for each guess, then take

13



the maximum over all guesses. This value bounds f(7,4+1)—and hence (s + 1)—because
vs+1 is one of the guessed strings.
We enumerate a sequence of canonical representations of finite sets Vg, V1, Vs, ... C 2<%

effectively in f as follows:

df
Vo = {760 }7

df
Va1 = {o: (Fy € a)lo| < [F(v)l + 2}

All the V,, are finite, and a trivial induction shows that v, € V,_,, for all s > sq. Now for
all s € w, define

- var | O if s < sg,

s) = .

1(s) { max,ev,_, f(y) if s > so.

We have for all s > s,

f(8) = f(7s) > t(s).
It follows that
t<p f <t f <t W,

contradicting the assumption that W, is incomplete. The theorem follows. O

Remark: Given an arbitrary X C w, we could easily modify the above proof to construct
an aw2-generic G =1 § @ X satisfying Theorem 8 and causing all the other results in
Appendix A to fail simultaneously.

Corollary 15 Every degree a > 0’ is hyperimmune with respect to every r.e. degree b < 0'.

Proof Sketch: By slightly modifying the proof of the ‘only if’ part of Theorem 2.3 in
[22], one can show that every aw2-generic degree is hyperimmune with respect to every

incomplete r.e. degree. O

7 Other Properties of Aw2-Generic Sets

7.1 Many-One Degrees Below Aw2-Generic Sets

Jockusch [19, Prop. 2.9] showed that the ordering of the m-degrees (except {0} and {w})
below any 1-generic set A is isomorphic to the inclusion ordering of the r.e. sets modulo the
finite sets. The same holds for weakly 1-generic sets and thus for aw2-generic sets by the
same proof, but there is one important difference between the 1-generic and ew?2-generic
cases: If A is 1-generic, then it is not hard to show that all non-maximum m-degrees below
A have Turing degree strictly less than that of A. This assertion fails for aw2-generic sets

14



in the worst possible way, however. We show that there is an aw2-generic set G with ‘m-
minimal Turing degree’ in the sense that there are no nonrecursive m-degrees below G that
are not in the Turing degree of G. We obtain as a corollary that G is the join of two sets (or

indeed infinitely many sets) all Turing equivalent to G itself. This stands in sharp contrast
with 1-generic sets ([20, Lemma 2] and [19]).

Theorem 16 There exists an aw2-generic set G such that, for all nonrecursive B, if B <,

G then G <1 B.

Theorem 16 rests on the following lemma, which proves the somewhat remarkable fact
that there is an aw?2-generic set which is fully encoded within any infinite recursive part of
its characteristic function.

Lemma 17 There exists an aw2-generic set G such that, for all infinite recursive sets A,

G <t GnNA.

Proof of Theorem 16: Let B <,, G via the function f. Since B is nonrecursive, range( f)
must be infinite. Let A be an infinite recursive subset of range(f). For all ¢ € A we have

z € G <= (uz)[f(z) =z] € B.

Thus GNA <t B. By Lemma 17, G <t B. O

Proof of Lenma 17: Let Ag, A1, Ay, ... be an arbitrary listing of all the infinite recursive
sets, and let go, g1, g2, . . . be an arbitrary listing of all the genericity requirements recursive
in incomplete r.e. sets, as in the proof of Theorem 8 above. We again build G by initial
segments

®:70<‘)/1<‘)’2<"'<G.

Given a string o and n € w, we will define a recursive function 7, »(z) such that
1. 0 X fpo(z) forall z € w.

2. For each ¢ € w, there is a recursive operator =;(X ;o) such that if n > ¢, then for all
¢ € w and for all sets B > n, ,(z),

Ei(BNA;o) ==

Intuitively, we use 7,.,(z) to extend to a larger portion of G, where  is chosen so that

Ys+1 = @z(z) as in previous proofs. The string 7, 4,(z) is just long enough to encode z in

a particular way. The operators Z; are then designed to recover z by looking only at those

positions of the oracle in dom(, ,(z)) N 4;. We will define 7, , and E; precisely later on.
We construct G as follows:

15



Stage 0: 7o .
End of Stage 0.

Stage s +1: We are given v & ¥s. Let z, be the least z such that g,(7,+(z)) = vz(2),
and set ¥,11 to g5(7s4(Zs)) = @z, (z,). [Note that g, 07, satisfies the hypothesis of Lemma
12.]

End of Stage s+ 1.

Set G & U, 7s- Clearly, G meets every g5, so G is aw2-generic. Fix ¢ € w. We show that
G <t G N A;. Note first that for all s > ¢, we have z, = E;(G N A;;7,) since G > 1, 4,(z,).
Starting with -;, we compute z; = Z;(G N A4;;7;). We then compute 7,11 = ¢z;(2;). We
compute z;41 = Z;(G N As;7i41) to get Yiy2 = @z, (2i41) and so on, to reconstruct all of
G.

It remains to define 7, , and E; appropriately. The string 7, () must encode z so that
for all ¢ < n, E;(B; o) can recover ¢ by looking at the oracle B > 7, ,(z) only at locations
y € dom(7, »(z))N A;. For n = 0 this is not a problem. Let y; < y3 < - - - be the elements of
Ag outside dom(c). Set 19 ,,(z) & 500 - -001, where the last 1 occurs at position y,1. The
function Z¢(B; o) then recovers by determining where the first 1 occurs in the sequence
B(y1), B(y2), . ... [Note that B(y;) = (B N Ao)(y;).]

For n > 0, we would like to do the same trick simultaneously for =y, ..., =,. We must
be careful to avoid conflicts, however. For example, if n = 1, the number y,411 € A¢ may
also be in A;, and placing a 1 at that position for the sake of Zg may mess up Z;’s count.
We remedy this by having =,(B; o) read past the first 1 it sees (whether or not at position
Yz+1), and take z to be the number of 0’s between the first and second 1. Thus Z; ignores
the position of the first 1, since it may be used to encode z for Ey. In general, 7, ,(z)
encodes z for Eo, ..., =2, in descending order of priority, and each E; reads past a certain
number of 1’s before computing .

We define Z;(B; o) as follows: let y; < ya < --- be the elements of A; not in dom(c).
Z;(B; o) examines the sequence B(y; ), B(y2), . . . until exactly 2 —1 many 1’s appear, the last
occurring at, say, B(y4). Zi(B;0) continues examining the sequence B(y4q+1), B(Yd+2),- - -
until the next 1 appears, say B(y.). Z;(B; o) immediately outputs ¢ — d and halts.

Fix o and z, and let 7,, denote the string 7, ,(z). We will define 7,, by induction on n,
maintaining the following invariants throughout:

1. 0 < n,,
2. the last digit of 75, is 1, and
3. 7, has at most 2°7! — 1 many 1’s at positions outside dom(o).

We defined 79 = 79,(z) above. For n > 0, assume 7 & Tn—1 is defined, and let
y1 < Y2 < --- be the elements of A,, outside dom(c). Let w be the number of distinct y;

16



such that n(y;) |= 1. By the third invariant, we have w < 2™ —1. We first want to extend 7
to a string 6 that has exactly 2® — 1 many 1’s, including its last digit, among the positions
Y1,Y2,.... If w = 2" — 1, then we can take 0 & 1], since in this case the positions of all 1’s

in 7 outside dom(o) must be of the form y;, including the final digit of . If w < 2™ — 1,
then let v S om — 1 — w, let k& be least such that y ¢ dom(n), and set

0 < 7 00---0100---0100 - --01,

v many 1’s

where the last v many 1’s occur at positions yg, Yk+1,- - -, Yk+v—1- Finally, we define
T 2 6°00 - --01,

where the last 1 appears at position ygiy,+z. Note that there are exactly # many 0’s
appearing at positions yg4y4; for 0 < j <z —1.

The first two invariants clearly hold for all n. The third invariant clearly holds for n = 0.
Assume n > 0 and the third invariant holds for n — 1. There are at most 2™ many additional
y € dom(n,) — dom(7n,_1) with 5,(y) = 1. Thus the number of y ¢ dom(o) with 5,(y) =1
is at most 2™ — 1 4+ 2™ — 27+l _ 1, so the third invariant holds for n.

The function 7, ,(z) is easily seen to be recursive for all n and o: 7,,(z) can be
computed effectively given recursive indices for Ag,..., A,. By viewing the definitions of
Tn,o and Z; simultaneously, it is clear that Z;(B;0) = ¢ for all i < n and B > 7, ,(z). Also,
since Z;(B; o) depends on B only at positions in A;, we have Z;(BN A;;0) = Ei(B;o) ==

as desired. O

For a given set S C w, define 5§ and S* to be the unique sets such that S°@® S! = S, and
for n € w define SM & {z | (z,n) € S}. If A is 1-generic, then A® is Turing incomparable
with A, and no set A is computable in ®Brsn Al¥] [20, 19]. By contrast, we have the

following:

Corollary 18 There exists an aw2-generic set G such that

G =T GO =T Gl =T G[O] =T G[l] =T G[Z] =T ....

Remark: If G is aw2-generic, the most we can say about G° and G! is that they are both
aw2-generic and truth-table incomparable. The same thing holds true for all the GI™, and
also if ‘aw2-generic’ is replaced by ‘weakly 1-generic’.

7.2 Jump Inversion with Aw2-Generic Sets

Are there aw2-generic degrees strictly below 0’? Since there are aw2-generics above K, it

is not true that equation (1),

GISTG@K,

17



holds for all aw2-generic G. Despite this, can the Friedberg Completeness Criterion be
proved with aw2-generic sets? The answer to both these questions is yes. Shore [30] has
modified the proof of Theorem 14 to prove the Friedberg Completeness Criterion using
aw2-generic sets:

Theorem 19 (Shore) For every degree d > 0' there is an aw2-generic set G such that
G'=r G® K € d. (G is also 1-generic.)

Proof: Fix aset S € d. We build G by initial segments § = y9 < y; <72 < --- < G in
stages 0,1,2,... as before, where S(s) is coded as the last digit of v,11. We need to satisfy
the requirements

Ry If K £1 We and {i}"¢ is a genericity requirement, then G meets {i}",
Q,: If p, is a partial genericity requirement, then G meets @,.

The first set of requirements {R<e,i>} will guarantee that G is aw2-generic; the second set
{Q@;} will guarantee that G is 1-generic. The requirements are ranked in descending order
of priority as follows:

QO, RU: Qla Rl: QZ, RZ, e

By equation (1), it suffices to make sure that G @ K =1 S. As before, no requirement is
injured, and each requirement is acted upon at most once, after which it is satisfied forever.

Stage 0: 7o o, uo Lo
End of Stage 0.

Stage s + 1: We are given v, and u,.

Step 1: Let u,11 a4 max{(pz)[K.|\s = K|\s], u,, m}, where
df .
m ¥ max{|pi(o)|: 5 <5 & |o] <up & pi(0) > o},

For j < s, we say that requirement @ ; is hungry if @; has not yet been acted upon
and ¢;(7s) 1= 7s-

Step 2: For all (e,i) < s, say that requirement R is hungry if R ; is not yet acted
upon and

1. {i}"¢(5,) halts in no more than u,; steps,
2. 7a 2{i}"*(74), and
3. {17 (70)] < upsr — 1.

18



Step 3: If there are no hungry requirements, we set ;41 & vs"S(s). Otherwise, we act
upon the hungry requirement of highest priority as follows: if ¢ ; is the highest priority
hungry requirement, we set y,11 & ©j(7s)"S(8); if R(c;y is the highest priority hungry
requirement, we set y,41 & [{i}We('y,)] "S(s).

End of Stage s+ 1.

The function u & As.uz41 serves the same purpose as the function ¢ in the proof of
Theorem 14. Its definition is complicated slightly by our wish to maintain the following
invariant for all s, which can be shown easily by induction:

[Ys| < Us.

Note that u dominates ¢, so K <1 u. Conversely, it is clear that u <1 K: the function u is
defined independently from the set S. Thus v =1 K.

Since K <7 §, the entire construction is evidently recursive in S, hence G ® K <1 S.
On the other hand, the construction is also recursive in G @ K: given 7, and u,, we use K
to compute u,y; and to determine which requirement, if any, is acted upon at stage s + 1;
we use G to determine the last digit of 7,41, which encodes S(s). Therefore, G® K =1 S.
Since G will be shown to be 1-generic, by equation (1) we have G’ =1 S as well.

It remains to show that all requirements are satisfied. Suppose this is not the case. We
have two possibilities:

Case 1: The highest priority unsatisfied requirement is ¢);. Let s be a stage beyond which
no higher priority requirement is acted upon. Since @; is not acted upon at stage
so + 1, it must be because either ¢;(7s,) T or ©;(Vs,) ¥ 7Vso- In either case, @; is
satisfied. Contradiction.

Case 2: The highest priority unsatisfied requirement is R ;. It must be that {i}%e is
a genericity requirement with W, incomplete, otherwise R, ;) is satisfied vacuously.
We describe a W,-recursive function which dominates u and thus dominates . This
implies K <1 We, which contradicts the fact that W, is incomplete.

Let s¢ be a stage beyond which no higher priority requirement is acted upon. For all
n € w define
df
g(n) & max(t +1,7),

where
¢ < max |{i}"¢(0)),

lo|<n
and

r ¥ max [running time of {i}W¢(0o)].
lo|<n

19



Note that g is total, We-recursive, and nondecreasing. Since R ; is not acted upon

€,1)
at any stage s + 1 > sg, conditions (1) and (3) cannot both hold in step 2 of stage
s+ 1. Thus g(us) > ust1, since |y < us. Define

F(k)
f(s0)
f(s+1) A g(f(s)) for all s > sq.

Clearly, f is We-recursive, and f(s) > u, for all s > so. Thus f(s) > u, for all s € w,
and so the function As.f(s + 1) dominates u and is We-recursive.

A uy, for all & < sg,

df
= U,

Remark: In the case where d = 0’, the degree of the set G constructed in the proof above,
as well as being low, is incomparable with every r.e. degree except 0 and 0’. This follows
immediately by Proposition 13 and the fact that there is no nonzero r.e. degree below a
1-generic degree.

8 Further Research

We have shown that the notions of aw2-genericity and 1-genericity are of incomparable
strength. It is interesting to compare the properties of aw2-generics with those of 1-generics
and other sets of comparable genericity. For example, can an aw2-generic degree form
a minimal cover? For another example, Martin (see [19]) showed that 2-generic degrees
cannot bound minimal degrees. More recently, Chong & Downey [7] and Kumabe [21]
independently constructed a 1-generic degree bounding a minimal degree. There are aw2-
generic degrees bounding minimal degrees, trivially because every degree is bounded by an
aw?2-generic degree by Theorem 14. Do there exist aw2-generic degrees which are themselves
minimal? We suspect not, despite the evidence suggested by Theorem 16 about m-degrees.
More generally, what can we say about the structure of the Turing degrees below an aw2-
generic degree?

As was mentioned in Section 4, almost nothing is known about sets that are rec(d)-
generic for all d < 0’, not necessarily r.e. In particular, are any of these sets not weakly
2-generic? It is easy to see that none of these sets can exist strictly below 0/, so by Theorem
19 there are aw2-generic sets which do not fit this description.

Is the notion ‘almost weakly n-generic’ useful for n > 27

Acknowledgments

I would like to thank my thesis advisor, Stuart Kurtz, for his astute guidance and inspiration,

as well as for suggesting that Theorem 16 is true and providing the key insight into its proof.

20



I am also grateful to Richard Shore for communicating Theorem 19, Lance Fortnow for many
good conversations and for proving an earlier result similar to Theorem 8, and to James
Foster for helpful discussions and correspondence. Finally, I wish to thank William Gasarch

for his helpful comments on earlier drafts of this paper.

A Analogues to Theorem 4

The techniques used by Blum & Impagliazzo to prove Theorem 4 can be adapted to prove
a number of similar results. A general study of these and other techniques can be found in
[12]. We list most of the known results here; in the listing, G can be any 1-generic set, and
SAT is the NP-complete set of satisfiable Boolean formulae. Definitions of UP and FewP
can be found, for example, in [15] and [1] respectively. The class SPP is defined in [11] and
in [27] under the name XP. The class BPP is well-studied; see [4] for example.

o NP%nco-NPC C PGOSAT [g],

o UPC C PGOSAT [g],

o FewP C PCOSAT [19],

e Every pair of disjoint NP sets is PG®SAT _geparable [6, 9].

o BPP® C P%®C where C is any £5-complete set [18] (X2 & NPNP),

o SPPC C P®E  where E is any set complete for PSPACE [12].

References

[1] E. W. Allender. The complexity of sparse sets in P. In Structure in Complezity Theory,
Lecture Notes in Computer Science, vol. 223, Springer- Verlag, 1986, pages 1-11.

[2] K. Ambos-Spies, H. Fleischhack, and H. Huwig. P-generic sets. In Proceedings of the
11th International Colloguium on Automata, Languages, and Programming (Paredaens,

editor), Lecture Notes in Computer Science, vol. 172, Springer-Verlag, 1984, pages 58—
68.

[3] K. Ambos-Spies, H. Fleischhack, and H. Huwig. Diagonalizations over polynomial time
computable sets. Theoretical Computer Science, 51:177-204, 1987.

[4] J. L. Balcazar, J. Diaz, and J. Gabarrd. Structural Complezity I, volume 11 of EATCS
Monographs on Theoretical Computer Science. Springer- Verlag, 1988.

[6] M. Blum. A machine-independent theory of the complexity of recursive functions.
Journal of the ACM, 14(2):322-336, 1967.

21



[6]

[7]

8]

[9]

[10]

[11]

[14]

[15]

[17]

[18]

[19]

[20]

M. Blum and R. Impagliazzo. Generic oracles and oracle classes. In Proceedings of the
28th Annual IEEE Symposium on Foundations of Computer Science, pages 118-126,
1987.

C. T. Chong and R. G. Downey. Minimal degrees recursive in 1-generic degrees. Annals
of Pure and Applied Logic, 48:215-225, 1990.

S. Fenner. Notions of resource-bounded category and genericity. Technical Report
90-32, Department of Computer Science, University of Chicago, 1990.

S. Fenner. Notions of resource-bounded category and genericity. In Proceedings of the
6th Annual IEEE Structure in Complezity Theory Conference, pages 196-212, 1991.
Journal version in preparation.

S. Fenner. Tight lower bounds on genericity required to prevent one-way functions.
Technical Report 91-04, Department of Computer Science, University of Chicago, 1991.

S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. Journal of
Computer and System Sciences, 48:116-148, 1994.

S. Fenner, L. Fortnow, S. Kurtz, and L. Li. An oracle builder’s toolkit. In Proceedings
of the 8th IEEFE Structure in Complexity Theory Conference, pages 120-131, 1993.

J. A. Foster. Forcing and Genericity on the Polynomial Hierarchy. PhD thesis, lllinois
Institute of Technology, 1990.

R. M. Friedberg. A criterion for completeness of degrees of unsolvability. Journal of
Symbolic Logic, 22:159-160, 1957.

J. Grollmann and A. Selman. Complexity measures for public-key cryptosystems.
SIAM Journal on Computing, 17:309-335, 1988.

P. G. Hinman. Some applications of forcing to hierarchy problems in arithmetic. Z.
Math. Logik Grundlagen Math, 15:341-352, 1969.

J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, 1979.

R. Impagliazzo and M. Naor. Decision trees and downward closures. In Proceedings of
the 3rd IEEFE Structure in Complexity Theory Conference, pages 29-38, 1988.

C. G. Jockusch. Degrees of generic sets. In F. R. Drake and S. S. Wainer, editors,
Recursion Theory: Its Generalizations and Applications, pages 110-139. Cambridge
University Press, 1980.

C. G. Jockusch and D. B. Posner. Double jumps of minimal degrees. Journal of
Symbolic Logic, 43:715-724, 1978.

22



[21]

[22]

[23]

[24]

[28]

[29]

[30]

[31]

M. Kumabe. A 1-generic degree which bounds a minimal degree. Journal of Symbolic
Logic, 55(2):733-743, 1990.

S. A. Kurtz. Notions of weak genericity. Journal of Symbolic Logic, 48(3):764-770,
September 1983.

J. H. Lutz. Resource-bounded Baire category and small circuits in exponential space.
In Proceedings of the 2nd Annual IEEE Structure in Complexity Theory Conference,
pages 81-91, 1987.

J. H. Lutz. Almost everywhere high nonuniform complexity. In Proceedings of the
4th Annual IEEFE Structure in Complexity Theory Conference, pages 37-53, 1989. An
updated version appears as lowa State University Computer Science Department Tech-
nical Report #91-18.

J. H. Lutz. Category and measure in complexity classes. SIAM Journal on Computing,
19(6):1100-1131, December 1990.

E. Mayordomo. Almost every set in exponential time is P-bi-immune. Unpublished

manuscript, 1991.

M. Ogiwara and L. A. Hemachandra. A complexity theory of feasible closure properties.
In Proceedings of the 6th Annual IEEE Structure in Complezity Theory Conference,
pages 16-29, 1991.

B. Poizat. Q = NQ? Journal of Symbolic Logic, 51:22—-32, 1986.

H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill,
1967. Reprinted. MIT Press. 1987.

R. A. Shore, 1991. Private communication.

R. I. Soare. Recursively Enumerable Sets and Degrees. Springer-Verlag, 1987.

23



