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Abstract

A set A is m-reducible (or Karp-reducible) to B iff there is a
polynomial-time computable function f such that, for all z, z € A

< f(z) € B. Two sets are:
o 1-equivalent iff each is m-reducible to the other by one-one re-
ductions;
o p-invertible equivalent iff each is m-reducible to the other by

one-one, polynomial-time invertible reductions; and

o p-isomorphic iff there is an m-reduction from one set to the other

that is one-one, onto, and polynomial-time invertible.

In this paper we show the following characterization.

Theorem The following are equivalent:
(a) P = PSPACE.
(b) Every two 1-equivalent sets are p-isomorphic.

(c) Every two p-invertible equivalent sets are p-isomorphic.



1. Overview

If A is m-reducible to B, we usually interpret this to mean that A is com-
putationally no more difficult than B, since a procedure for computing B is
easily converted into a procedure for computing A of comparable complex-
ity. In fact, this interpretation is supported by much a weaker reduction: A
polynomial-time Turing reducible to B suffices. Therefore the existence of
an m-reduction from A to B implies a stronger relationship between A and
B than the conventional interpretation suggests. This possibility of gaining
additional information about the relationship between A and B gains in-
terest from the frequency with which proofs of m-reducibility are obtained.
Indeed, the reducibilities obtained in practice are usually stronger still: they
are almost always honest,! usually length-increasing, and frequently one-
one. We hope and expect to get additional wuseful information from the
strength of these reducibilities. For example, it is known that the class
of m-complete sets for deterministic exponential-time are pairwise one-one,
length-increasing equivalent [Ber77].

In a seminal paper, Berman and Hartmanis [BH77] conjectured that the
m-complete sets for NP are pairwise p-isomorphic, that is, that the complete
m-degree? of NP collapses to a p-isomorphism type. It is easy to prove that
there are m-equivalent sets that fail to be 1-equivalent, let alone p-isomorphic.
Thus, the specific location of the Berman-Hartmanis conjecture is critical.
However, if one considers strengthenings of m-reducibility, e.g., 1-reducibility
and 1-honest-reducibility, then until a few years ago there were no known
examples of degrees of these sorts of reducibilities that failed to collapse.
The first important result in this area was Ko, Long, and Du’s [KLD87]

!Suppose f,h::w — w. We say that f is h-honest if and only if, for all z, A(|f(z)|) >

|z|, and we say that f is honest if and only if for some polynomial p, f is p-honest.
2Reducibilities relate the hardness of sets. Hence, an equivalence class of sets with

respect to a reducibility relation consists of sets of the same “degree” of difficulty. We
thus define a degree to be an equivalence class under a reducibility. So, we speak of m-
degrees, 1-degrees, 1-honest-degrees and 1-li-degrees according to the reducibility intended.
The term “degree” comes from Post’s [Pos44]—the paper that founded modern recursion

theory.



theorem that every 1-li-degree collapses if and only if (as seems unlikely)
P = UP. In this paper, we show that the statements that (a) every 1-degree
collapses and (b) every p-invertible degree collapses are both equivalent to
(c) P = PSPACE. In retrospect, the most remarkable aspect of our results

is the equivalence of (a) and (b) which we still find counterintuitive.

1.1. Related Work

Myhill [Myh55] showed

Myhill’s Theorem FEvery two recursively 1-equivalent sets are recursively

isomorphic.

This deep and fundamental result implies that recursive 1l-equivalence is
much tighter than might initially be expected: if two sets are so similar
that they are recursively l-equivalent, then they are recursively identical.
There are a number of complexity theoretic version of Myhill’s Theorem.
Dowd [Dow82| has perhaps the strongest complexity theoretic, exact analog
of Myhill’s Theorem.

Dowd’s Theorem FEvery two strictly linear-space I1-equivalent® sets are

strictly hinear-space isomorphic.

In the theory of polynomial-time reducibilities the closest known analog

to Myhill’s Theorem is due to Berman and Hartmanis.

Theorem 1 ([BHT77]). If two sets are m-equivalent as witnessed by reduc-
tions that are (a) one-one, (b) length-increasing, and (c) p-invertible, then

the sets are p-isomorphic.

The hypothesis that the reductions be one-one is clearly necessary, how-

ever, the length-increasing and the p-invertibility hypotheses seem quite

3We say that a function f is strictly DSPACE(t) computable if and only if f is com-
putable by a deterministic TM that runs within an O(¢(n)) space bound on the work tapes
and the input and output tapes.



strong, perhaps unnecessarily strong. An obvious question is whether ei-
ther of these hypotheses can be weakened. Ko, Long, and Du showed that
under the hypothesis that P # UP (i.e., one-way functions exist [Ber77]
[GS84] [GS88][Ko85]), the p-invertibility hypothesis is indeed necessary.

Theorem 2 ([KLD87]). If P # UP, then there are 1-li equivalent* sets
that fail to be p-isomorphic.®

This is a remarkable result. 1-li equivalence is a very strong equivalence,
but this theorem says that under the reasonable hypothesis of P # UP, 1-
i degrees are distinct from p-isomorphism types. The theorem’s P # UP
hypothesis is tight. A simple argument shows

Proposition 3. If P = UP, then every two 1-li equivalent sets are p-isomor-

phic.

Thus, Theorem 2 and Proposition 3 yield the following striking charac-

terization.
Corollary 4. P = UP iff every two 1-Ii equivalent sets are p-isomorphic.

One of the reasons this corollary is so striking is that it gives a com-
plexity characterization of a degree-theoretic property. Thus, this corollary

essentially settles the question whether every 1-li degree collapses.

1.2. Our Results

We establish analogs of both Theorem 2 and Proposition 3 for 1-reductions
and p-invertible reductions. We first consider our analogs of Theorem 2. We

show

Theorem 5. If P # PSPACE, then there are 1-equivalent sets that fail to

be honest m-equivalent.

“That is, equivalent under one-one, length-increasing m-reductions.
SMoreover, there are such sets that are 2-tt complete for the class of deterministic

exponential-time decidable sets.



Theorem 6. If P # PSPACE, then there are p-invertible equivalent sets
that fail to be p-isomorphic.®

Two sets that are p-invertible equivalent have exceedingly similar struc-
ture. It is very surprising (at least to us) that under as weak a hypothesis
as P # PSPACE, this very strong equivalence fails to imply p-isomorphism.
Theorem 6 indicates that under the assumption that P # PSPACE, the
length-increasing hypothesis of Berman and Hartmanis’s Theorem 1 is close
to tight. 7

To establish an analog of Proposition 3, we first show a version of Dowd’s

Theorem for strictly polynomial-space reductions.

Theorem 7. Every two strictly polynomial-space 1-equivalent sets are strictly}]

polynomial-space isomorphic.
Now, using Theorem 7 it 1s straightforward to show

Theorem 8. If P = PSPACE, then every two l-equivalent sets are p-iso-

morphic.
Therefore, by combining Theorems 5, 6, and 8 we obtain our main result:

Theorem 9. The following are equivalent:
(a) P = PSPACE.
(b) Every two 1-equivalent sets are p-isomorphic.

(c) Every two p-invertible equivalent sets are p-isomorphic.

8For both Theorems 5 and 6 the witnessing sets can be constructed to be 2-tt complete

for exponential-time.
"Note that Theorem 6 does not rule out the possibility that “length-nondecreasing”

can replace “length-increasing” in the hypothesis of Theorem 1. We suspect that under a
stronger condition than P # PSPACE |, the length-increasing hypothesis of Theorem 1 is

indeed necessary.



2. Technical Details

We say that f is honestly-invertible iff the function
A\ { (=), if f7'(z) is defined and of length < n;
z,n.

undefined, otherwise.
is computable in time polynomial in n + |z|. For example,

) 2n, if  i1s a power of 2 and z = 27,
v 2z + 1, otherwise;

is not p-invertible, but it is honestly-invertible. On the other hand, a one-way
function is neither p-invertible nor honestly-invertible.

Let (¢;);cn be an acceptable numbering of the partial recursive functions
[Rogb67] based on a coding of deterministic, multi-tape Turing machines. By
standard results in the literature there is a function

wi(z), if Turing machine ¢ on input z halts
T = M,z,n. within n steps;

0, otherwise

that is computable in O((|i| + |z| + n)?) time. (T is essentially Kleene’s T
predicate.) For each 17, let o = Az [T(j,z,(|z| + 2)*), where i = (j,k)].
It follows that <1ZZ> ;en 18 an enumeration of the polynomial-time computable
functions such that Az, a:1/:1(a:) is computable in 2°0H+1=]) time.

In this section we sketch the proofs of Theorems 5 and 7. One of the
attractive features of these proofs this that they are naturally set in the
common context of the Cantor-Bernstein Theorem.® The constructions for
Myhill’s and Dowd’s Theorems, Theorem 1, and Theorem 7. are all effective
variants of the standard construction for Cantor-Bernstein. The proofs of Ko,

Long, and Du’s Theorem and our Theorems 5 and 6 establish that certain

plausible effective forms of Cantor-Bernstein fail.

Notation and Conventions® In the following w denotes the set of natu-

ral numbers. We identify each number with its dyadic representation over

8This theorem states that if there is a one-one map from set A to set B and a one-one
map from B to A, then there is a one-one correspondence between A and B.

9For any unexplained notation or terminology in the following, see [KMR88].



{0,1}. Let {-,-) denote polynomial-time computable and invertible pairing
function—the one in [Rog67] will do. Let w' denote a disjoint copy of w.
For each z € w, ' denotes the corresponding element of w’. We assume the
ordering 0 < 0' <1< 1'<2<2 <---on(wUw.

Now, suppose that A C w, B C u', f:w — ' recursively 1-reduces A to
B, and g:w' — w recursively 1-reduces B to A. We introduce the directed
graph G = (wU W', E), where

E = {(z,f(z):zecw} U {(z,9(z)) : 2" €' }.

G is clearly bipartite. Since f and g are functions, every vertex of G has
out-degree one. Since f and g are one-one, every vertex of G has in-degree
of at most one.

The maximal connected components of G we call f,g-chains or simply
chains when f and g are understood. A root of a chain C is a vertex in C
with in-degree zero. Each chain C is a directed path and has one of four
possible structures:

a. a finite cyclic path;

b. a two-way infinite path;

c. an infinite path with a root in w; or

d. an infinite path with a root in w’'.

We say that a function h:w — W’ respects chains iff for all z, z and h(z)
belong to the same chain. Since f and g recursively 1-reduce A to B and B
to A, respectively, it follows that for any A that respects chains we have that,
forallz, z € A < h(z) € B. We say that a function h:w — w' crosses a

chain C iff for some z, an w-vertex of C, h(z) is not an w’-vertex of C.



3. Isomorphisms

The constructions for Theorem 7 and Dowd’s Theorem are space-bounded
versions of the construction for Myhill’s Theorem. Below we sketch a proof
of Myhill’s Theorem followed by a proof of our Theorem 7. First we note
that for f and g as in the beginning of Section 2, the standard construction

for the Cantor-Bernstein theorem defines
(1)

A simple argument shows that 7 is one-one and onto. Moreover, since 7

g '(z), if z’s chain is w’ rooted;
T = Ae. :
f(z), otherwise.

respects chains, we have for each z that ¢ € A < =(z) € B. A problem
with this construction is that # may not be computable even though f and
g are.

In order to prove that various NP-complete sets are p-isomorphic, Berman
and Hartmanis [BH77] recycle the Cantor-Bernstein construction by finding
conditions on f and g so that the function 7 defined in (1) is computable

and invertible in polynomial time. They proved the following theorem.

Theorem 1 If two sets are m-equivalent as witnessed by reductions that
are (a) one-one, (b) length-increasing, and (c) p-invertible, then the sets are

p-isomorphic.

Proof Suppose that f and g satisfy hypotheses (a), (b), and (c). Let 7 be
as in (1). So, 7 is an isomorphism between A and B. Fix a z € (w U w').
Since f and g are length increasing, we have that each chain is rooted and
that there are at most |z| many vertices preceding z in its chain and all of
these vertices are of length less than |z|. Since f and g are p-invertible, it
follows that one can find the root of a vertex z’s chain in polynomial (in |z|)

time. Therefore, 7 is polynomial-time computable. O

Myhill [Myh55] showed that if f and g are recursive, then a recursive
bijection 7 exists that respects chains, although now 7 is of necessity defined
quite differently than in (1) above. Our proof of Theorem 7 is in the same
vein, but in addition we must observe space bounds on the isomorphism we

are building, and thus our construction is considerably more delicate.

9



Theorem 10 ([Myh55]). Every two recursively 1-equivalent sets are recur-

sively isomorphic.

Proof Sketch The definition of 7 in (1) is based on a global analysis of
the structure of chains. The construction for this theorem is more local in
character. Given recursive f and g as above, we build in stages 7, a recursive
isomorphism that respects chains. Initially, # = ). During stage 2z, if 7(z)
is not yet defined, then z’s chain is traversed forward and #(z) is defined to
be the first w’-vertex encountered that is not yet in the range of 7. During
stage 2z + 1, if #7(z') is not yet defined, then z'’s chain is traversed forward
and 7 !(z') is defined to be the first w-vertex encountered that is not yet
in the domain of 7. A straightforward argument shows that 7 is a recursive

isomorphism between A and B. 0 Theorem 10

Theorem 7 Every two strictly polynomial-space 1-equivalent sets are strictly

polynomial-space isomorphic.

Proof Suppose f and g are 1-1 strictly polynomial-space computable func-
tions. Below we describe the construction of 7, a strictly polynomial-space
computable isomorphism that respects f,g-chains. In the construction of
Theorem 10 above, although the root of a given f, g-chain is inaccessible in
general, one can traverse the chain forward an unlimited amount to find an
unmatched vertex, obviating the need to search the chain backwards. In the
construction below, our view of each f, g-chain is more myopic; at each stage
we can only see (and match vertices in) a portion of the chain residing below
a certain length bound. We cannot follow a chain forward indefinitely, so we
must search backwards along the chain to ensure that each of its vertices get
matched with a vertex of roughly the same length.
Let G be as in the beginning of Section 2. For each n, define:

w, = {z€w:|z|<n}. w = {z'ev:|z|<n}.

For each n, let G, be the subgraph of G induced by (w, Uw),). The maximal

connected components of G,, we call n-chains. The successive vertices of a

10



path in G alternate between being in w and w’. Hence, a finite path P in G
(such as an n-chain) has one of the following three possible structures.

Unbiased: The number of w-vertices in P is the same as the number of
w'-vertices. In this case P is either cyclic or else has one of its ends in w and
the other in «’.

w-biased: The number of w-vertices in P is one more than the number of
w'-vertices. In this case P’s root and tail vertices are in w.

w'-biased: The number of w-vertices in P is one less than the number of

w'-vertices. In this case P’s root and tail vertices are in w'.

We say a partial function h:w, — w! respects n-chains if and only if, for
each ¢ € domain(h), h(z) is in the same n-chain as z.

Our construction of 7 will be in stages. For each n, 7,:w, — w/, will be
the part of 7 defined as of the end of stage n. (7_; = (0.) Each 7, will be an
n-chain respecting, 1-1 partial map between w, and w!,. We call the elements
of (domain(7,) Urange(7,)) the vertices matched as of stage n. Note that in
order to be 1-1 and respect n-chains, it must be the case that biased n-chains
(which have an odd number of elements) end up with at least one vertex that
i1s unmatched as of stage n. In our construction of the 7,, we will maintain

the following invariant, for each n:

For each mn-chain C, every vertex of C is matched as of stage
(2) n, except if C is w-biased (respectively, w'-biased) in which case

exactly one w-vertex (respectively, w'-vertex) is unmatched.

Note that the invariant implies that if C' is a biased n-chain, then the vertices
of C matched as of stage n form two unbiased paths (either of which could be
null) on either side of C’s unmatched vertex and if C is a unbiased n-chain,
then all of the vertices of C' are matched as of stage » and, hence, form an
unbiased path.

Assume 7,,_; is as required. We consider how to define 7, on the w,-
vertices of an n-chain C. First, let {21, 23, ..., 21 } be the set of length n
vertices of C together with the vertices of C' unmatched as of stage n — 1.
(There may in fact be several vertices of C unmatched as of stage n— 1, since

C may contain several biased (n — 1)-chains.) Moreover, let 21, 23, ..., 2 be

11



in the (path) order in which they occur in C. (If C is cyclic, choose z; to be
the lexigraphically least possible w-vertex from among the z;’s. Note that in
this case there are an equal number of unmatched w- and w’-vertices in C as
G is bipartite.) It follows from our discussion of the invariant that the set of
vertices of C' that were matched as of stage n — 1 form a series of disjoint,
unbiased subpaths of C. Hence, the elements of the sequence 2z, 2, ..., 2
must alternate between being in w and ' and this sequence has the same

bias (i.e., unbiased, or w-, or w'’-biased) as C. So, for each z, an w,-vertex of

C, define

Tn-1(z), if (1) z is matched as of stage n — 1;
~ 22i—1, if (ii) & = 22;;
3 n - . .
(3) mn(2) 232i, if (ili) ¢ = 23;_1 and 21 < k;

undefined, (iv) otherwise.

Note that clause (ii) applies to the z;’s of C if and only if C is w'-rooted,
and clause (iii) applies otherwise. Thus, clauses (ii) and (iii) of equation (3)
parallel (1). If C is unbiased, then k is even; hence, all of C’s vertices are
matched as of stage n. If C is w-biased (respectively, w'-biased), all of C’s
vertices are matched as of stage n except 2z which is in w (respectively, w').
It follows then that 7, is 1-1, respects n-chains, and satisfies the invariant
(2).

Suppose ¢ is a monotone increasing polynomial such that both f and g

are strictly DSPACE(g(n)) computable. Thus, for all z,

(4) q(|z]) > |z|, |f(2)|, |g(2)|, space used to compute f(z) and g(z).

Lemma 11. For each z € (w Uw'), z is matched as of stage q(|z|).

Proof Let n = |z| and let C be 2’s n-chain. If C is cyclic, then, by the
invariant (2), z is matched as of stage n and we are done. So, suppose C
i1s acyclic. Let ¢ be the tail of C' and let Z be t’s successor in G. Since
z is followed by z, a length |Z| vertex, in 2z’s |Z|-chain, it follows by the

construction that z is matched as of stage |Z|. Now, by (4) we have that

12



(|t]). Since |t| < |z| and since ¢ is monotone increasing, we thus have

(I¢]) < g(l2]). O

z
z

IA N

2| <gq
2] < g
Lemma 12. Both An,z € w,.7,(z) and An,y € w!,.7'(y) are computable

in O(n - q(n)) space.

Proof Sketch To compute 7,(z) using (3), one needs to
e compute T,_1(z),
e if it is defined, output the result,

e if not, then z is one of the z;’s for «’s n-chain, in which case one needs
to find: (a) the root (if any) of z’s n-chain, (b) 2z, and, if z’s chain
is w'-rooted, (c.i) the z; immediately preceeding z in the list of z;’s,
and if z’s chain is not w'-rooted and = # 2, (c.ii) the z; immediately
following z. (If z’s chain is not w'-rooted and z = z, then 7,_1(2) is

undefined.)

All of this can be accomplished in the course of a constant number (inde-

pendent of z) traversals of z’s n-chain, making recursive calls to 7,_; along

!
n—1

the way to determine whether various z € (w,—1 Uw),_;) were matched as
of stage n — 1. Since f and g are 1-1 strictly polynomial-space computable
functions, it is clear that traversing an n-chain can be done in O(g(n)) space.
It is also clear that in using (3) to compute 7,(z), the depth of recursions
is no more than n. Thus, it follows that 7,(z) can be computed within the

required space bound. The argument for 7! follows by symmetry. O

Define ™ = U,¢,Tn. Since each 7, extends T,_;, 7 is well defined. Since
each 7, 1s 1-1 and respects n-chains, 7 is also 1-1 and respects chains. By
Lemma 11, 7 is total and onto. By (3) and Lemma 11 we also have that, for
all z € w, |7(z)| < ¢(|z|) and |z| < ¢(|7(z)|). Finally, by Lemmas 11 and
12, we have that T and 77! are both polynomial-space computable.

[0 Theorem 7

13



Theorem 13 (Dowd’s Theorem). Every two strictly linear-space 1-equi-

valent sets are strictly linear-space isomorphic.

Proof Sketch Below we give a finer analysis of the space complexity of the
construction of the previous proof and conclude the present theorem as a
consequence of this analysis.

In the proof of Lemma 12 we gave a sketch of how to compute 7,(z). In

that sketch we used recursive calls to 7,_1 to determine whether a vertex in

!

!_,) was matched as of stage n — 1. Below we show how to perform

(wn—1Uw
this test without the recursive calls.

The vertex of a biased n-chain C that is unmatched as of stage n we call
the unmatched vertez of C. We give a purely graph theoretic characterization

of which vertex of a biased n-chain is its unmatched vertex.

Lemma 14. Suppose that C is a biased n-chain, that t is C'’s tail, and that
n' is the largest number < n such that either (i) |t| = n' or else (i) t’s
(n' — 1)-chain is unbiased.

Then, in case (i), t is the unmatched vertex of C, and, in case (ii), the
unmatched vertex of C is the (length n') predecessor of the root of t’s (n'—1)-

chain.

Proof Let z be the vertex that the lemma claims i1s the unmatched vertex of
C. Forn=7n/,...,n, let C; denote z’s n-chain. Note that forn =n’,..., n,
C; must be biased because otherwise n’ would not be the largest number < n
such that (i) or (ii) holds. Since z is of length n’ and followed by a unbiased
(n' — 1)-chain (which is null in case (1)) and since C, is biased, it is clear
that z is the unmatched vertex of C,;. By an easy induction we have that,
forn =n'+1,...,n, z is the last vertex in C; which is unmatched as of
stage 7 — 1 and z is followed in C; by an unbiased (% — 1)-chain. Therefore,

forn=n'+1,...,n, zisis the unmatched vertex of Cj. O

Using the characterization above, it is relatively simple to concoct a pro-

cedure for testing the predictate

An, z € (w, Uw,).|z is matched as of stage n |

14



that runs in O(gq(n)) space. Thus, in our sketch of how to compute 7,(z),
we can replace all the recursive calls to 7,_; used to test matching with this
O(q(n))-space procedure. So, exclusive of the cost of the recursive call to
compute T,_1(z) under clause (i) of (3), it follows that the computation of
7n(z) can be done within O(g(n))-space. However, the recursion to compute
Tn—1(z) is a tail recursion and so it does not require a stack to carry out.
Therefore, it follows that

Lemma 15. Both An,z € w,.T,(z) and An,y € w!,.7,'(z) are computable

in O(q(n)) space.

By Lemma 11 we have that ¥ = Az.Ty()(z) and 77" = )\m.7~rq_(|1$|)(:v).
Hence, by Lemma 15,

Corollary 16. Both & and 7! are computable in O(q(q(|z|))) space.

If f and g are 1-1 strictly linear-space computable functions, then we can
choose g to be a linear polynomial, and, hence, go g is linear too. Therefore,
by Corollary 16, the theorem follows. O Theorem 13

We return to the question of p-isomorphism by investigating conditions on
the 1-reductions that make 1-equivalent sets p-isomorphic. Unlike Berman
and Hartmanis’s Theorem 1, which focuses on the reductions themselves, we
look closer at the structure of the chains formed by the 1-reductions. In
doing so, we obtain results stronger than Theorem 1.

We say that f and g have polynomeal-time constructible n-chains if and
only if there is a procedure such that, given n and 2z € (w, U w],), constructs

z’s entire n-chain in time polynomial in n.

Theorem 17. Suppose two sets are (polynomial-time) 1-equivalent as wit-
nessed by reductions f and g which have polynomial-time constructible n-

chains. Then, the two sets are p-isomorphic.

On the surface this looks like a much stronger result than Theorem 1. Is

isn’t however. If f and g are such that there are no cyclic f, g-chains, then

15



one can show that the hypotheses of Theorem 1 are equivalent to those of
Theorem 17. We can use the construction for Theorem 7 to obtain a strictly
stronger result than Theorems 1 and 17. In order to state this result we
introduce the following terminology.

We say that f and g’s n-chains have polynomzal-time uniform extremities
if and only if there is a procedure which, given n and z € (w, Uw),), runs in
time polynomial in n and decides whether 2’s n-chain is acyclic, and if it is,

determines the two extreme vertices of this n-chain.

Theorem 18. Suppose A and B are (polynomial-time) m-equivalent as wit-
nessed by reductions f and g that are

(a) one-one,

(b) honestly-invertible, and

(c) their n-chains have polynomial-time uniform extremities.

Then, A and B are p-isomorphic.

To prove this, one merely checks that the theorem’s hypotheses suffice to
run the construction of Theorem 7 in polynomial-time. This is straightfor-
ward and we omit the details.

Later we show that Theorem 18’s hypotheses are strictly weaker than
those of Theorems 1 and 17, see Proposition 27 below. Hypothesis (c) is
still pretty strong, however. It will be apparent from the proof of Theorem
5 in the next section that there are one-to-one, polynomial-time computable
f and g such that finding just the tails of the corresponding n-chains is
PSPACE-complete.

16



4. Inequivalences

Our proofs of Theorems 5 and 6 follow the same general strategy as the proof
of Ko, Long, and Du’s Theorem 2. We first sketch a proof of Theorem 2, and
then sketch a proof of our Theorem 5 which builds on the ideas introduced in
Theorem 2’s proof. The proof of Theorem 6 is a modification of our argument

for Theorem 5.

Theorem 2 Suppose that P # UP. Then there exist 1-li equivalent sets
which are incomparable with respect to p-invertible reductions. Moreover,

there are such sets which are 2-tt complete for EXP.

Proof Sketch Since we are assuming P # UP, by [KLD87, Proposition 2.1],
there exists a length-increasing one-way function ¢. Define f:w — ' by the

following three equations.
(5) f(3z) = 6t(z) + 1. f(Bz +1) =6z + 4. f(8z +2) =6z +5.

Let g have the same definition as f except that we regard g as a function
from ' to w. Clearly, f and g are one-one and length increasing. Note that
every number of the form 3z in wUw' is the root of its own f, g-chain. (Each
number of the form 6z + 2 is also the root of its own chain—a fact that will
be useful later on.) By a diagonal construction we shall produce sets A C w
and B C w' that satisfy:

(6) frA<{y;Band g B<7 A4,
(7) A and B are 2-tt complete members of EXP, but
(8) there is no p-invertible A such that h: A <P B or h: B <P A.

The diagonalization depends on the following key lemma.

Lemma 19 (The Chain Crossing Lemma). Suppose h is a p-invertible
map (either from w to w' or from w' to w). Then, h crosses infinitely many
chains. In fact, there are infinitely many z’s such that 3z and h(3z) are in

different chains.
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length p(|6t(z) + 1)

7

6t(z) +1 h(3z)

Figure 1: h(3z) lands in V.

Proof We handle the case of h:w — w'. The w' — w case follows by
symmetry.

Since h is polynomial-time computable, there is a nondecreasing polyno-
mial p such that, for all z, |h(z)| < p(|z|). For each y, let V, be the set of
w'-vertices of the chain of (6y 4+ 1)’ that are of length < p(|6y + 1|). By our
definitions of f and g it follows that one can, given y, list all the elements of
V, in Poly(|y|) time. Now, by (5), if h(3z) is in the same chain as 3z, then
h(3z) is in Vy(,), see Figure 1. Thus, if the lemma were false, then for all
sufficiently large y, the following equation will hold:

t(y) = {h_l(zl)/3; if 2’ € V,, is such that ¢(h™%(2")/3) = y;

undefined, if there is no such 2’ € V.

But, since one can list all the elements of V, in Poly(|y|) time and since ¢
and h~! are polynomial-time computable, it would then follow that ¢ is p-

invertible—a contradiction. [0 Lemma 19

Returning to the proof of Theorem 2, the construction of A and B works
by “painting” chains. Each chain is painted either blue or green. A chain
painted blue has all of its w-elements in A and its w'-elements in B. A chain
painted green has all of its w-elements in A and its w'-elements in B. Since
the chains form a partition of w U w', painting all the chains will completely
determine A and B, and ensure that they satisfy (6) above.

Now, given an h:w — w' and an z such that z and h(z) are in different
colored chains, we have that ¢ € A <= h(z) ¢ B; and hence that A fails to
m-reduce A to B. Using this last observation together with Lemma 19, one

can construct A and B satisfying (6) and (8) by a elementary, noneffective
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diagonalization: starting with all f, g-chains unpainted, paint chains one
by one, each time cancelling some p-invertible A by painting z’s chain and
h(z)’s chain opposite colors, for some z. Each such h gives us infinitely many
chances to cancel it, and there are only countably many such h, so we can
diagonalize against them all. See the proof of Theorem 6.6.2 in [KMR90] for
more details.

To build an A and B satisfying (7) in addition to (6) and (8), a more
delicate construction is needed. We handle this construction by means of
a general technical lemma which is also used in the proofs of Theorems 5
and 6 below. To state this lemma, we introduce the following terminology.
Suppose C is an f, g-chain with root r. The ith successor of r is the vertex
of C obtained by applying f and g a combined total of 7z times to r. Suppose
h is a function from w to w' (or from w' to w). Then we say h promptly
crosses C if and only if there exists a vertex z of C such that (a)  is the ¢th
successor of r for some 7 < |r|, (b) for each 5 < 7, the jth successor of r has
length < |r|, and (c) h(z) is not in C. We now state the lemma, the proof
of which appears in Appendix A.

Lemma 20 (The Chain Painting Lemma). Suppose the following:
1. fiw — W' and g:w' — w are 1-1 and polynomial-time computable.

2. rw— (wUW') is 1-1, 2P°¥(")_time computable, and, for each z, (z)

is the root of an f,g-chain. For each z, let C, denote r(z)’s chain.
3. q is a polynomial such that, for all z and all z € C,, |z| < q(]z]),

4. s:w — w is polynomial-time computable, and for all z,y € w, s(y) and
s(z) are in f,g-chains distinct from all the C.’s and from each other.

For each y, let /D\y denote s(y)’s chain.

5. Given a z € (wUw') and ¢ € w, deciding whether z is a vertex of C,

can be done in Poly(|z| 4+ z)-time.

6. Given a z € (wU w'), deciding whether z is in one of the b\y ’s, and, if

so, which y, all can be done in Poly(|z|)-time.
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Then, given all of the above, there exist sets A and B that satisfy:

(a) fr A<Y B and g: B<} A,

(b) A and B are 2-tt complete for EXP, and

(c) there is no polynomial-time computable h:w — W' (respectively,
h:w' — w) which both promptly crosses infinitely many C.’s and that <P-
reduces A to B (respectively, B to A).

Despite the profusion of hypotheses in Lemma 20, they are very easily—
almost trivially—satisfied in every case that we apply the lemma. In the

context of the proof of the present theorem:

3z/2, if ¢ is even;
Az e
(3(z —1)/2), if zis odd;

g = An.[n+1]; s = Az.[6z+2]; and Lemma 19 asserts that every p-invertible
h promptly crosses infinitely many C,’s. Therefore, the existence of an A

and B as required by the theorem follows from Lemma 20. [] Theorem 2

We now apply the technique used in the proof above to 1-reductions
which are not necessarily length-increasing. With the (most likely) weaker
assumption that P # PSPACE, we obtain two different inequivalences. The
one we give now involves honest m-reductions; the other, which we give
below in Theorem 6, is about isomorphisms and uses the same idea with one

additional twist.

Theorem 5 Suppose that P ## PSPACE. Then there exist 1-equivalent sets
that are incomparable with respect to honest m-reductions. Moreover, there

are such sets which are 2-tt complete for EXP.

Proof Let L be an element of (PSPACE — P).

This proof follows a plan roughly analogous to the argument for The-
orem 2: we construct 1-1, polynomial-time computable functions f and g;
prove that every honest polynomial-time computable function must promptly
cross infinitely many of a particular collection of f, g-chains; then, by an ap-

plication of the Chain Painting Lemma, we produce the two sets required
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by the theorem. In Theorem 2’s proof, the f,g-chains encoded the graph
of a one-way function ¢ and that proof’s chain crossing lemma was shown
by proving that if one had a p-invertible A that crossed only finitely many
f, g-chains, then from h one could construct an polynomial-time inverse of ¢,
contradicting the assumption that ¢ is one-way. In this proof the f, g-chains
encode computations of a Turing machine that decides the set L, and this
proof’s chain crossing lemma is shown by proving that #f one had an honest
polynomial-time computable A that crosses only finitely many f, g-chains,
then from h one could construct an polynomial-time decision procedure for
L, contradicting the assumption that L € (PSPACE — P).

To define f and g and ensure that they are 1-1, we use Bennett’s work
on reversible Turing machines [Ben89|. Informally, a deterministic Turing
machine M is said to be reversible if and only if, at any point of a compu-
tation, there is an unambiguous way of backing up the computation to its
previous state. We formalize this notion as follows. Let M be a determin-
istic Turing machine with k tapes (including an input and an output tape),
states @), alphabet X, start state go, unique final state ¢;, allowable tape
moves L (left), R (right), and N (no movement), and transition function
7:Q x X% - Q x TF x {L,R,N}k. All halting computations of M end in
state g;. Let ID be the set of instantaneous descriptions (i.d.’s) of M and,
for each I € ID, let 7(I) be the successor i.d. of M, if any, as determined by
7. The snatzal 1.d. of M for a given input has M in state qo, the input tape
head just to the left of the input, and all other tapes empty. Now, such an
M 1is said to be reversible if and only if there is another transition function
cQxXF 5 Qx3*x{L,R N }k such that, for each non-final i.d. I that is
reachable by M from some initial i.d., we have that o(7(7)) = I. Reversible
machines are crucial to our keeping the functions f and g 1-1. The following
proposition follows from Bennett’s general results and roughly corresponds

to the corollary on page 770 of [Ben89].

Proposition 21. Suppose M is a multi-tape Turing machine that com-
putes a function t:w — w and that runs in space S(n). Then, there there

is an O(S(n)?) space bounded, reversible Turing machine that computes
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Az.(z,t(z)).

By the proposition, there is a reversible Turing machine that computes
Az.(z,L(z)) in polynomial-space. Let M be such a machine and let ID, 7
and o be as above. For each z, let initial(z) be the initial i.d. of M on input

z. Define
ID = {I:0(r(I))=1}.

By this definition, every non-final i.d. which is reachable from some initial
i.d. is in ID. Also, no final i.d. can be in ID since if I is final, then (1)
is undefined, and, hence, so is o(7([)). Note that ID is polynomial-time
decidable, and that when AI.7(I) is restricted to IT), the function is total
and one-one.

Now we introduce some tools to help with encoding M-computations into

f,g-chains. Let #:ID — w be a one-one, onto function, and such that

e the functions induced over w by Al.7(I), Al.o(I), and initial are

polynomial-time computable and,

e given %, one can in Poly(|z|)-time decide if 7 corresponds to a final i.d.,

and, if so, extract the result of this i.d.’s computation.

Such a # is straightforward, if tedious, to define. For all v, z, y, 2 € w and
all 7 € ID, define
start(z,y) = 3(z,y).
active(z,v,I) = 3(z,v,#(I))+ 1.
idle(z,v,2,1) = 3(z,v,z,#(I))+2.
Since (-,-) and # are one-one, so are start, active, and idle, and, since (-, -)

and # are also onto, the ranges of start, active, and zdle partition w. Finally,

define f:w — W' by the following set of equations.

active(z, v, initial(z)), if y = 07

start(z,y), ifyé {0°:vew}.

fstart(a)) = {
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active(z,v,7(I)), ifI € D;
wdle(z,v,0,1), otherwise.

f(active(z,v, 1)) = {

fledle(z,v,2,1)) = idle(z,v,z+ 1,1).

Let g have the same definition as f except that we regard g as a function
from w' to w. By our discussion of 7, o, #, start, active, and dle it follows
that f and g are one-one and polynomial-time computable. For each  and
v, let C, denote the f, g-chain with root start(z,0%) € w and let C, , denote
the chain with root start(z,0%)' € w'.

A C,, chain has the following structure. It begins with the root vertex
start(z,0") followed by an exponential drop to active(z,v, initial(z)) € '
Then f and g conspire to simulate M on input z—each C,, vertex of the
form active(z,v,I) (where I is a non-final i.d. of M on input z) is fol-
lowed in C,, by the vertex active(z,v,7(I)). When the chain reaches the
vertex active(z,v, Is,) (where Ig, is the final i.d. of M on input z), the
next vertex in Cy, is tdle(z,v,0, Is,). Thereafter, each vertex of the form
idle(z,v, 2, In,) is followed by the vertex idle(z,v,z + 1, I,) ad infinitum.
Since M is polynomial-space bounded and since #, start, etc. are all poly-
nomial-time computable, it follows that there is a monotone polynomial pr,
such that all the “active” vertices of C,, are of length strictly less than
pr(|z| + [v]).

The structure of an C , chain is analogous.

v

Lemma 22 (The Chain Crossing Lemma). Suppose h is an honest,
polynomial-time computable function (from w to w' or from w' to w). Then,
h crosses infinitely many chains. In fact, there are infinitely many z’s and
v’s such that start(z,0") and h(start(z,0")) are in different chains.

Proof We handle the h: w — w' case. The w’ — w case follows by symmetry.
Let pr be as in the discussion preceding the lemma.
Since h is honest, there exist k and z¢ such that for all z > zo, |h(z)| >

|1/k

|z|'/*. Since start is monotone increasing in both arguments, we have that
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length length

w\[1/k
pr(lz| + |v|) |start(z,0”)| start(z,07)

fgfgfg---// h

" the active part of Cz o I

| —

? P

the idle part of Cz 5
Figure 2: h(start(z,0%)) lands in C, ,.

|start(z,0°)| € Q(|z| + 2"). Thus, for each z and all sufficiently large v,
(9) po(lel +1v]) < |start(z,07)"/%.

Since start is increasing in both arguments, it easily follows that there is a

polynomial p, such that, for all z, if v = p,(|z|), then (9) is satisfied.

Claim. Suppose ¢ > o, v = p,(|z|), and h(start(z,0")) is in C,,. Then,
for some z, h(start(z,0%)) = idle(z,v,z,I), where I is the final i.d. of M on

input z.

Proof of Claim Since start is increasing in both arguments and since z >
o, by our choice of k and z, it follows that |start(z, 0°)|'/* < |h(start(z,0%))|.
By our choice of p,, it also follows that (9) holds for # and v. Thus, we
have the situation described by Figure 2. Now, since |h(start(z,0%))| >
pr(|z|+|v|), h(start(z,0")) cannot be in the active part of Cy,. Thus, since
h(start(z,0%)) is in C,,, it must be in the idle part of C,,. Therefore, the

claim follows. O Claim

Suppose by way of contradiction that the lemma is false. So, for all
but finitely many z, h(start(z,07<2D)) is in Czpu(lz)- Then by the claim,
for all but finitely many #, one can determine L(z) by: (i) computing
h(start(z, 07<2)), (ii) from this value extracting the final i.d. of M on input
z, and (iil) from this i.d. determining L(z). All of this can be done in time
Poly(|z|). Therefore, L is polynomial-time decidable. But this contradicts
the assumption that L € (PSPACE — P). 0 Lemma 22
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Now let r enumerate all the roots of the C;;’s and C ;’s, so that 7(2(z, 1))
is the root of C,; and 7(2(z,%) + 1) is the root of C, ;. We can choose ¢ to be
An.[n + 1] since the smallest vertex on Cy; is of length at least 3(z,7). Also
let s = Az.start(z,1). It is straightforward to check that, for these choices
of r, q, and s, all the hypotheses of the Chain Painting Lemma are satisfied.
Therefore, by this lemma there exist sets A and B that are 1-equivalent, 2-tt
complete for EXP, but which are not honest m-comparable.

[0 Theorem 5

We now turn to the second of the two inequivalences—the first being The-
orem 5. There, it was the case that (assuming P # PSPACE) a polynomial-
time honest equivalence (not even 1-1) could not be substituted for an unre-
stricted polynomial-time 1-equivalence. Here we show (on the same assump-
tion) the more fine-grained result that a p-isomorphism cannot be substituted
for an honest 1-equivalence, even one where both of the 1-reductions are p-
invertible. The only property the reductions of Theorem 1 have that is not
required here is that of being length-increasing. Thus if P ## PSPACE, the

length-increasing requirement of Theorem 1 is necessary.

Theorem 6 Suppose that P # PSPACE. Then there exist p-invertible
equivalent sets that fail to be p-isomorphic. Moreover, there are such sets
which are 2-tt complete for EXP.

Our proof of Theorem 6 will run along the same lines as that of Theo-
rem 5. In particular, the f, g-chains we construct will look similar to those
of Theorem 5, i.e., they will follow the computation of a polynomial-space
reversible Turing machine computing a language L ¢ P, then percolate the
result when the computation is done, just as before. The difference lies in
how the chains begin. The reductions of Theorem 5 were of necessity dis-
honest, evidenced by the root of each chain being exponentially larger than
its successor. Making this exponential drop drastic enough was all that was
necessary to defeat the chain-respecting honest maps, by forcing any such

map to take the root of the chain to the idle region, thus revealing the result

of the PSPACE computation.
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We clearly cannot do the same thing here, since our reductions f and
g must be p-invertible, and hence honest. Instead, we replace the initial
large drop in the chain with a series of small drops, starting at the top (root
of the chain) and winding up at the start of the active region, where the
chain then continues, simulating the machine’s computation as before. We
call this initial segment of the chain the ramp region. Given a potential
p-isomorphism h that respects chains, it is crucial to note that A and A~!
naturally correspond to a perfect matching of w vertices with ' vertices.
Our goal now is to force h to match some vertex in the ramp region (we
cannot control which) with a vertex in the idle region, thus revealing the
result of the computation as in Theorem 5, and allowing us to compute L in
polynomial time. Some vertices in the ramp region are small enough so that
h may match them with vertices in the active region—we call these ramp
vertices “unsafe”. h may also match ramp vertices with other ramp vertices.
To force h to match some ramp vertex with an idle vertex, we ensure that
there are an unequal number of w and W' vertices among all the “safe” ramp
vertices not matched by h to unsafe ramp vertices. Such safe vertices are
either matched with each other (one in w, the other in w') or to vertices in
the idle region, and thus at least one safe ramp vertex must be matched with
an idle vertex. We can ensure the inequality in the numbers of such safe
vertices simply by deciding on which side (w or w') to place the root of the
chain—the start of the ramp.

An added difficulty with the present proof is in selecting which maps A to
diagonalize against. In Theorem 5, all we needed was to make the reductions
sufficiently dishonest to win against any honest reduction. Here, we can
only win against p-isomorphisms, so we view explicitly all possible pairs of
polynomial-time functions, on the suspicion that any pair may represent a

p-isomorphism and its inverse.

Proof of Theorem 6 Let L be an element of (PSPACE — P). As we noted
in the proof of Theorem 5 there is a reversible Turing machine, M, that

computes Az.(z, L(z)) in polynomial space.
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Terminology: Suppose h:w — w' is a p-isomorphism. We say h matches
w with z when either A(w) = z or h(z) = w.

Recall from §2 that (p;), .y is an acceptable numbering of the partial
recursive functions based on a coding of deterministic, multi-tape Turing

machines, and that the function
wi(z), if Turing machine ¢ on input =z
T = M,z,n. halts within n steps;

0, otherwise

is computable in O((|7| + |z| + n)?) time. For each k, £, and z, define

Yi(z) = T(k,z, (|2 +2)").
¢r(z), if Turing machine k on input z halts
= within (|z| + 2)" steps;

0, otherwise.

It is easily seen that, for each polynomial time computable function h, there
is a k such that for all sufficiently large £, h = 9. By the time bound for
T it also follows that Ak, £, z.%f(z) is computable in O( (k| + 3|z|)%¥) C
90(([kl+14l+1=)*) time.

We turn now to defining the 1-reductions f and g.

To encode M-computations into f, g-chains, we use essentially the same
tools developed in the proof of Theorem 5. Let 7, o, ID, IT), and # be as in
the previous proof. For all z, 2, z, m € w and all I € ID, define:

ramp(z,i,m) = 3(z,i,m).
active(z,1,1) = 3{z,1,#(I)) + 1.

idle(z,1,2,1) = 3(z,1,2z,#(I)) + 2.
Since (-,-) and # are one-one, so are ramp, active, and idle, and, since (-, -)
and # are also onto, the ranges of ramp, active, and idle partition w.

The definitions of f and g that follow involve the 0, 1-valued function
d. Defining d will be the chief concern of the next part of the proof. For
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the moment all that we need to know about d is that it is polynomial-time

computable and, for all z and 1,
(10) {y:d(z,7,0Y) = 0} is a nonempty, finite initial segment of w.
Now, define f:w — ' by the following set of equations.

f(ramp(z,7,m)) =
ramp(z,,m), if m ¢ 0%;
active(z, 1, initial(z)), if m = 0°;
ramp(z, 1, 0Y), if m = 0¥t and d(z,7,m) = 0;

ramp(z,i,m), if m = 0¥ and d(z,i,m) # 0.

active(z,1,7(1)), if I € ID;
vdle(z,1,0, 1), otherwise.

f(active(z,1,1)) = {

f(edle(z,3,2,1)) = idle(z,i,z+1,1).

Let g have the same definition as f except that we regard g as a function
from w’ to w. From the discussion of 7, o, G, # in the previous proof and the
definitions of ramp, initial, active, idle, f, and g, it follows that f and g are
one-one, polynomial-time computable, and p-invertible. For each z and 1, let
C.,;: denote the chain with the w-vertex ramp(z, %, 0°). Our construction will
mostly ignore the f, g-chains other than the Cg;’s.

A C,; chain has the following structure, depicted in Figure 3. It begins
with a root vertex of the form ramp(z,7,0%) (in w or w') where y > 0 is largest
such that d(z,7,0¢¥) = 0. Then the chain “ramps” down from ramp(z,z, 0%)
to ramp(z,1,0¥"') and then to ramp(z,7,0¥"2) and so on until it arrives
at ramp(z,7,0°) € w. Note that by the definitions of f and g, each C,;
vertex of the form ramp(z,,0%) is in w precisely when y is even. Also
note that by the definition of ramp, as y decreases, so does the length of
ramp(z,1,0%). Returning to our tour of C,;, the vertex ramp(z,1,0°%) €
w is followed by the vertex active(z,1,initial(z)) € w'. Then, as in the

previous proof, f and g conspire to simulate M in input z—successive active
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Figure 3: Ramp portion of C, ;.

vertices encode successive states of M’s computation and the idle vertices all
encode the final state of this computation. As in the previous proof, there
is a monotone polynomial pr such that all the active vertices of C; are of
length < pr(|z| + |¢|) and there are infinitely many idle vertices of length
> pu(lal + i)

In our construction the ramp vertices of the C,;’s play the following
role. Suppose for this paragraph that h:w — ' is a chain-respecting p-
isomorphism. Fix z and fix an 7 such that : = (j, &, ¢), ¢f = h, and ¥} = b7,
Since both h and h™! are computable in An.(n + 2)¥ time, both h and h~*
must be An.(n +2)¥-honest. Consider v, a ramp-vertex of C,; in either w or
w' with |v] > (pr(|z| + |i]) +2)¥. Since h and h™! respect f, g-chains, by our
choice of pr, h must match v with either a ramp or idle vertex of C,;. Our
intent is to arrange that if h is a chain-respecting p-isomorphism as above,
then for some v in the ramp part of C,;, h matches v with an idle vertex of
Ce,i.- Our definition of d below will force the existence of such a v of length
> (pr(|z| + |i]) + 2)¥. The vertex v is a “safe” vertex, as described in the
proof outline above. Once we know such a v exists, we can compute L(z)
as in Theorem 5 by first finding v, then computing the idle vertex that v 1s
matched with via h. This vertex encodes the result of M’s computation on
input z, i.e., L(z). The function d will be such that for fixed 7, this whole
process can be done in time polynomial in z, thus contradicting that L ¢ P.

Thus h cannot respect chains as we assumed.
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We introduce the following function and sets to help define d. For each
z and 7, where ¢ = (j, k,£) define:

where v is the smallest number of

lv| : the form ramp(z, i ,0%) such that

bnd(z,1) = h
o > (po(|e| + li]) + 2)

v is a ramp vertex of C,;
w1th lv| > bnd(z,1)

" with [v'| > bnd(z,1)

v is a ramp vertex of C;
. with ¢l( )EV,; and
[v] < bnd(z,i)| < [$(v)]

V' _ { v’ is a ramp vertex of C,; }

v’ is a ramp vertex of Cy;
W,; = v' € w': with ¥f(v) € Vo; and
lv| < bnd(z,7)| < |[Pi(v")]

The vertices in V, ;U V’ are the safe vertices, depicted in Figure 3. The rest
of the ramp vertices are unsafe. Thus W;; (respectively W, ;) comprises
those unsafe ramp vertices which are mapped to safe ramp vertices via ¢f
(respectively ¥¢). The sets W, ; and W, ; are clearly finite and, given that
(10) holds, so are V,; and V,;. Our definition of d below will guarantee
that V. ; and V; will be nonempty. Also note that, for each z and 4, where
1= (3,k,£), we have that

(11) (pr(lz] + i) + 2) < bnd(z,1)

and the least ramp vertex of C,; which is of length > bnd(z, 1) is an w-vertex.
This last property of bnd helps to simplify the definition of d and the proof

of Lemma 24 below.
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Lemma 23. Suppose h is a p-isomorphism and suppose that i = (j, k,£) is
such that h = ¢f and h™! = ¢f. Then, for all z, if

(12) Vaill = IVl # IWeall = [Wesll,

then thereisav € (V;; U Vz'z) that is matched by h with either an idle vertex

of C,; or a vertex outside of Cy ;.

Proof Fix z and suppose that h matches each v € (V;; UV} ;) with a vertex
in C, ;. We show that h matches some v € (V,;U V;_.'z) with an idle vertex of
Cai.

From the definitions of bnd, V;;, and V; and from (11), we have that
| min(V,,; UV, )| > bnd(,i) > (pr(|z| + [i]) +2)"“. Since both k and A~" are
An.(n 4 2)-honest, h cannot match a member of V,; U V,; with a number
of length less than pr(|z| + |7|). Hence, by our choice of pr, we have that h
cannot match any element of V,; U V_,Lfﬂ- with any active vertex of C,;. By
assumption, h matches each v € (V,; U V;_.'z) with some vertex in C ;. Hence,
it follows that both h(V;;) and A=*(V];) are contained in the ramp and idle
parts of Cp ;.

By the definitions of W ; and W ,,

h(Wei) = {'v € V‘,,_fZ : h7'(v) is a ramp vertex ¢ V,; }
h_l(W;,i) = {'v € Vzi: h(v)is a ramp vertex ¢ Vi }
Hence, since h and h™! are one-one, it follows that

h(v) € (V;; — H(Ws;:)) or h(v) is } '

an idle vertex of C,;

V;:,i — h_l(W;_,ﬂ-) = {’U € V;;,i :
h—l ! c Vm-—h‘lW’-
Vb = ey W) € (Ve = BEOVL) or)
’ * h71(v’) is an idle vertex of C, ;
Figure 4 shows the situation that may typically occur in the ramp region.
Now suppose h matches every v € (V;; UV, ;) with a ramp vertex. Then

it must be the case that h provides a 1-1 correspondence between V; —

h=Y (W, ;) and V] ; — h(W,;), and thus
(13) IVoi =BT (W) = [IVa; — R(Wa)ll,
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ramp(z,i,0°) Wei length (pr.(|2| + |i]) + 2)1

root

to the
active region

Figure 4: Root is chosen to yield one more unmatched safe w'-vertex.

Since h_l(Wa':ﬂ-) C Ve, and h(W;;) C V,;, we have that |V, ; — (W, 23l =
Vel 02 s V=) = V2l Fel o, e
Wil = [|R( “)H and [|W, ;|| = [|A~ o _,“)||, since h and h~! are one-one.
Therefore, by some trivial algebra, (13) is seen to violate (12), and so h must
match some v € (V,; U V;_.'z) with an idle vertex of C, ;. [0 Lemma 23

For each z and 7, the job of d is to compute and compare ||W, ;| and
|W, ;|| and then arrange (through d’s use in the definitions of f and g) for
|| V,il| and ||V, ;]| to be such that (12) is satisfied. Owing to the way bnd(z,1)
was defined, the lowest ramp vertex of Cy; of length > bnd(z,?) is in w, and
thus the left hand side of (12),

, 1, 1if the root of C; is an w-vertex;
(14) IVaill = [[Vasll = ’

, otherwise.

Thus we only need to make d so that the highest ramp vertex (root) of C, ;
o i w HE |[Wal = W]

In defining d we have to worry about the time cost of determining ||W, ;||
and ||W, ;|| which will not be Poly(|z| + |i|). To help in bounding this cost,
define

t = Az,i.[2-bnd(z,i)- (3 bnd(z,3) + |j| + |k|)?¥, where i = (j,k, ) ] .

Since the number of ramp vertices of C,; of length < bnd(z,) is no more

than bnd(z,4) and since Mk, £,y.9Lt(y) is computable in O( (|k| + 3|y|)?#)
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time, it follows that one can test whether ||W || = [|[W, ;|| in O(¢(z,1)) time.
The factor of 2 in the definition of ¢t makes ¢(z,7) even for all arguments. This
will help simplify the definition of d and the proof of Lemma 24 below. By
standard results we have that there is a monotone polynomial p, such that
one can compute t(z,1) within p,(¢(z,7)) time. Using this last observation
one can, given i, ¢, and y, compare y and t(z,) in Poly(y+ |z|+ |7|) time by:
running the computation of ¢(z,7) for p,(y) steps and, if the computation
halts within p,(y) steps, doing the comparison, and if the computation fails
to halt within y steps, then one knows that y < t(z,1).

Finally, define, for each z, 7, and m,
0, if m = 0¥ and either (i) y < t(z,?) or
d(z,i,m) = (i) y = t(z,3) and [|[Wesl| = [[W,l;
1

, otherwise.

By the remarks of the previous paragraph, we have that d is polynomial-time
computable. Also, since t is total, it follows that (10) holds.

Lemma 24. For all o and i, || Vaal| — [ V23]l # [ W2 — [Wasl.

Proof Fix z and i. Recall that the ramp vertices of C,; in w are precisely
those vertices of C; of the form ramp(z,%,0%) where y is even. Also recall
that by the definition of ¢, ¢(z,7) is even. Thus:

[Weasll = [IW,ll

= {y:d(z,5,0") =0} = {y:y <i(z,1)}
(by definition of d)

=—> the highest ramp vertex of C,; is in w
(by definitions of f & g and since t(z,) is even).

[Weasll # [IWell

— {y:d(2,5,0°) =0} = {y:y <it(z,5)—1}
(by definition of d)

— the highest ramp vertex of Cy; is in '’
(by definitions of f & g and since t(z,) is even).
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Therefore, by (14) we have:

the highest ramp vertex of C,;isinw = ||Vl =1+ ||V;’Z||

the highest ramp vertex of Cy; is in ' = |[Voil| = ||V.;]|.
Therefore, we obtain |[W,;|| = [|W, ;| <= |[|[Vasll # [|Va;l| which implies
that [|Vell — IVl # IWesll = IWesl|. [0 Lemma 24

Lemma 25 (The Chain Crossing Lemma). Suppose h:w — ' is a
p-isomorphism. Then, h crosses infinitely many chains. In fact, for each
i = (k,j,£) such that h = v} and h™! = 1/J§, there are infinitely many z’s
such that for some for some z in the ramp part of C,;, h matches z with a

vertex not in Cg ;.
Proof Fix an i such that s = (k,5,£), h = 9%, and h™! = ¢f We first note

Claim. Given z, one can enumerate all the ramp vertices of C,; in time

Poly(|z|).

The claim follows from the observations that (i) Az.ramp(z,i,0°) is
polynomial-time computable, (ii) f and g are both p-invertible, (iii) by the
definition of ramp, there is at most one number of the form ramp(z,i,0%)
at any given length, and (iv) by the definitions of bnd and ¢, there is a
polynomial p; such that, for each z, t(z,7) < p;(z).

Now, suppose by way of contradiction that the lemma is false and A
respects chains almost everywhere. Then, by Lemmas 23 and 24, for all but
finitely many z, h matches some v € (V;U V‘,,_fz) with an idle vertex of Cy ;.

So, for all but finitely z, to determine L(z) one can:

1. Find the smallest ramp vertex of C; ; that h matches with an idle vertex

of Cy;. Let idle(z,1, 2, I) be this idle vertex.

2. From idle(z,1, 2z, I) extract I, the final i.d. of M on input #, and from
I determine L(z)

34



By the claim and the fact that both A and A™! are polynomial-time com-
putable, one can carry out step 1 above in time Poly(|z|). Thus, it follows
as in the proof of the previous theorem that one can also carry out step 2 in
time Poly(|z|). Therefore, we have that, given z, one can determine L(z) in
time Poly(|z|) which contradicts the assumption that L ¢ P. O

Finally, let r enumerate all the roots of the C.;’s and C,;’s, so that
r(2(z,1)) is the root of C,; and r(2(z,1) 4+ 1) is the root of C|

x> as in Theo-
rem 5. We can choose g again to be An.[n + 1] since the smallest vertex on
C.; is of length at least 3(z,7,0). Let s = Az.ramp(z,0,1). It is straightfor-
ward to check that for these choices of r, g, and s, all the hypotheses of the
Chain Painting Lemma are satisfied. Therefore, by this lemma there exist
sets A and B that are p-invertible 1-equivalent, 2-tt complete for EXP, but

which are not p-isomorphic. 0 Theorem 6

Theorem 26. There are polynomial-space 1-equivalent sets which are not

polynomial-space isomorphic.

Proof Sketch We again follow the plan of the previous proofs: we construct
1-1 polynomial-space computable functions f and g; prove that every honest
polynomial-time computable function must promptly cross infinitely many
of a particular collection of f, g-chains; then, by chain painting, we produce
the two sets required by the theorem. Our definition of f and g uses a set
R € PSPACE described in the next paragraph. For the moment all we need
to know about R is that, for each length, there is exactly one element of R

of that length. Here is our definition of f:w — w'. For each z € w, define

02", if ¢ = 0™, where n is odd or a power of 2;
f(z)=14 0*"t! ifz € Rand |z|=2% + 2 for some n > 1;
T otherwise.

?

Let g have the same definition as f except that we regard g as a function

from w' to w. From our assumptions on R, it is straightforward to verify that
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f and g are 1-1 and polynomial-space computable. Given any fixed y, let

n = 2Y¥ + 1. The functions f and g give rise to the following f, g-chain Cy:
PUCAY | NERY LAY LA AT

where 2’ € w' is both the root of the chain and the unique w’-vertex of length

ov* 1 2 = 9(legn)* gych that z' € R. The successor to ' in Cy—the element

0"—we call the trough of C,,.

Suppose h:w — w' is a polynomial-space isomorphism that respects f, g-
chains. For all sufficiently large y, h must match the trough with the root
of Cy, for otherwise, h must match either the root or the trough to a super-
exponentially large vertex. We can define R to diagonalize explicitly against
all such trough-root mappings. Such a diagonalization can be accomplished,
since there is a function, computable in space polynomial in 2(°8™)’* (the
size of the root), which is universal over all functions computable in space
polynomial in n (the size of the trough). We omit the details of how R is
defined.

Thus by explicit diagonalization, any such A must cross infinitely many
chains. By the remarks following the proof of Lemma 19, we can define the
two desired sets. O

Proposition 27. There are sets A and B which are m-equivalent as wit-
nessed by polynomial-time computable functions f and g such that
(i) f and g are one-one,
(ii) f and g are p-invertible,
(iii) f,g-chains are acyclic and the n-chains have polynomial-time uni-
form extremities,

but A and B are not 1-li-equivalent.

Proof Sketch For each y € w, let ¥ denote y + 1. Define f:w — ' by the

two following equations.

f(yl) = yll.

+ : — |yt
y*0, if |ly| = |y7|;
ooy = {1 Al

y01, otherwise.
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Let g have the same definition as f except that we regard g as a function
from w' to w. Clearly, f and g satisfy (i), (ii), and (iii): each chain has root
0™ for some 7, followed by 2"~ — 1 vertices of length n ending at 1"710, then
succeeded by 1”101, 171011, etc. The only exceptions are the two chains
consisting entirely of verticies in 1*.

Now, suppose that h:w — w’is 1-1 and length-increasing. If h respects
f, g-chains, then, from simple cardinality considerations, for all n, h must
map some vertex of length n to one of length at least 2"!, hence, h cannot be
polynomial-time. Thus any such polynomial-time computable A must cross
infinitely many f, g-chains. So, we are done by the remarks following the

proof of Lemma 19. O
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Appendix. The Proof of the Chain Painting Lemma

Recall that, for an f, g-chain C with root r and an h:w — ' or W’ — w, we

say that h promptly crosses C if and only if there is an z € C such that

(a) h(z) ¢ C,

(b) z is no more than the |r|*h

successor of r, and

(c) all successors of r up through z have length < |r|.

Recall from §2 the definition of (%;)

polynomial-time computable functions. To handle maps both from w to '

icw> our standard enumeration of the

and from ' to w on the same footing, we define, for all s:

Y9 = 1, regarded as a map w — W'

Y1 = i, regarded as a map w' — w.
Recall that Az, m1/:1(m) is computable in 2Pwes(lil+=]) time,

Lemma 28 (The Chain Painting Lemma). Suppose the following:
1. fiw— W' and g:w' — w are 1-1 and polynomial-time computable.

2. rw— (wUW') is 1-1, 2P°¥(")_time computable, and, for each z, (z)

is the root of an f,g-chain. For each z, let C, denote r(z)’s chain.
3. q is a polynomial such that, for all z and all z € C,, |z| < q(|2|),

4. s:w — w is polynomial-time computable, and for all z,y € w, s(y) and
s(z) are in f,g-chains distinct from all the C,’s and from each other.

For each y, let D, denote s(y)’s chain.

5. Given a z € (wU ') and z € w, deciding whether z is a vertex of C,

can be done in Poly(|z| 4+ z)-time.

6. Given a z € (wUw'), deciding whether z is in one of the D,’s, and, if

so, which y, all can be done in Poly(|z|)-time.

Then, given all of the above, there exist sets A and B that satisfy:
(a) f: A<I B and g: B<} A,
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(b) A and B are 2-tt complete for EXP, and

(c) there is no polynomial-time computable h:w — W' (respectively,
h:w' — w) which both promptly crosses infinitely many C,’s and that <P -
reduces A to B (respectively, B to A).

Proof This stage-by-stage construction is an effective version of the chain
coloring method described after the proof of Lemma 19, where all chains are
colored either blue or green. Fix a set H which is polynomial-time many-
one complete for EXP. The C,’s will be used to diagonalize against the
polynomial-time functions 1);, and the D,’s will be used in pairs to 2-tt
encode the set H into A. To help with presentation, we use the following

notation: for all n € w, let

-/ =

n—+1 if nis even;
n—1 ifnisodd.

The construction starts with all f, g-chains of the form Cj or D unpainted
and unreserved, all the rest of the chains painted green, and all 7 € w un-
cancelled. The chains Cj, Dy, and Dsgy; are painted at stage k. We also
maintain the invariant that for all j, D,; and D,;; are painted with oppo-
site colors if § € H, and with the same color if 7 ¢ H. This will ensure that
H 1s 2-tt reducible to A.

Stage k > 0. (Note: Ck, Dax, and Dapyq are currently unpainted.)
(Part A: Painting Cy.)
Find the least uncancelled : < k, if any, such that
(i) ¢; promptly crosses Ck and

(i1) no cancelled 7' < 7 has reserved Cj.

Condition 1. There is no such 3.

Then paint C} green.
Condition 2. There is such an z.

Let zp be the nearest successor of the root of Cp (with zx € wif 7 is
even; with @) € w' if 7 is odd) such that v;(zk) is not in Cj.
If 4;(zr)’s chain is already painted, then
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(i) paint Ck the opposite color, and
(i) cancel 7 and uncancel all the currently cancelled numbers larger
than 3.
If 4;(z)’s chain is unpainted, then:
If ¢;(zx)’s chain is C; for some 7, then paint Cj blue and have ¢ reserve
C;.
Otherwise, ¥;(z)’s chain is D; for some j > 2k.
If either D; or D_; is reserved by some cancelled i’ < 7, then paint
Cr green and leave 7 uncancelled.
Otherwise,
(i) paint Ck blue,
(i1) have 7 reserve D;, removing any reservations on D_j;, and
(iii) cancel 7 and uncancel all the currently cancelled numbers

larger than 3.

(Part B: Painting Dy and Dag ;.

Note: by construction, at least one of Dy, and Dagy1 is unreserved.)

If either Dyy or Dypyq is reserved by some 7/,
then paint that chain green,

otherwise, paint Dy green.

Paint the remaining of the two chains Dy or Dygy; blue if £ € H, and
green if k ¢ H.

End stage k.
Define:

A = {z €w: z’s chain is blue }.
B = {y€uw': y’s chain is blue }.

It is immediate that f: A<® B and g: B<} A.

Claim 1. Suppose i is such that, for infinitely many z, 1; promptly crosses
C.. Then:
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(a) There is a stage k at which ¢ is cancelled and never uncancelled at
any later stages.
(b) There is a k and a z € C} such that z and ;(z) are in opposite

colored chains.

Proof By induction on 2. Fix 2 > 0 and assume the claim holds for all
1" < 1. Then there is some stage ko such that for all i/ < 3, either 7’ is
cancelled and never uncancelled at a later stage, or else, for each k' > ko,
1y never promptly crosses Cy. Moreover, since an i’ can reserve at most one
chain at any stage, there is a k; > k such that no ' < 7 reserves any Cy or Dy
with k' > k;. Suppose 9; promptly crosses infinitely many of the C,’s. Then
there i1s a k > k; such that ; promptly crosses Cx. By the construction, it
1s clear that 2 is cancelled at stage k, if not before. Furthermore, 7 can be
uncancelled only when a lesser ' < 7 is cancelled, which cannot happen by
our choice of k. Therefore, (a) holds.

Now let k be such that 7 is cancelled at stage k and never uncancelled
afterwards. If ¢ reserves some chain at stage k, then, by construction, the
reserved chain eventually will be painted green. From this observation and

the construction, it follows that z; and v;(zy) are in opposite colored chains.

Thus, with z = @y, (b) is seen to hold. O Claim 1

Claim 2. In stage k, if Condition 2 holds and 1 and z;, are as under that
condition, then |v;(zx)| is bounded by 9Poly(lkl)

Proof We have 1 < k and |zx| < |r(k)|. By hypothesis 2 of the lemma,
|zi| is 2P°¥(k)_bounded. Therefore, we have that |;(z;)| is bounded by
oPoly(log(lil+lz¢]))  and thus by 2Po(IkD O Claim 2

Claim 3. A and B are in EXP.

Proof Given z € (w U '), it suffices to show how to compute the color of
2’s chain in 27°%(#)_time. We run the construction until z’s chain is painted.

That this can be done within 27°%(1z)_time follows from these observations:
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By hypotheses 3 and 5 of the lemma, one can decide, within 2P°¥(l).
time, whether z is in one of the C}’s, and if so, which k, by exhaustively
checking every k with |k| < g(|z|).

By hypothesis 6, we can decide in Poly(|z|)-time which Dy, if any,

contains z.

If 2’s chain i1s not one of the Cy’s or Dy’s, then it is painted green and

we are done.

Suppose z € Ck, U Dy, for some ky. By hypotheses 3 and 6, |kol is
polynomially bounded in |z|, so we need to run the construction for
only an exponential (in |z|) number of stages to determine the color of

2’s chain.

It now suffices to show that each stage k& < kg can be simulated in
2Polu(lkol)_time. As of the end of stage k we need to keep track of:

the color of C;, Dj;, and Ds;y for each 1 < k&,
which of the 1 < k are cancelled and which are uncancelled,

which of the C; (7 < ko) are reserved by which ¢ < k, and

- W N

which of the D; are reserved by which 7 < k.

The information in (1)—(3) can easily be kept in a look-up table of size
Poly(k) = 2°Uk) By hypothesis 6 and the definition of a stage, each j
in (4) has length polynomially bounded in |¢;(zx )|, for some 3, k' < k.
Thus by Claim 2, |[j| € 2P°#(k), Hence all the information in (1)-(4)

above can be kept in a 2P°#(*)_size look-up table.

Given the look-up table described above after stage &k — 1, it is now
straightforward to verify that each part of stage k can be simulated in
oPoly([k)_time, i.e., the look-up table can be updated in 2P°#(¥)_time to

reflect the state of affairs after stage k. In particular,

— Detecting whether 9; promptly crosses Cj, can be done in 27w (lil+I%])_

time.
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— Finding z;, can be done in 2P°%(*)_time.

— Determining to which chain v;(;) belongs can be done in 2P°¥(%1).

time.

o After stage ko, the color of z’s chain is read from the current look-up
table.
O Claim 3

Claim 4. A and B are 2-tt hard for EXP.

Proof It is clear by the construction that for all k, Dy, and Dygyq are
painted opposite colors if and only if £ € H, if and only if exactly one of
s(2k) and s(2k+1) is in A. Since s is polynomial-time computable, H parity-
2-tt reduces to A, and thus A is 2-tt hard for EXP. Since A <} B, B is also
2-tt hard for EXP. O Claim 4

Conclusion (a) of the lemma holds as mentioned above. Claims 3 and 4

prove (b). Conclusion (c) follows from Claim 1. O
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