ORACLES THAT COMPUTE VALUES

STEPHEN FENNER*, STEVEN HOMER!, MITSUNORI OGIHARA?, AND ALAN SELMANS

Abstract. This paper focuses on complexity classes of partial functions that are computed
in polynomial time with oracles in NPMYV, the class of all multivalued partial functions that are
computable nondeterministically in polynomial time. Concerning deterministic polynomial-time re-
ducibilities, it is shown that

1. A multivalued partial function is polynomial-time computable with k& adaptive queries to
NPMYV if and only if it is polynomial-time computable via 2¥ — 1 nonadaptive queries to NPMV.

2. A characteristic function is polynomial-time computable with k adaptive queries to NPMV
if and only if it is polynomial-time computable with k adaptive queries to NP.

3. Unless the Boolean hierarchy collapses, for every k, k adaptive (nonadaptive) queries to
NPMYV is different than k + 1 adaptive (nonadaptive) queries to NPMV.
Nondeterministic reducibilities, lowness and the difference hierarchy over NPMV are also studied.
The difference hierarchy for partial functions does not collapse unless the Boolean hierarchy collapses,
but, surprisingly, the levels of the difference and bounded query hierarchies do not interleave (as is
the case for sets) unless the polynomial hierarchy collapses.

Key words. computational complexity, complexity classes, relativized computation, bounded
query classes, Boolean hierarchy, multivalued functions, NPMV

AMS subject classifications. 68Q05, 68Q10, 68Q15, 03D10, 03D15

1. Introduction. In this paper, we study classes of partial functions that can
be computed in polynomial time with the help of oracles that are themselves partial
functions. We want to know whether there is a difference between computing with
function oracles and computing with set oracles. Specifically, we investigate classes
of partial functions that can be computed in polynomial time with oracles in NPMV
and NPSV, that is, the classes PFNPMY and PFNPSY,

NPMYV is the set of all partial multivalued functions that are computed nonde-
terministically in polynomial time, and NPSV is the set of all partial functions in this
class that are single-valued. NPMV captures the complexity of computing witnesses
to problems in NP. For example, let sat denote the partial multivalued function de-
fined by sat(z) maps to a value y if and only if z encodes a formula of propositional
logic and y encodes a satisfying assignment of z. Then, sat belongs to NPMV, and the
domain of sat (i.e., the set of all words z for which the output of sat(z) is non-empty)
is the NP-complete satisfiability problem, SAT. Also, NPMYV captures the complexity
of inverting polynomial time honest functions. To wit, the inverse of every polynomial
time honest function belongs to NPMV, and the inverse of every one-one polynomial
time honest function belongs to NPSV.

* Dept. of Computer Science, University of Southern Maine, Portland, ME 04103. Research
partially supported by the National Science Foundation under grant nos. CCR-9209833 and CCR-
9501794.

t Dept. of Computer Science, Boston University, Boston, MA 01003. Research partially supported
by the National Science Foundation under grant nos. CCR-9103055, CCR-9400229, and INT-9123551.

! Dept. of Computer Science, University of Rochester, Rochester, NY 14627. Research done
while visiting at the Dept. of Computer Science, SUNY at Buffalo, Buffalo, NY 14260 and while
affiliated with Dept. of Computer Science, University of Electro-Communications, Tokyo, Japan,
with partial support by the National Science Foundation under grant no. CCR-9002292 and by the
NSF-INT-9116781/JSPS-ENGR-207.

§ Dept. of Computer Science, SUNY at Buffalo, Buffalo, NY 14260. Research partially supported
by the National Science Foundation under grant nos. CCR-9002292, INT-9123551, and CCR-9400229.

2 S. FENNER, S. HOMER, M. OGIHARA, A. SELMAN

The class of partial functions with oracles in NP, namely, PFNY has been well-
studied [13, 1], as have been the corresponding class of partial functions that can be
computed nonadaptively with oracles in NP, viz. PFEP [15], and the classes of partial
functions that are obtained by limiting the number of queries to some value & > 1,

namely, PFNTI*] and PFgP[k] [2]. A rich body of results is known about these classes.

Here we raise the question, “What is the difference between computing with an
oracle in NPMYV versus an oracle in NP?” The answer is not obvious. If the partial
function sat is provided as an oracle to some polynomial-time computation M, then on
a query z, where z encodes a satisfiable formula of propositional logic, the oracle will
return some satisfying assignment y. However, if the oracle to M is the NP-compete
set SAT, then to this query , the oracle will only return a Boolean value “yes.” On
the other hand, by the well-known self-reducibility of SAT, M could compute y for
itself by judicious application of a series of adaptive queries to SAT. Indeed Theorem
2.4 states that unbounded access to an oracle in NPMV is no more powerful than
such an access to an oracle in NP. However, in Section 3 we will see that the situation
for bounded query classes is much more subtle. In general, function oracles cannot
be replaced by set oracles—but set oracles are still useful. We will show that every
partial multivalued function in PFNPMVIE] can be computed by a partial multivalued
function of the form f o g, where f is in NPMV and g is a single-valued function
belonging to PFNPIE] Moreover, most surprisingly, the relationship between access to
an oracle in NPMV and access to an oracle in NP is tight regarding set recognition;
that is, PNPMVIk] — PNPIA] This means that when we are computing characteristic
functions, ¥ bounded queries to an oracle in NPMV give no more information than
the same number of queries to an oracle in NP.

We will show that the levels of the nonadaptive and adaptive bounded query
hierarchies interleave (for example, k adaptive queries to a partial function in NPMV
is equivalent to 2¥ — 1 nonadaptive queries to a partial function in NPMV), and we
will show that these bounded query hierarchies collapse only if the Boolean hierarchy
collapses.

In Section 4 we study nondeterministic polynomial time reductions to partial
functions in NPMV. Unlike the case for deterministic functions, we will see that just
one query to an NP oracle can substitute for an unbounded number of queries to
any partial function in NPMV. The hierarchy that is formed by iteratively applying
NP reductions is an analogue of the polynomial hierarchy, and we will show that this
hierarchy collapses if and only if the polynomial hierarchy collapses.

In Section 5 we will study the difference hierarchy over NPMV. We define f — g
to be a partial multivalued function that maps z to y if and only if f maps z to y and
g does not map z to y, and we define NPMV (k) = {fi—(fa—(= f&)) | fr,* ", fx €
NPMV}. Since the properties of the bounded query hierarchies over NPMYV are largely
similar to those over NP, one might hope that the same thing happens here—that the
difference hierarchy over NPMV and the difference hierarchy over NP are similar.
However, the contour of this hierarchy is, to our astonishment, totally different than
its analogue for NP. Although BH = |J xNP(k) C PN?, with no assumption, we will
show that NPMV(2) is included in PFNPMV if and only if PH = AL. Also, in this
section we will introduce the notion of NPMV-lowness, and we will give a complete
characterization of NPMV-lowness.

Consideration of reduction classes with oracles in NPSV, to be studied in Section
6, is motivated in part by a desire to understand how difficult it is to compute sat-
isfying assignments for satisfiable formulas. We take the point of view that a partial

ORACLES THAT COMPUTE VALUES 3

multivalued function is easy to compute if for each input string in the domain of the
function, some value of the function is easy to compute. For this reason, we define
the following technical notions. Given partial multivalued functions f and g, define g
to be a refinement of f if dom(g) = dom(f) and for all z € dom(g) and all y, if y is a
value of g(z), then y is a value of f(z). Let F and G be classes of partial multivalued
functions. Purely as a convention, if f is a partial multivalued function, we define
f €. G if G contains a refinement g of f, and we define F C. G if for every f € F,
f €c G. This notation is consistent with our intuition that F C. G should entail that
the complexity F is not greater than the complexity of G. Let PF denote the class
of partial functions that are computable deterministically in polynomial time. The
assertion “NPMV C. PF” means that every partial multivalued function in NPMV
has a refinement that can be computed efficiently by some deterministic polynomial
time transducer. It is well-known that sat €. PF if and only if NPMV C. PF if
and only if P = NP [15]. Thus, one does not expect that sat €. PF. Is sat com-
putable in some larger single-valued class of partial functions? Selman [15] showed
that PF C NPSV C PFgP. If sat €, NPSV, then the polynomial hierarchy collapses
[11], and it is an open question whether sat €, NPSV or whether sat €. PFN'.
(Watanabe and Toda [18] have shown that sat €, PFR relative to a random oracle.)

We will consider classes of the form PFNTSVIF] and PFgPSV[k], where & > 1, and
we will show that the adaptive and the nonadaptive classes form proper hierarchies
unless the Boolean hierarchy collapses. Thus, these classes form a finer classifica-
tion in which to study the central question of whether sat has a refinement in some
interesting class of single-valued partial functions.

Finally, we note in passing that the complexity theory of decision problems, i.e.,
of sets, is extremely well developed. Although the computational problems in which
we are most interested are naturally thought of as partial multivalued functions, the
structural theory to support classification of these problems has been slight. By
introducing several natural hierarchies of complexity classes of partial multivalued
functions, with strong evidence supporting these claims, we intend this paper to make
significant steps in correcting this situation.

2. Preliminaries. We fix I to be the finite alphabet {0,1}. < denotes the stan-
dard canonical lexicographic order on ¥*. Let f : £¥* — X* be a partial multivalued
function. We write f(z) — y (or, f(z) maps to y), if y is a value of f on input
string . Define graph(f) = {(z,y) | f(z) — v}, dom(f) = {z | Jy(f(z) — y)}, and
range(f) = {y | 3z(f(z) — y)}. We will say that f is undefined at z if z & dom(f).

A transducer T is a nondeterministic Turing machine with a read-only input tape,
a write-only output tape, and accepting states in the usual manner. A transducer T
computes a value y on an input string z if there is an accepting computation of T
on z for which y is the final content of T’s output tape. (In this case, we will write
T(z) — y.) Such transducers compute partial, multivalued functions. (As transducers
do not typically accept all input strings, when we write “function”, “partial function”
is always intended. If a function f is total, it will always be explicitly noted.)

e NPMYV is the set of all partial, multivalued functions computed by nondeter-
ministic polynomial time-bounded transducers;

o NPSV is the set of all f € NPMV that are single-valued;

e PF is the set of all partial functions computed by deterministic polynomial
time-bounded transducers.

A function f belongs to NPMYV if and only if it is polynomially length-bounded
and graph(f) belongs to NP. The domain of every function in NPMV belongs to NP.

4 S. FENNER, S. HOMER, M. OGIHARA, A. SELMAN

These definitions originate in Book, Long, and Selman’s study of restricted-access
relativizations [5].

Now we describe oracle Turing machines with oracles that compute partial func-
tions. For the moment, we assume that the oracle is a single-valued partial function.
Let 1 be a symbol not belonging to the finite alphabet X. In order for a machine
M to access a partial function oracle, M contains a write-only input oracle tape, a
separate read-only output oracle tape, and a special oracle call state ¢. When M
enters state g, if the string currently on the oracle input tape belongs to the domain
of the oracle partial function, then the result of applying the oracle appears on the
oracle output tape, and if the string currently on the oracle input tape does not be-
long to the domain of the oracle partial function, then the symbol | appears on the
oracle output tape. Thus, if the oracle is some partial function g, given an input z
to the oracle, the oracle, if called, returns a value g(z) if one exists, and returns |
otherwise. (It is possible that M may read only a portion of the oracle’s output if
the oracle’s output is too long to read with the resources of M.) We shall assume,
without loss of generality, that M never makes the same oracle query more than once,
i.e., all of M’s queries (on any possible computation path) are distinct. PFNT is the
class of partial functions computed in polynomial time with oracles in NP. PFEP
is the class of partial functions that can be computed nonadaptively with oracles in
NP; that is, a partial function f is in PFEP if there is a deterministic oracle Turing
machine transducer T such that f € PFNY via T with an oracle L in NP and a total
polynomial time computable function g : {0,1}* — (c{0,1}*)* such that, for each
input z to T, T only makes queries to L from the list g(z).

If g is a single-valued partial function and M is a deterministic oracle transducer
as just described, then we let M[g] denote the single-valued partial function computed
by M with oracle g.

DEeFINITION 2.1. Let f and g be multivalued partial functions. [is Turing
reducible to g in polynomial time, f Sg g, if for some deterministic oracle transducer
M, for every single-valued refinement g' of g, M|[g'] is a single-valued refinement of
£l

PROPOSITION 2.1. Polynomial time Turing reducibility, <%, is a reflezive and
transitive relation over the class of all partial multivalued functions.

Let F be a class of partial multivalued functions. PF” denotes the class of partial
multivalued functions f that are <Z.-reducible to some g € F. pFZIkl (respectively,
PF* [log]) denotes the class of partial multivalued functions f that are <D-reducible
to some g € F via a machine that, on input 2, makes k adaptive queries (respectively,
O(log |z|) adaptive queries) to its oracle.

PF£ denotes the class of partial multivalued functions f that are <Z.-reducible
to some g € F via an oracle Turing machine transducer that queries its oracle non-
adaptively. That is, a partial multivalued function f is in PFZ; if there is an oracle

1 A notion of polynomial-time Turing reducibility between partial functions is defined by Selman
[15]. It is important to note that the definition given here is different than the one given there.
Here the oracle “knows” when a query is not in its domain. In the earlier definition, this is not the
case. The authors recommend that the reducibility defined in the earlier paper should in the future
be denoted as Sgp, which is the common notation for reductions between promise problems. We
make this recommendation because conceptually and technically this reducibility between functions
is equivalent to a promise problem reduction. Also, we note that the reducibility defined by Selman
[15] is not useful for our purposes here. In particular, it is easy to see that iterating reductions
between functions in NPMV does not gain anything new unless the oracle is endowed with the
ability to know its domain.

ORACLES THAT COMPUTE VALUES 5

Turing machine transducer T such that f € PF” via T with an oracle g in F and
a polynomial time computable function & : {0,1}* — (c{0,1}*)* such that, for each
input z to T, T only calls the oracle g on strings in the list h(z).

PFz[k] denotes the class of partial multivalued functions f that are Sg\—reducible
to some g € F via a machine that makes k& nonadaptive queries to its oracle, i.e., just
as in the last paragraph, but with h : {0, 1}* +— (c{0, 1}*).

pZ, pZlk] pZliog] P7, and Pz[k], respectively, denote the classes of all character-
istic functions contained in PF*, PFZ[*], ppZlicgl pFZ and PF7 .

For a class of sets C, we may say that PF¢ denotes the class of partial multivalued
functions that are Sg—reducible to the characteristic function of some set in C. PFc[k],
preliog], PFS,, PFft[k], p¢, pClkl pclles] PC and Pft[k] are defined similarly. In partic-
ular, PFN? is the class of partial multivalued functions computed in polynomial time
with oracles in NP, and PFEP is the class of partial functions that can be computed
nonadaptively with oracles in NP. In the current literature, these classes contain
single-valued functions only. The reason is that heretofore, polynomial time Turing
reducibility, Sg, has been defined as a binary relation over single-valued objects. To
see that PFN? contains partial functions that are not single-valued, consider the par-
tial single-valued function mazsat that on an input z where z encodes a formula of
propositional logic, maps to the encoding of the lexicographically largest satisfying
assignment of z, if z € SAT. Clearly, mazsat € PFNP | and sat <E mazsat by Defi-
nition 2.1, so the partial multivalued function sat belongs to PFN?. Readers are free
to interpret references to PFNY and PFgP with their familiar meaning because the
results that we will state for these classes, and for the corresponding bounded query
classes, remain correct if the classes are replaced with the result of including only the
single-valued partial functions that they contain.

Given a class of partial multivalued functions F, let F/,, denote the class of
single-valued partial functions that F contains.

All the classes of partial multivalued functions that we have defined, other than
NPMYV, are closed “backwards” under refinement. That is, with the exception of
NPMYV, the following Property 1 holds for each of these classes F:

(1) fE€FASfis arefinement ofg g€ F

Let us say that classes that satisfy property 1 are c-closed. The c-closure of a class
is c-closed. Let us say that a basis for a class F is a subset F’' of F such that for
all f € F, there is an f' € F' such that f’ is a refinement of f. Essentially all
interesting c-closed classes are uncountable, but this is not problematic because they
all arise as the c-closure of classes that are countable and effectively enumerable (that
is, they are indexed by machines of some appropriate type). Property 2 holds for
every class of partial functions F that is Turing reducible in polynomial time to a
class of single-valued partial functions.

(2) f € F — 3f'[f" is a single-valued refinement of f A f' € F]

For example, Property 2 holds for PFNY. Property 2 states that the set of single-
valued functions in F is a basis for F. (To use an analogy from lattice theory, if one
thinks of the single-valued functions as “atoms,” then property 2 is the “atomic basis
property.”). Also, note that “is a refinement of” is reflexive and transitive over the
class of all partial multivalued functions.

PROPOSITION 2.2. If F satisfies property 1, then g €c F <« g € F and G C,

6 S. FENNER, S. HOMER, M. OGIHARA, A. SELMAN

Thus, €. is identical to class containment and C,. is identical to class inclusion
for the classes we have defined.

ProPOSITION 2.3. If F satisfies property 2 and G satisfies property 1, then
]:/sv gg/sv‘_’]:gg-

Beigel [2] proved that for all k& > 1, PFNP[k]/“, C PFgP[zk_l]/”. Using Proposi-

tion 2.3, it follows that pFNPIE] C Png[zk_l]. This example illustrates that known
inclusion results for the classes we are considering remain true under the new interpre-
tation that these classes contain multivalued functions. Thus, passing to multivalued
functions does not disturb our current understanding of previously studied function
classes. We are recasting the definitions in no small part because we will be dealing
with many classes that (most likely) do not satisfy property 2, and hence our results
are strictly more general.

Obviously PFN? € PFNPMV Conversely, for a function f € NPMV, define ' to
be a function such that f'(z) = min{y | f(z) — y}. The function f’ is a single-valued
refinement of f and in PFNY, so NPMV C PFNF by Proposition 2.2. This implies
that PFNFMV C PFPF" = PFMP gince <F is transitive. Therefore, the following
theorem holds.

THEOREM 2.4. P

Theorem 2.4 states that unbounded access to an oracle in NPMV is no more
powerful than such an access to an oracle in NP.

The following examples, the first of which was pointed out by Buhrman [3], illus-
trate the power of PFNTMVY and PFgPMV. Consider the partial multivalued function
mazTsat defined as follows:

mazTsat(z) — y, if y is a satisfying assignment of z with the maximum
number of true’s.

Obviously, mazT sat belongs to PFNPMV Tet f be a function that maps a pair
(z,n) to y if and only if y is a satisfying assignment of z with n ¢rue’s. Since the
number of variables in a formula is bounded by its length, it holds that mazTsat(z) =
f(z,nz), where n, is the largest n, 1 < n < |z| such that (z,n) € dom(f). This implies
that mazTsat € PFN MY,

Similarly, the partial multivalued function mazclique, that on input a graph G
outputs a clique of maximum size, belongs to PFSPMV. The function Maz EdgeW eightClique
that is defined over edge-weighted graphs and that outputs a clique of maximum
weight, if G has a clique, belongs to PFNPMV but may not belong to PFgPMV be-
cause weights may grow exponentially.

We should note that several of the classes we investigate here seem to capture
the complexity of finding witnesses to NP-optimization problems. This observation is
explored by Chen and Toda [9] and by Wareham [17].

FNPMV _ PFNP .

3. Bounded Query Classes. In this section we prove a number of basic results
clarifying the structure of the bounded adaptive and nonadaptive query hierarchies
over NPMV, both for computing functions and for set recognition. The new hier-
archies are mostly analogous to those over NP, but there are some interesting and
subtle differences. General techniques developed in this section are reminiscent of the
“mind-change” technique [2, 19]. We will use them first to compare PFNPMVIE] 514
PFgPMV[k] with PFNT*] and PFgP[k], respectively.

The following two propositions are central to the rest of the paper and will be
used in several places later on: Theorems 3.3, 3.5, 3.7, and 3.8, Lemma 5.10, and
Proposition 6.6. Each proposition abstracts the general idea, common to all these

ORACLES THAT COMPUTE VALUES 7
results, that we can replace the oracle queries in any PFNY™Y computation by non-
determinism in a way that preserves information about outputs of the computation.
Proposition 3.1 deals with computations making adaptive queries; Proposition 3.2
deals with nonadaptive queries. After we prove them we will discuss briefly how they
are used.

PrROPOSITION 3.1. Lett € PF. Let f be in PFN"MV e computed by o determin-
istic oracle Turing machine transducer M with ¢ € NPMV as the oracle. Suppose
that M on z makes t(z) queries to its oracle. Then there is an NPMV function
s[M,g]: X% x B* + I that satisfies the following conditions.

1. Xz.[s[M, g](z, 0t®)] is total, single-valued and polynomial time computable.
2. For every z, there uniquely ezists a; € L'®) such that

(a) for everya € £(*), (z,a) € dom(s[M,g]) if and only if a < a,,

(b) f(z) is undefined if and only if s[M, g](z,a;) maps to 0, and

(c) for everyy, if s|M, g](z,a;) maps to 1y, then f(z) maps to y.

Proof. Let t, f, M and g be as in the hypothesis. The idea of the proof is as
follows: given an input , say that a string a € £*(*) is okay if there is a legitimate
computation path of M(z) where the ith query is in dom(g) if and only if the ith bit
of ais 1. The “magic” string a, that we seek will be the lexicographically maximum
okay string. Computing the function s[M, g] involves, among other things, guessing if
there is an okay string no smaller than the given input string a € £*(*). This must be
done indirectly, as one cannot necessarily verify—even nondeterministically—whether
a given string is okay.

Let N be a polynomial time nondeterministic Turing machine witnessing that
g € NPMV. Define U to be the following machine: On input z and b € $!®) U
simulates M on input z in the following manner:

e For each ¢,1 < ¢ < t(z), when M makes its i-th query g¢;, U behaves as
follows:
— If the 7-th symbol in b is a 0, then U assumes that the answer is 1.
— If the ¢-th symbol in b is a 1, then U simulates N on ¢;. If N on ¢; does
not accept, then U halts without accepting, and if N on g; outputs some
z;, then U assumes that the answer is z;.
e When M enters a halting state, U behaves as follows:
— If M rejects, then U outputs 0.
— If M outputs y, then U outputs 1y.
Let » be the NPMV function defined by U. For every z, U on (m,Ot(I)) makes
no nondeterministic guesses. So, U on (:z:,Ot(z)) always has a unique output and
Az.[r(z,0%®))] is polynomial time computable.

For a given z, let b, be the largest b € (=) such that U on (z, b) has an output,
and let = be an arbitrary computation path of U on (z, b;) that leads to an output.
Suppose that along path =, U generates query strings gi,- -, g¢(s) in this order and
computes the answers to them as 21, - -, z4(5), respectively. By definition, for every
it such that z; # 1, g(g;) — 2. Furthermore, we claim that for every ¢ such that
zi = 1, i & dom(g). This is seen as follows: Assume that there is some 7 such that
zi = 1 and g; € dom(g). Let j be the smallest such . By the minimality of j, there
exist some ¢ and some computation path 7' of U on (z, ¢) such that along path =’,

(i) U has an output,

(ii) the first j queries U computes are g4, - - -, gj,
(iii) the first j — 1 answers U computes are z1,- - -, zj_1,
(iv) the j-th answer U computes is not 1, and

8 S. FENNER, S. HOMER, M. OGIHARA, A. SELMAN

(v) = and 7’ agree until g;.
Let b, = u0w with |u| = j — 1. By (ii), (iii) and (iv), we have ¢ = ulv for some v.
Thus, ¢ > b;. By (i), U on (z,c) has an output. So, by the maximality of b;, by > ¢,
which contradicts ¢ > b,. Therefore, for every ¢ such that z; = L, ¢; & dom(g).
Thus we see that all the answers 2y, - - -, 2;(;) are correct. Define g’ to be a single-
valued refinement of g that is defined by path «. U on (z, b;) along path 7 correctly
simulates M[g'] on z. Thus, it holds that

z € dom(f) < M|[g'] has an output

— U on (z,b;) along path = outputs a string of the form 1y, and
z ¢ dom(f) < M|[g'] does not have an output

« U on (z,b;) along path 7 outputs 0.

Therefore, U on (z, b;) along path 7 outputs 0 if and only if f(z) is undefined, and if
U on (z,b;) along path w outputs 1y then f(z) maps to y.
Now define V to be the machine that, on input (z,a) with |a| = ¢(z), behaves as
follows:
e if a = 04(*), then V simulates U on (z,a), and
o if a # 04(%), then V guesses b € £(*) with b > a and simulates U on (z, b).
Let s be the NPMV function defined by V. We claim that s is the desired function.
Since V and U are the same on input (z, Ot(z)), Az [s(z, Ot(z))] is total, single-valued
and polynomial time computable. Let a, be the largest a € £(®) such that (z,a) €
dom(s). It is not hard to see that a; = b,. Since b, is the largest b such that
(z,b) € dom(r), and V on (z,a) simulates U on (z,b) for all b > a except when
a = 04%), it holds that
(1) for every a > ag, (z,a) ¢ dom(s),
(i) for every a < ag, (z,a) € dom(s),
(i) z & dom(f) if and only if s(z,a;) — 0, and
(iv) if s(z,az) — 1y, then f(z) — y.
Hence all the required properties are satisfied. This proves the proposition. d

ProPOSITION 3.2. Lett € PF. Let f in PFgPMV be computed by a deter-
ministic oracle Turing machine transducer M with ¢ € NPMV as the oracle. Sup-
pose that M on z makes t(z) queries. Then there is an NPMV function s[M,g] :
¥* x {0,---,t(z)} — * that satisfies the following conditions:

1. Xz.[s[M, g](z,0)] is total, single-valued and polynomial time computable,

2. for every ¢ and 0 < m < n < t(z), if (z,n) € dom(s[M,g]) then (z,m) €
dom(s[M, g]),

3. for every z, f(z) is undefined if and only if s[M, g](z,ns) meps to 0, and

4. for every z and y, f(z) maps to y if and only if s[M, g](z, ns) meps to 1y,
where ng is the largest n € {0,---,t(z)} such that (z,n) € dom(s[M, g]).

Proof. Let t, f, M, and g be as in the hypothesis and let N be a nondeterministic
Turing machine witnessing that g € NPMV. The idea of this proof is analogous to,
but simpler than, that of the last proposition. The “magic” number n, that we seek
will be the number of queries of M(z) that are in dom(g).

Let h be the function defined by the following machine U: On input z and
n < t(z), U behaves as follows:

(A) U first computes all the query strings g1, - -, gs(z) of M on z.
(B) If n = 0, then for every ¢, U assumes that the answer to ¢; is 1. If n > 0,
then U does the following:

ORACLES THAT COMPUTE VALUES 9

e For each ¢, U simulates N on ¢;. If N does not accept g;, then U assumes
that the answer to ¢; is 1, and if N outputs w on ¢;, then U assumes
that the answer to g; is w. After doing this, if the number of answers
obtained as | is larger than t(z) — n, then U halts without accepting.

(C) U simulates M on z using the answers computed in (B). If M rejects,
then U outputs 0, and if M outputs z, then U outputs 1z.
We claim that h is the desired function.

For every z, U on (z,0) runs deterministically and always has an output. So,
Az.[h(z,0)] is total, single-valued, and polynomial time computable. Suppose 0 <
m < n < t(z) and (z,n) € dom(h). Then U must have an accepting path in step (B),
where it obtains at most ¢(z) — n query answers as 1. The same set of query answers
will also allow U to accept on input (z,m).

For each z, let n, be the maximum = such that (z,n) € dom(k). For every z,
ng coincides with the number of queries of M on z that are in dom(g). Let 7 be
any computation path of U on (z,n.) leading to an output. Let 21, -+, 2(;) be the
answers that U computes along path = for queries gy, - - -, g¢(z), respectively. Then, by
the maximality of n, for every ¢, z; = L if and only if ¢; & dom(g) and if z; # L, then
g(gi) maps to z;. So, the output along path = is 0 if and only if f(z) is undefined, and
if the output is 1y, then f(z) maps to y. Therefore, h is the desired function. d

We will use Propositions 3.1 and 3.2 in three ways. First, we can simulate the
behavior of a PFNPMV (respectively PFgPMV) computation on input z purely non-
deterministically, provided we know a, (respectively n;). Such a simulation s[M, g]
always accepts, tells us whether M (z) outputs a value, and if so, provides us with an
output. Second, dom(s[M, g]) is such that we can find a, (resp. n;) by binary search
with an NP oracle. Third, the fact that s[M, g](z, 0*(*)) (resp. s[M, g](z,0)) can be
computed deterministically saves us an NP query so that we can get an exact con-
nection between bounded adaptive and nonadaptive NPMV queries in Theorem 3.5.

Let f and g be partial multivalued functions. f o g denotes the function A such

that for every z,
e h(z) maps to y if and only if there exists some z such that g(z) maps to z
and f(z) maps to y.
Let F and G be classes of partial multivalued functions. F oG denotes {fog | f € F
and g € G}.

Although composition is a natural operator and an important tool in our inves-
tigations, we should caution that the classes we consider tend not to be closed under
composition, and the composition of two easy-to-compute functions may be very dif-
ficult. To see this, consider the functions » and s defined as follows: r(z) — 1, for
all z # 0, and » is undefined at z = 0; s(z) — 0, for all strings z, and s(z) — 1, if
z € K, where K is a complete recursively enumerable set. The partial multivalued
functions r and s have refinements in PF, but dom(r o s) = K, so 7 o s does not have
a refinement in PF.

The following theorem relates computing with an oracle in NPMV k] to computing
with an oracle in NP[k]. In particular, we see that every partial multivalued function
in PFNPMVEE] can be computed by a partial multivalued function of the form f o g,
where f is in NPMYV and g is a single-valued function in pFNPE]

THEOREM 3.3.

(1) For every k > 1, PEN'MVEH c NPMV o (PFNTIFI/,).

10 S. FENNER, S. HOMER, M. OGIHARA, A. SELMAN

(2) For every k > 1, PENPMVIEl ¢ NPMV o PFNPI],

Proof. Let f € PFNPMVIE] yia a deterministic oracle Turing machine transducer
M with g € NPMV as the oracle. Let h = s[M, g] be the function defined in Propo-
sition 3.1. Let V be a machine witnessing that A € NPMV. Define b to be a function
that maps z to a,, where a, is the largest a € ¥ such that (z,a) € dom(h). Recall
that b(z) is defined for every z. A binary search algorithm over £* — {0%} computes
b in polynomial time with oracle dom(k). The number of questions is exactly k, so,
be PFNP[k]/”. Now define f’ to be a function that maps z to (z, b(z)). Define V' to
be a machine that on input (z,a) simulates V on (z,a) and does not accept if either
V does not accept or V outputs 0, and outputs y if V outputs 1y. Let A’ be the
partial multivalued function defined by V’'. Then A’ € NPMV.

Now define r(z) = A'(f'(z)). It is easy to see that r(z) is undefined if and only
if f(z) is undefined, and if r(z) maps to y, then f(z) maps to y. Therefore, = is a
refinement of f and is in NPMV o PFNP[k]/”. This proves (1).

To prove (2) we proceed exactly as above except that instead of f' we use a new
function f" defined so that for all z and y, f"(z) maps to (z,y) if and only if either

1. y = b(z), or

2. y = 0%1z for some z such that f(z) maps to z.
Note that f’ is a refinement of f”, so ' € PFNP*] by Proposition 2.2. Define V"
to be a machine that on input (z,a) first checks if a is of the form 0*¥1z for some
z. If so, V" outputs z and halts. Otherwise, V" behaves exactly as V' above. Let
k' be the function defined by V. We have A" € NPMV as before. Now defining
r'(z) = h"(f"(z)), we show that r' = f, completing the proof.

Suppose f(z) maps to 2. Then f’(z) maps to (z,0%12) and h"(z,0%1z) maps
to z, so r'(z) maps to z. Conversely, suppose r'(z) maps to z. Then it must be the
case that either f'(z) maps to (z,b(z)) and h"(z,b(z)) maps to z, or f’(z) maps
to (z,0%1z) and h"(z,0%1z) maps to z. In the latter case, f(z) maps to z by the
definition of f”. In the former case, V(z, b(z)) must output 1z, and thus f(z) maps
to z. d

Selman [15] showed that PFNFI°8l £ PFNP upless P = FewP and R = NP.2 The
next two theorems are interesting because they imply (i) that composing on the left
with NPMYV is enough to absorb the difference between the two reduction classes, and
(ii) that the NPMYV analog of Selman’s result is false.

NP[2*-1]

THEOREM 3.4. For each k > 1, NPMV o PFNY*] — NPMV o PF},

Proof. NPMVoPFNP C NPMVoPFgP[zk_l] follows immediately from ppNP C
Png[zk_l] [2]. (Recall the comment that follows Proposition 2.3.)

Now we show NPMV o PFA2~1 ¢ NPMV o PFNPI), Let f = goh €

NPMV PFNP[Z"—l] . NP[2*-1] .

o PF,, with ¢ € NPMV and h € PF,, . Let ¢ € NPMV via
a nondeterministic Turing machine N and let A’ be a single-valued refinement of h
that is computed by a deterministic oracle Turing machine transducer M with oracle
A € NP. Define s to be a function that maps z to the number of queries in A that M
makes on input z. s is a total, single-valued function. Define B = {(z,n) | s(z) > n}.
Clearly B belongs to NP. Since s is total and 0 < s(z) < 2% — 1, a binary search
algorithm over {1,---,2*¥ — 1} computes s in polynomial time with oracle B. The
number of queries is exactly k, so s € PFNPE] Define s’ to be a multivalued function

2 Actually, it was shown there that PFNP [1051/” # PFNP [1°g]/” unless P = FewP and R = NP,

but the two forms of the statement are equivalent by Proposition 2.3.

ORACLES THAT COMPUTE VALUES 11

that maps z to (z,n) if and only if either
1. n = s(z), or
2. n = 2% 4+ w for some w such that h(z) maps to w.
Clearly, s’ has a refinement in PFNP[k], so s' € PFNPIF] by Proposition 2.2.
Let A € NP be witnessed by a machine D and define E to be the machine that
on input (z,n) behaves as follows:
(1) if n > 2%, then E sets w = n — 2* and goes to step (6).
(2) E computes the set @ of all query strings of M on z.
(3) E nondeterministically guesses R C Q of size n.
(4) For each y € R, E simulates D on y. If D on y does not accept for some
Yy € R, then E halts without accepting.
(5) E simulates M on z answering a query ¢ € @ affirmatively if and only
if ¢ € R. If M halts without accepting, so does E. Otherwise (M has an
output), E computes the output w.
(6) E simulates N on w. If N outputs a string z, then so does E, and if it
does not accept, then F halts without accepting.
Let t € NPMV denote the partial multivalued function that E computes. We fix z
and z in what follows. Suppose f(z) maps to z. Then by definition there is a w such
that h(z) +— w and g(w) + 2, but in this case we know that s'(z) — (z, 2% + w) and
t(z,2* + w) simulates N on w so ¢(z, 2% + w) maps to z. Thus ¢ o s’ maps z to 2.
Conversely, suppose s'(z) maps to some (z,n) and t(z,n) maps to z. If n > 2F
then it must be that both n = 2¥ +w such that h(z) — w, and g(w) maps to z (¢(z,n)
just simulates N on w = n — 2¥). Thus f(z) maps to z in this case. If n < 2F — 1,
then n = s(z). We have t(z, s(z)) — z if and only if there exist w and aset R C 4
consisting of s(z) query strings of M on z such that (i) given affirmative answers to
all strings in R and negative answers to all strings in @ — R, M on z computes w and
(ii) N on w outputs z on some computation path. Since s(z) is exactly the number of
query strings in 4, t(z, s(z)) = g(h'(z)). Since g o k' is a refinement of f, if t(z, s(z))
maps to z then f(z) maps to z.
Therefore, f =to s’ € NPMV o PFNTIF], 0
Remark. If we restrict s’ in the above proof so that s'(z) only maps to (z, s(z)),
then s’ is single valued and ¢ o s’ is a refinement of f. This shows that NPMV o

PFNFEZ* -1 c NPMV o (PFNPEL/,,).

The left-to-right inclusion in the next theorem is completely analogous with the
NP case, given by Beigel [2].

THEOREM 3.5. For every k > 1, PFNPMVIE] — PFgPMV[Zk_l].

Proof. Let f € PFNPMVIE] e computed by a deterministic oracle Turing machine
transducer M with ¢ € NPMV as the oracle. Let h = s[M,g] in Proposition 3.1.
Define D to be the machine with oracle h that, on input z, behaves as follows:

(1) D deterministically computes w(0%) = h(z, 0F).
(2) For each a € =% —{0*}, D sets w(a) to the answer to h(z, a). The number
of queries to h is 2% — 1.
(3) D sets b to the largest @ such that w(a) # L.
(4) If w(b) = 0, then D rejects z, and if w(b) = 1y for some y, then D outputs
Y.
By Proposition 3.1, for every z, D(z) rejects if and only if z ¢ dom(f), and if
D(z) outputs y, then f(z) — y. So, D computes a refinement of f. Thus, f €

k k
PFEPMV[2 ~1 This proves that pPFNPMVIE] C PFEPMV[2 1l

12 S. FENNER, S. HOMER, M. OGIHARA, A. SELMAN
Now let f € PFEPMV[zk_l] be computed by a deterministic oracle Turing machine
transducer M with ¢ € NPMV as the oracle. Let h = s[M,g| in Proposition 3.2.
Define D to be the machine with oracle h that, on input z, behaves as follows:
(1) D deterministically computes w(0) = h(z,0).
(2) By using a binary search over [1,2% — 1] with oracle A, D computes
m = max{n € {0,---,2% — 1} | h(z,n) has an output }. While doing this, D
keeps the answers obtained from the oracle, and sets w(m) to the answer to
h(z,m).
(3) If w(m) = 0, then D rejects z, and if w(m) = 1y for some y, then D
outputs y.
By Proposition 3.2, for every z, D(z) rejects if and only if z ¢ dom(f) and, if D(z)
outputs y, then f(z) — y. So, D computes a refinement of f. Since the number of
queries to h is k, we have f € pFNPMVIE] Thus, PFgPMV[zk_l] C PFNPMV[k], which
proves the theorem. d
The above theorems yield the following corollary.

COROLLARY 3.6. For every k > 1, PFNPMVIE] _ PngMv[zk_l] C. NPMV o
(PFNP[k]/”) C PRNPMVEE+1] _ PFgPMV[Z’““—l]_

By Proposition 2.2, pPFNPMVIK] C PFNPMVIE+L] - pop general bounded query
classes, it is not known whether pFNPMVIE] C PFNPIF], But, for reduction classes of
sets, this type of equivalence holds.

THEOREM 3.7. For every k > 1, PNPMV[k] — pNP[k]

Proof. Let k > 1. It suffices to show that PNPMV[k] C PNPIE] et 4 ¢ PNPMVIK]
Then f = x4 is in PFNPMVIEl Let M and g € NPMV be a machine and a partial
multivalued function witnessing this property, respectively. Informally, we will show
that f € PNP[*] by using Proposition 3.1 to compute f. Namely, by letting h = s[M, g]
be the NPMV function given in Proposition 3.1, and letting a, be the largest a in
T* such that h(z,a) is defined, we will show that k queries to an NP oracle suffice
both to find a; and to compute h(z,a;) = 1f(z). Assume without loss of generality
that M always outputs exactly one bit for all oracles. For simplicity, we fix z in the
following discussion.

Let a, be the largest a € & such that h(z, a) is defined. The function Az.[h(z, a)]
is total and single-valued, z € A if and only if h(z,a;) = 11, and z ¢ A if and only if
h(z,a;) = 10. Let b € ¥ such that 1b = h(z,0%) and p, be the largest r € £*¥~! such
that either h(z,r0) or h(z,r1) maps to 1b. It is not hard to see that h(z,a;) = 1bif
and only if

(a) for every @ > p;1, h(z,a) maps to neither 10 nor 11, and

(b) h(z, pz1) does not map to 14, where b’ =1 if b = 0 and 0 otherwise.
Since p, > 0¥~! and graph(h) € NP, it is easy to see that p, is computed by making
k—1 questions to an NP oracle: we perform a binary search over £*~! in order to find
the largest » € ¥ 1 such that either A(z,70) — 1b or h(z,r1) > 1b. After p, is found,
conditions (a) and (b) can be tested by a single question to an NP oracle. Therefore,
by making k queries to an NP oracle, h(z, a;) is computed. Since h(z,az) = 11 if and
only if z € A, this implies that A € PNPI¥], This proves the theorem. d

Note that Theorem 3.7 holds even if k is replaced by any polynomially bounded
function. This means, remarkably, that in eny polynomial time computation of a set
relative to NPMV, the queries to NPMV can be replaced one for one with queries to
NP.

THEOREM 3.8. For every k > 1, PgPMV[k] = ng[k]

ORACLES THAT COMPUTE VALUES 13

Proof. Let k > 1. It suffices to show that ngMV[k] C ng[k]. Let A € PgPMV[k].

Then f = x4 is in PFSPMV[k]. Let M and g € NPMV be a machine and a partial
multivalued function witnessing this property, respectively. We assume without loss
of generality that M outputs 0 or 1 for all oracles and inputs. We will use Proposi-
tion 3.2 to compute f. Namely, we let h = s[M, g] be the NPMV function given in
Proposition 3.2, and fixing an input z, we let n, be the largest n in {0, - -, k} such
that h(z,n) is defined. We will show that k& nonadaptive queries to an NP oracle
suffice to compute h(z,n;) = 1f(z). The informal idea of the proof is as follows:
we first compute b, the output of M(z) where all query answers are L. Then we
use nonadaptive NP queries to inspect sequences of query answers to M (z) which
are plausible, i.e., where all non-1 answers are verifiably legitimate outputs of the
oracle function, but where each | answer may or may not be correct. We look for
m, the largest number of non- | query answers in any plausible sequence of query
answers where M outputs b. Actually, computing m exacty uses all our alloted NP
queries without telling us the real output of M, so instead we only compute which of
the pairs {2¢,27 + 1} m belongs to. This only uses about k/2 nonadaptive queries.
Simultaneously, for each pair {2i,27 + 1} we ask NP if either there is any plausible
sequence with more than 22+ 1 non-_ answers, or M outputs 1 —b for some plausible
sequence containing exactly 2z + 1 non-1 answers. The answer to this NP question
for the pair containing m immediately tells us whether M outputs b or 1 — b for any
correct sequence of query answers. This uses up the remaining k/2 NP queries.

We now present an exact version of the sketch above, showing that f € ng[k].
Note that the value of h(z,0) encodes the output of M(z) with all queries answered
with 1, and h(z,n) for n > 0 simply encodes the possible outputs of M(z) over all
plausible sequences of queries with at least n non-1 answers. Also, n; is the exact
number of non-_| entries in any sequence of correct query answers.) We are assuming
M outputs exactly one bit for all possible sets of query answers, so h outputs nothing
but 10 or 11.

By Proposition 3.2, Az.[h(z,nz)] is total and single-valued, z € A if and only
if h(z,ng) = 11, and =z ¢ A if and only if A(z,n;) = 10. Let b € ¥ be such that
16 = h(z,0), and d = |k/2|. Define two predicates S and T as follows:

S(z,r) if and only if either h(z, 2r) or h(z,2r + 1) maps to 1b.
T(z,r) if and only if
e h(z,n) is defined for some n > 2r + 1, or
e h(z,2r + 1) maps to 15, where &' =1 —b.
Note that S and T are NP-predicates, S(z,0) = true, and if k is even, then T(z,d) =
false. Define p; to be the largest r € {0,---,d} such that S(z,r) = true. It is not
hard to see that h(z,n;) = 1b if and only if T'(z, p;) = false.

Our goal is to compute h(z,n,) without making more than k queries to some
NP oracle. Our method to accomplish this is to partition the domain {0,---,k}
into successive pairs. For each pair {2r,2r 4+ 1}, we make two queries of the form
“S(z,r) = true?” and “T'(z,r) = true?”. As observed above, S(z,0) = true, and if
k is even, T(z,d) = false. So, we need exactly k queries to S or T. Since S and T
are NP-predicates, a single set in NP can answer both types of questions. Thus, by
making k nonadaptive queries to an NP oracle, we determine whether h(z,n;) = 1b
or not. Since h(z,n;) = 11 if and only if € A, this implies that 4 € ng[k]. This
proves the theorem. d

Our next goal is to show that bounded query hierarchies probably do not collapse.

LEMMA 3.9. Letk > 1. If pENPMVIE+HL] PFNPMV[k], then for every £ > k,

14 S. FENNER, S. HOMER, M. OGIHARA, A. SELMAN

pFNPMV[{] _ ppNPMV[E]

Proof. Let k be as in the hypothesis, let m > 0, and let f € pPFNPMV[E+14m] 1,0
computed by a deterministic oracle Turing machine transducer M with ¢ € NPMV
as the oracle. We will show that f € pFNPMVIE+m]

Let N be an oracle transducer that on input z with oracle g outputs an ID of
M on z just after obtaining the answer to its m-th query to g. Clearly, N makes at
most m queries to g, and if g is single-valued, then N|[g] is total and single-valued.
Define D to be the machine that, given an ID I of M, (1) attempts to simulate the
computation of M starting from ID I by making at most k 4+ 1 queries to its oracle,
and (2) if M halts without an output, then so does D and if M outputs a string y,
then so does D.

It is not hard to see that D with oracle g defines a function r such that for
every z and single-valued refinement g’ of g, f(z) is defined if and only if r maps
the ID N[g'|(z) to some output y. And if the latter holds, then f(z) also maps to
y. Moreover, it is clear that r € PRNPMVIE+1] _ PFNPMV[k], thus there is an oracle
transducer @ such that for every single-valued refinement g’ of g, Q[g'] computes
a refinement of r making only k queries to g’. Now we combine the machines N
and @ by taking the output of N as the input to @. The resulting machine with
oracle ¢’ computes a refinement of f and makes at most k + m queries to g’. Thus
f € PFNPMVIE+m] 1y Proposition 2.2.

By applying this argument repeatedly, we have P

£>k O
LEMMA 3.10. Let k > 1. If PFyy "I+ — pp

PFgPMV[z] _ PFgPMV[k]_

FNPMV[{] _ ppNPMVIk]

for every

NPMVIEL then for every £ > k,

Proof. Let &k > 1 and suppose that PFgPMV[k+1] = PFSPMV[k] Let m > 0

and f € PFSPMV[k_I'Hm]. We will show that f € PFSPMV[k_Fm]. By applying the

argument repeatedly, for every £ > k, we have PFEPMV[L] = PFEPMV[H.

Let f € PFgPMV[k+1+m] be computed by a deterministic oracle Turing machine

transducer M with g € NPMV as the oracle. For z, let q1(z),- -, gk+14m(z) denote
the queries of M on z. Define ¢ to be the function that maps z to (y1,---,yk+1) so
that for every 4,1 < i< k + 1, y; is a value of g(g;(z)) if ¢i(z) € dom(g) and y; = L
otherwise. Obviously, ¢ € PFgPMV[k+1], so by our supposition, ¢ € PFgPMV[k]. Let ¢
be computed by a deterministic oracle Turing machine transducer N with h € NPMV
as the oracle. Then we can easily construct a machine that computes f by making
k queries to h and m queries to g. Therefore, f € PFgPMV[k-I'm]. This proves the
lemma. O
The Boolean hierarchy over NP is defined by Wagner and Wechsung [19] and
has been studied extensively [6, 7, 8, 12]. We denote the k-th level of the Boolean
hierarchy as NP (k). By definition,
1. NP(1) = NP, and
2. for every k > 2, NP(k) = NP — NP(k — 1).
The Boolean hierarchy over NP, denoted by BH is the union of all NP(k), & > 1.
Kadin [12] proved that the Boolean hierarchy collapses only if the polynomial-time
hierarchy collapses.
THEOREM 3.11. Let k > 1. If pRNPMVIE+1] _ PFNPMV[k], then BH collapses to
its 2% -th level.

Proof. Suppose that PFNPMV[E+1] _ ppNPMVIE] By Lemma 3.9 and Theo-
k
rem 3.5, for every m > k, pFNPMV[m] C pPFNPMVIE] _ PFZPMV[2 -1 So, by Theo-

ORACLES THAT COMPUTE VALUES 15

rem 3.7 and results by Kobler, Schoning, and Wagner [14], we have, for every m > k,
pNPim] — pNP2*~1l C Np(9k). Thus, BH = NP(2%). O
The following theorem is proved in a similar manner.
THEOREM 3.12. Let k > 1. If PFo MVIE+1 _ ppNPMVE]
its (k + 1)-st level.
Proof. Suppose that PF,
k, PFSPMV[m] C PFgPMV[k]. So, by Theorem 3.8 and results by Kobler, Schoning,
and Wagner [14], we have, for every m > k, ng[m] = ng[k] C NP(k + 1). Thus,
BH = NP(k + 1). O
Analogous to the theorems stated so far, the following theorems hold for reduction
classes that make logarithmic many queries to partial functions in NPMV. We see
in these theorems a different behavior when computing partial multivalued functions
with bounded queries to NPMV than when computing partial functions with bounded
queries to NP. To wit, in contrast to the following results, Selman [15] shows that
pFNPllog] PFEP only if P = FewP and R = NP. The reason seems to be, as we
showed in Theorems 3.3 and 3.5, that the mind-change argument [2, 19] works for
pFNPMV (as it does for PN?), but apparently does not work for PFNT,
THEOREM 3.13.
1. PFNPMVllog] — ppNPMV NpMV o PFNPIo8l — NPMV o PFNT.
2. NPMV o (PFNPllosl/ |y ppNPMVilog],
3. PFNPMVileel ¢ NPMV o (PFNPUo8l/).
4. NPMV o (PFNPlosl/)y C NPMV o (PFNF/,,).
5. NPMV o (PFN?/,,) C. NPMV o (PFNPlogl/).
Proof. Note for any function ¢ such that ¢(z) < clog|z|, that 22(*) —1 is polynomi-

ally bounded, and, for any polynomial p, that log p(|z|) < clog |z| for some constant c.
FNPMV[log] _ ppNPMV
=Py

, then BH collapses to

NPMV[k+1] PFgPMV[k]. By Lemma 3.10, for every m >

Therefore, a proof similar to that of Theorem 3.5 shows that P ,
and a proof similar to Theorem 3.3 (2) shows that pFNPMVileg] © NPMV o PFNPHog],
A proof similar to that of Theorem 3.4 yields NPMV o PFNYI°8l — NPMV o PFNY.
Thus (1) holds.

Inclusion (2) follows by a straightforward simulation, and (3) follows by adapting
the proof of Theorem 3.3 (1). Using a technique of Buss and Hay [4], for any set 4, log-
arithmically many adaptive queries to A can be simulated by polynomially many non-
adaptive queries to A4, so PFNP[IOg]/” C PFSP/”. Thus, NPMV o (PFNP[IOg]/”) C
NPMV o (P FNP/”) Hence (4) holds. Inclusion (5) follows by adapting the remark
following the proof of Theorem 3.4. O

THEOREM 3.14. PNPMV[log] _ pNPMV _ pNP[log] _ pNP

The proof is similar to those of Theorem 3.7 and Theorem 3.8.

4. Nondeterministic Polynomial-Time Reductions. We define nondeter-
ministic reductions between partial functions so that the access mechanism is identical
to that for deterministic reductions. Namely, let g be a single-valued partial function
and N be a polynomial time nondeterministic oracle Turing machine. N[g] denotes
a multivalued partial function computed by N with oracle g in accordance with the
following mechanism:

e when N asks about y € dom(g), g returns g(y) and
e when N asks about y & dom(g), g answers a special symbol L.

DEFINITION 4.1. Let f and g be partial multivalued functions. We say that f

is nondeterministic polynomial-time Turing reducible to g, denoted by f Sgp g, if

16 S. FENNER, S. HOMER, M. OGIHARA, A. SELMAN

there is a polynomial time nondeterministic Turing machine N such that for every
single-valued refinement g’ of g, N[g'] is a refinement of f.
Thus, for every z and for every single-valued refinement g’ of g,
e z € dom(f) if and only if z € dom(N|[g']) and
e if N[g'] maps z to y, then f maps z to y.

Let F be a class of partial multivalued functions. NPMV7? denotes the class
of partial multivalued functions that are <3’-reducible to some g € F. NPMV7Z
denotes the class of partial multivalued functions that are <YF-reducible to some
g € F via a machine that makes k adaptive queries to its oracle.

For a class of sets C, we write NPMV® to denote the class of multivalued partial

functions that are computed by a nondeterministic Turing machine relative to an
oracle in C. NPMV[is defined similarly.

It is easy to see that every nondeterministic polynomial time reduction to partial
functions is replaceable by a reduction that makes nonadaptive queries to its oracle
and that preserves the number of queries. For this reason, we do not distinguish

classes NPMV?7; or NPMVZ;[k].

_NPMV

For k > 1, MV} denotes NPMV"
k

LEMMA 4.1. For every k > 1, XMV = NPMVZi-11) gnd for every f € EMVy,
dom(f) € =F.

Proof. The proof is by an induction on k. The statement trivially holds for & = 1.
Let k = 2. We show that NPMVN'™VY ¢ NPMVNPI, Let £ € NPMVY'MV yia a
machine M and a function ¢ € NPMV. Let N be a machine witnessing ¢ € NPMV.
Define A to be the set of all (y1, - -,ym), m > 1, such that y1,---,ym ¢ dom(g).
Obviously, A € co-NP. Consider a nondeterministic Turing machine 7' that, on input
z, simulates M on z in the following way:

e When M queries about string w, T' simulates N on w. If N on w outputs a
string z, then T assumes that the answer from the oracle is z and if N on w
does not accept, then T assumes that the answer from the oracle is 1.

e When M enters a halting state, 7" enumerates all the queries w for which
the answer from the oracle are assumed to be 1. T sets yi,-:*,Ym to the
enumeration.

— If (1, ,Ym) € A, then T rejects,

—if (y1,*,Ym) € A and M rejects, then T rejects, and

—if (y1,***,Ym) € A and M outputs some string z, then T outputs z.
It is not hard to see that for every z and z, f(z) maps to z if and only if there is a
computation of M relative to g that outputs z if and only if there is a computation
of T relative to A that outputs z. Thus T relative to A computes a refinement of
f. Furthermore, T is polynomial time-bounded and 7" makes only one question to
A. So, f € NPMVNPLR, Thus, NPMVNFPMV — NPMVNPR, Moreover, by the above
discussions, for every function f € NPMVN MY, dom(f) € =F.

Now let & > 2 and suppose that the claim holds for every &' < k. Since

the above proof is relativizable, for any class C of sets, we have NPMVNPMV® C
=P _ 1]
NPMVNFEI, So, NPMVZMVi — NpMVYNPMV == (by induction hypothesis) C

=P =P
NPMVNPMV *= o Npyy NP *2 1] — NpMV U, This proves the lemma. 0

This lemma yields the following theorem.

ORACLES THAT COMPUTE VALUES 17

THEOREM 4.2. Let f be a partial multivalued function. For every k > 1, the
following statements are equivalent:
(1) f is in IMVyg;
(ii) f has a polynomially length-bounded refinement g such that dom(g) € XY,
and graph(g) € £%;
(iii) f has a polynomial length-bounded refinement g such that graph(g) € L.
THEOREM 4.3. For every k > 1, XMV 1 = ¥MVy if and only if E£+1 = 25.
Proof. First suppose that E£+1 = EE. Let f be any function in XMV ;. By
Theorem 4.2 (ii), there is a polynomially length-bounded refinement g of f such that
dom(g), graph(g) € 2£+1’ so by our supposition, dom(g), graph(g) € £F. Therefore,
fisin ¥XMVy. Hence, XMV, = XMVy.
Next suppose that *MV;,; = ZMVy. Let A be <F -complete for EE+1. Define
x% to be the function that x%(z) = 1if z € A and undefined otherwise. Obviously, x%
isin ¥MVy 1, so by our supposition, x% € EMVy. On the other hand, dom(x%) = A.
Thus, we have A € EL. Since A is complete for E£+1, we have 2£+1 =xP. d
Thus, these classes form function analogues of the polynomial hierarchy, and,
unless the polynomial hierarchy collapses, they form a proper hierarchy.

5. The Difference Hierarchy. Let F be a class of partial multivalued func-
tions. A partial multivalued function f is in coF if there exist ¢ € F and a polynomial
p such that for every z and y

e f(z) maps to y if and only if |y| < p(|z|) and g(z) does not map to y.

Let F and G be two classes of partial multivalued functions. A partial multivalued
function A is in F A G if there exist partial multivalued functions f € F and g € G
such that for every z and y,

e h(z) maps to y if and only if f(z) maps to y and g(z) maps to y.
A partial multivalued function A is in F VG if there exist partial multivalued functions
f € F and g € G such that for every z and y,

e h(z) maps to y if and only if f(z) maps to y or g(z) maps to y.
F — G denotes F A coG.

NPMV (k) is the class of partial multivalued functions defined in the following
way:

1. NPMV(1) = NPMV, and
2. for k > 2, NPMV(k) = NPMV — NPMV(k — 1).

LEMMA 5.1. For every k > 1, f € NPMV(k) if and only if f is polynomially
length-bounded and graph(f) € NP (k).

Proof. The proof is by an induction on k. For k& = 1, the claim trivially holds.
Let £ > 2 and suppose that the claim holds for all ¥’ < k. Let f € NPMV(k).
There are functions ¢ € NPMV and » € NPMV(k — 1) such that for every z and
y, f maps z to y if and only if ¢ maps z to y but A does not map z to y. So,
graph(f) = graph(g) — graph(h). By our hypothesis, graph(h) belongs to NP(k —1).
Since graph(g) € NP, we have graph(f) = NP(k).

On the other hand, let f be a polynomially length bounded function whose graph
is in NP (k). There are sets A € NP and B € NP(k — 1) such that graph(f) = A — B.
Define g and h to be functions such that graph(g) = A and graph(h) = B. By our
hypothesis, g € NPMV and h € NPMV(k — 1). Therefore, f € NPMV(k). This
proves the lemma. d

We use the above lemma to obtain the following theorem.

THEOREM 5.2. For every k > 1, NPMV(k + 1) = NPMV(k) if and only if
NP(k + 1) = NP(k).

18 S. FENNER, S. HOMER, M. OGIHARA, A. SELMAN

Despite the similarity in appearance, the difference hierarchy over NPMYV is prob-
ably much stronger than both the difference hierarchy over NP and the bounded query
hierarchy over NPMV. For example, it is well-known that mazsat is complete for
PFNP — PFNPMV [13]. Nonetheless, we have the following:

ProPoOSITION 5.3. mazsat € NPMV(2).

Proof. Let f € NPMV be the function that maps z to y if and only if there is a
z > y such that z is a satisfying assignment for z. Clearly, for all z, mazsat(z) = y
if and only if sat(z) maps to y and f(z) does not map to y. Therefore, mazsat €
NPMV(2). O

PROPOSITION 5.4. co(coNPMV) = NPMV.

Proof. Let f € NPMV. Let p be a polynomial such that for every z and y, if
f(z) maps to y, then |y| < p(|z|). Let g be the complement of f with respect to p
such that for every z and y, g(z) maps to y if and only if f(z) does not map to y
and |y| < p(|z|). Furthermore, let h be the complement of g with respect to p such
that for every z and y, h(z) maps to y if and only if g(z) does not map to y and
ly| < p(|z|). For every z and y, h(z) maps to y if and only if f(z) maps to y. This
implies h = f. Therefore, NPMV C co(coNPMYV).

Conversely, let f € co(coNPMV). There exist g € coNPMV and a polynomial
p such that for every z and y, f(z) maps to y if and only if g(z) does not map to
y and |y| < p(|z]). Moreover, since ¢ € coNPMV, there exist h € NPMV and a
polynomial g such that for every z and y, g(z) maps to y if and only if h(z) does
not map to y and |y| < ¢(|z|). For every z and y, f(z) maps to y if and only if
either (h(z) maps to y and |y| < p(|z|)) or (¢(|z]) < |y| < p(|z])). Let M be a
nondeterministic Turing machine that computes h. Define N to be the machine that,
on input z, (1) nondeterministically guesses b € {0,1}, (2) if b = 0, then simulates
M on input z and outputs y if M outputs y and |y| < p(|z|), and (3) if b = 1,
then nondeterministically guesses y, ¢(|z|) < |y| < p(|z]) and outputs y. Clearly, N

computes f. So, co(coNPMV) C NPMV. O
THEOREM 5.5. The following statements are all equivalent.
(a) NP = co-NP.

() NPMV C coNPMV.
(c) coNPMV C NPMV.

Proof. By Proposition 5.4, (b) is equivalent to (c). So, it suffices to show that
(a) is equivalent to (c). First suppose that coNPMV C NPMV. Define f to be the
function that maps z to each of the three strings A, 0, and 1if z € SAT and undefined
otherwise. Obviously, f € NPMV. Let p be a polynomial such that p(n) = 1 for all n.
By taking the complement of f with respect to p, we obtain a function g € coNPMV
that maps z to A,0,1if z ¢ SAT and undefined otherwise. So, dom(g) = SAT. Now
by our supposition, we have g € NPMV, so dom(g) € NP. This implies SAT € NP,
and thus, NP = co-NP.

Conversely, suppose that NP = co-NP. Let f € coNPMV. There exist g € NPMV
and a polynomial p such that for every z and y, f(z) maps to y if and only if g(z)
does not map to y and |y| < p(|z|). The set of all (z,y) such that g(z) does not
map to y and |y| < p(|z|) is in co-NP, so, by our supposition, it is in NP. Thus,
graph(f) € NP, so f € NPMV. Hence, coNPMV C NPMV. O

Define a function f to be NPMV-low if NPMV?/ C, NPMV.

THEOREM 5.6. A function f is NPMV-low if and only iof f €. NPMV with
dom(f) € NP Nco-NP.

ORACLES THAT COMPUTE VALUES 19

Proof. Let f be NPMV-low. Since f € NPMV/ and NPMV? C. NPMV, f €,
NPMV. So, dom(f) € NP. Let A = dom(f). We wish to show that A4 belongs to NP.
Define M to be a machine that, on input z, queries f(z) and outputs 1if f(z) = L
and 0 otherwise. The function h that M computes is the characteristic function of A.
Since f is NPMV-low and h is single-valued, h € NPMV, so 4 € NP.

Conversely, let f €. NPMV with dom(f) € NP [] co-NP. Define 4 to be the set
of all (y1,--+,Ym), m > 1, such that y1,- -, ym & dom(f). By our supposition, 4 €
NP () co-NP. Let g € NPMV/ via a machine M. By the proof of Lemma 4.1, there is
a polynomial time nondeterministic Turing machine N that computes a refinement of
g by making at most one query to A per computation path. Since 4 € NP [co-NP,
the query to A can be simulated nondeterministically. So, ¢ €. NPMV. Therefore, f
is NPMV-low. O

PROPOSITION 5.7. For every k > 1 and f € NPMV(k), dom(f) € £F.

Proof. By Lemma 5.1, f is polynomially length-bounded and graph(f) € NP(k) C
¥L. There is a polynomial p such that for all z,

z € dom(f) « ()[ly| < p(|z|) Ay € graph(f)].

Thus dom(f) € £5. a

We show next that Proposition 5.7 is tight, even when k& = 2.

PROPOSITION 5.8. Let A be in ¥ via a polynomial p and a set B in co-NP so
that for every z,

z€ Ao (3y: Iyl < (el y) € Bl

Let f be a function such that for every z and y,

f(z) =y |yl < p(|z]) A (z,y) € B.

Then, f € NPMV(2). (Note that dom(f) = A.)

Proof. Let A, p, B, and f be as in the hypothesis. Define f; to be a function that
maps z to each string y in £P(2]) and define f; to be a function that maps z to
each string y in £5P(2) such that (z,y) ¢ B. Obviously, fi, f2 € NPMV. For every
z and y, f(z) maps to y if and only if f1(z) maps to y and f2(z) does not map to y.
So, f € NPMV(2). O

By Theorem 5.2, the difference hierarchy for partial multivalued functions rises or
falls in accordance with the difference hierarchy for sets. Since the difference hierarchy
for sets sits entirely within AL, one might anticipate that the NPMV (k) hierarchy
lies within the second level of the polynomial-time hierarchy for partial multivalued
functions. The following striking theorem shows that this can be true if and only if
the polynomial-time hierarchy collapses.

THEOREM 5.9. NPMV(2) C PFN"MV 4f and only if S5 = AL.

Proof. First suppose that NPMV(2) C. PFNPMV_ ' Let A be in £f. By the
above proposition, there is a function f € NPMV(2) such that dom(f) = A. By our
supposition, f €; PFN'MV So there exist a polynomial time deterministic Turing
machine M and a function ¢ € NPMV such that for every z, z € A if and only if
M (z) relative to g has an output. By modifying M slightly, we have a machine M’
such that for every z, M'(z) relative to g outputs 1if z € A and 0 otherwise. Thus,
A € PNPMV "and thus, A € PN?. Hence, =% = AY.

Next suppose that 5 = AP, Let f € NPMV(2). By Lemma 5.1, there exist
f1, f2 € NPMV such that graph(f) = graph(fi)—graph(fz). Define A to be the set of

20 S. FENNER, S. HOMER, M. OGIHARA, A. SELMAN

all pairs (z, y) for which there is some z > y such that (z, z) € graph(fi1) — graph(f2).
Define g to be the partial function that maps z to the largest y such that (z,y) € A
if z € dom(f). It is not hard to see that g is a single-valued refinement of f and g
is polynomial time computable with oracle A by an obvious binary search algorithm.
By definition, A € £f. So, A € AL. Therefore, g € PF2: — pFP"" = ppNP, Thus,
f €, PFNPMY, 0

Theorem 5.9 raises a question, “how powerful is the difference hierarchy.” The
following results provide some answers to the question.

LEMMA 5.10. PFACMVIEL . NPMV(2k + 1).

Proof. Let f € PFSPMV[k]
that makes nonadaptive queries to a function g € NPMV. Let p be a polynomial such
that for every z, each query string of M on z is of length < p(|z|). Let h = s[M,g]
defined in Proposition 3.2. For each z, let n, be the largest n € {0, ---, k} such that
h(z,n) is defined. Then for every z,
e cither h(z,n;) maps only to 0 or h(z,n;) maps only to strings of the form
1z, and
e if h(z,n;) maps to 0, then z ¢ dom(f) and if h(z, n,) maps to some 1z, then
f maps z to z.
For each i € {0,---, k}, define H; to be the function that maps z to y if and only if
h(z,) maps to 1y. For each ¢ € {1,---,k}, define G; to be the function that maps z
to each string in £<PU=)) if for some j > i, (z,5) € dom(h) and undefined otherwise.
These functions are obviously in NPMV. Note the following:
(1) for every ¢ > ng, Hi(z) is undefined;
(2) for every ¢ > ng, Gi(z) is undefined; and,
(3) for every i < ng, Gi(z) maps to every y € n<e(lel),
Define F by

via a polynomial time deterministic Turing machine M

graph(F) = graph(H) U (U o<i<k-1(graph(H;) — graph(Gi))).

Then dom(f) = dom(F') and if F(z) maps to y then f(z) maps to y. Therefore, F is
a refinement of f. Since H; and G; are in NPMV,

graph(F) € NPV NP(2)Vv.--V NP(2).

k

So, graph(F) € NP(2k + 1). Therefore, f €, NPMV(2k + 1). O

Since PFEPMV[Zk_l] = PFNPMVEE] we have the following theorem.

THEOREM 5.11. PFNPMVIEl C NPMV(2F+1 — 1),

By Theorem 5.2, the levels of the difference hierarchy of partial functions are
distinct if and only if the same levels of the Boolean hierarchy are distinct. Yet,
whereas the Boolean hierarchy resides entirely within PNP, by Theorem 5.9, this is
unlikely to be true of the difference hierarchy of partial functions.

6. Reduction classes to NPSV. In this section, we set down some results
about reduction classes to NPSV. With two notable exceptions, all of our results are
corollaries of theorems that we already proved, and our interest is primarily in the
following Corollaries 6.4 and 6.5, which demonstrate that bounded query hierarchies
with oracles in NPSV do not collapse unless the Boolean hierarchy collapses.

The following proposition is easy to prove.

ProPposITION 6.1.

ORACLES THAT COMPUTE VALUES 21

1. PFNP — ppNPsV, (by Theorem 2. 4)
NPk NPSV NPMV[k

3. PP C pRY []CPF k],

4. PNP = PNPSV_ (py Theorem 3.14)

5. PNP PNPSV (by Theorem 2.4)

6. PNP[k] C PNPSV[k] C PNPMV[] and PNP[log] C PNPSV[log] C PNPMV[log].

7 P Pk] ~ c PNPSV[k] c PNPMV[k] = =
COROLLARY 6.2. For every k > 1, PNPSV[k] — pNP[k],
Proof. By Proposition 6.1 (6), PNP[’“] C PNPSV[k] C pNPMVIK] By Theorem 3.7,

PNPMV[K] _ pNP[F] g, pNPSVIK]'_ pNP[k] 0

COROLLARY 6.3. For every k > 1, ngsv[k] = ng[k].

COROLLARY 6.4. IfPFNPSV[k‘*‘l] pRNPSVIE]

to its (k + 1)-st level.

for some k > 1, then BH collapses

Proof. Suppose PFNPSV[k+1] PFgPSV[]. Then we have ngsv[k+l] = ngsv[k].
So, by Corollary 6.3, we have P“ Plm] _ ng[for every m. Since PNPIF] C NP(k+1),
BH collapses to its (k + 1)-st level. O

COROLLARY 6.5. IfPFNPSV[k+1] PFNPSVIK] for some k > 1, then BH collapses
to its 2F-th level.

Proof. Suppose P . Then we have
So, by Corollary 6.2, we have PNTI™] — PNPIE] for every m. Since PNTIE]l C NP(2F),
BH collapses to its 2*-th level. d

The following proposition, which is the NPSV version of Theorem 3.5, requires a
somewhat different proof from the NPMYV case. It is interesting that our techniques
seem insufficient to prove the reverse inclusion.

PROPOSITION 6.6. For every k > 1, PFNPSVIK] C PFgPSV[2 -1,

Proof. Let f € PFNPSVEE] yia an oracle transducer M making k& many queries to
an oracle partial function ¢ € NPSV computed by an NPSV machine N. We may
assume that f is single-valued. Let » be the NPMYV function defined by the machine
U in the proof of Proposition 3.1, where ¢(z) = k. Since g is single-valued, it follows
that r is single-valued also, and hence r € NPSV. Moreover, we have that Az.[r(z, 0F)]
is total and polynomial time computable, and if b, is the lexicographically greatest
string b € £F on which r(z,b) is defined, then

[0 ifz ¢ dom(f),

pNPSV[E+1] _ ppNPSV[k] pNPSV[E+1] _ pNPSV[k]

We compute f(z) by querying r in parallel on the 2* — 1 values {(z,a) | a # 0%},
recovering f(z) from r(z,a) as above, where a is lexicographically largest such that
r(z, a) returns a value. O

The equality in the following theorem depends heavily on the fact that NPSV
functions are single-valued, and we do not believe it holds for oracles in NPMV. The
first inclusion was found independently by E. Hemaspaandra [16].

THEOREM 6.7. PFNFSVIesl ¢ ppiPSV — pplP,

Proof. The first inclusion arises immediately from adapting the proof of Proposi-
tion 6.6. We now show that PFgPSV C PFSP. The reverse inclusion is obvious.

If h is any single-valued partial function, define code(h) to be the set of all (z, 7, b)
such that the ith bit (left to right) of h(z) exists and is b. Suppose f € PFNPSY s
computed by a deterministic oracle transducer M running in time p(n) and making
parallel queries to an oracle ¢ € NPSV, which itself is computed by a machine N

22 S. FENNER, S. HOMER, M. OGIHARA, A. SELMAN

running in time g(n) (p and g are polynomials). We may assume f is single-valued.
Let g’ be the function that maps z to 1y if g(z) maps to y, and is undefined otherwise.
Clearly, code(g') € NP, and since g’ is single-valued, at most one of the tuples (z, %, 0)
and (z,%,1) is in code(g’), for all z and 3.

Given an input z, we compute f(z) by making parallel queries to code(g’) as
follows: let gi,...,qs be the oracle queries made by M(z). We query code(g’) on
all the tuples (g;,7,b) for 1 < i < s, 0 < j < q(p(|z])), and b € {0,1}. Since
dom(g') = dom(g) and g¢'(g) never maps to the empty string, g; € dom(g) if and only
if one of (g;,0,0) and (gi,0,1) is in code(g'). For each g; € dom(g), we recover g(g;)
in the usual way by reading from code(g') all but the Oth bit of g’(g;). Query answers
in hand, we continue simulating M to obtain f(z). O

The next corollary was proved independently from scratch by L. Hemaspaandra

10].
o COROLLARY 6.8. PNPSV — pNP _ pNPllog] _ pNPSV(log]

Proof. The first equation follows from Theorem 6.7 by considering only charac-
teristic functions. Also by Theorem 6.7, we have PNPSVllog] C PNP = pNPllog] C
PNPSV[log] 54 the last equation holds. d

Recall from the Introduction that it is not known whether sat belongs to PFNPSVIE]
for any k. We know that mazsat is complete for pFNFMV [13]. Thus, by Corollary 6.5,

FNPSV[k]

if, for any k > 1, mazsat € P , then the Boolean and polynomial hierarchies

collapse.

Although PFNPMVieel — ppNPMV (Theorem 3.13), we do not know whether
pFNPSVlleg] anq PFNYSV are equal. In particular, whereas, PFh'>" = PFNY (The-
orem 6.7) is easy to prove, apparently PFNPSVIogl 519 PFNPIO8] are not equal, for
NPSV C PFNPSVI ¢ ppNPSVlesl while NPSV C PFNPIo8] implies P = UP [15].
Thus, PFNPSVIeel ¢ ppNPlog]l jmplies P = UP. Similarly, PFNPMVIL ¢ ppNPliog]
implies P = NP.

REFERENCES

[1] R. Beigel. NP-hard sets are P-superterse unless R = NP. Technical Report 88-04, Department
of Computer Science, The Johns Hopkins University, 1988.

[2] R. Beigel. Bounded queries to SAT and the Boolean hierarchy. Theor. Computer Science,
84(2):199—223, 1991.

[3] H. Buhrman. 1992. Private communication.

[4] S. Buss and L. Hay. On truth table reducibility to SAT. Information and Computation,
91:86-102, 1991.

[5] R. Book, T. Long, and A. Selman. Quantitative relativizations of complexity classes. SIAM J.
Comput., 13(3):461-487, August 1984.

[6] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and G. Wech-
sung. The boolean hierarchy I: Structural properties. SIAM J. Comput., 17(6):1232-1252,
1988.

[7] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and G. Wech-
sung. The boolean hierarchy II: Applications. SIAM J. Comput., 18(1):95-111, 1989.

[8] J. Cai and L. Hemachandra. The Boolean hierarchy: Hardware over NP. In Siructure in
Complezity Theory, Lecture Notes in Computer Science 223, pages 105—124, Berlin, 1986.
Springer-Verlag.

[9] Z.Chen and S. Toda. On the complexity of computing optimal solutions. International Journal
of Foundations of Computer Science, 2:207-220, 1991.

[10] L. Hemaspaandra. 1993. Private communication.

[11] L. Hemaspaandra, A. Naik, M. Ogihara, A. Selman. Computing solutions uniquely collapses
the polynomial hierarchy. SIAM Journal on Computing, in press.

[12] J. Kadin. The polynomial time hierarchy collapses if the Boolean hierarchy collapses. SIAM
Journal on Computing, 17(6):1263-1282, December 1988.

ORACLES THAT COMPUTE VALUES 23

[13] M. Krentel. The complexity of optimization problems. J. Comput. Systems Sci., 36:490-509,
1988.

[14] J. Kobler, U. Schoning, and K. Wagner. The difference and truth-table hierarchies for NP.
Theoretical Informatics and Applications (RAIRO), 21:419-435, 1987.

[15] A. Selman. A taxonomy of complexity classes of functions. J. Comput. Systems Sci., 48(2):357—
381, 1994.

[16] E. Hemaspaandra. 1993. Private communication.

[17] H. Wareham. On the comptutational complexity of inferring evolutionary trees. Master’s thesis,
Department of Computer Science, Memorial University of Newfoundland, 1992.

[18] O. Watanabe and S. Toda. Structural analysis of the complexity of inverse functions. Math.
Systems Theory, 26:203-214, 1993.

[19] G. Wechsung and K. Wagner. On the boolean closure of NP. In Proc. International Conf.

on Fundamentals of Computation Theory, Lecture Notes in Computer Science 199, pages
485—493. Springer-Verlag, Berlin, 1985.

