
Mergeable Heaps

October 28, 2024

Abstract

These notes describe the mergeable heap abstract data type and cover its implementation
via binomial heaps.

1 Mergeable Heaps

A mergeable heap is an abstract datatype that is a collection of keys (together with optional satellite
data) drawn from a linearly ordered universe. As with all heaps, there are two versions: min-heap
and max-heap. The min-heap version, which we will discuss exclusively, supports these basic
operations (in no particular order):

Insert(x,H) — insert x into heap H

DeleteMin(H) — delete the item with minimum key from heap H

FindMin(H) — return the item with minimum key in heap H (the heap is unchanged)

DecreaseKey(H,x, k) — decrease the key of node x in H to k (assumes k ≤ x.key; the node x and
any satellite data is accessed externally, i.e., not through H; x’s satellite data is unchanged)

Merge(H1, H2) — combine heaps H1 and H2 into a single heap H (H is returned; H1 and H2 are
destroyed)

Delete(x,H) — remove item x from heap H (x is accessed externally)

2 Binomial Trees

A binomial tree is a rooted, ordered tree given by the following recursive definition:

Definition 1. Let d ≥ 0 be any integer.

• A binomial tree of degree 0 consists of a single node (the root).

• A binomial tree of degree d + 1 consists of two binomial trees T1 and T2 of degree d stuck
together in such a way that the root of T1 is the leftmost child of the root of T2.

Here are the first four binomial trees, of degrees 0, 1, 2, and 3; the degree of each node is shown:

1



0

1

0

2

1 0

0

3

2 1 0

1 0 0

0

Basic facts about binomial trees:

1. The number of children of the root equals the degree.

2. Every node in a binomial tree is the root of a binomial (sub)tree.

3. A binomial tree of degree d has height exactly d and size exactly 2d.

4. The degrees of the children of a degree-d node, from left to right, have degrees d− 1, d− 2,
. . . , 0.

5. The number of nodes on level i of a degree-d tree (where 0 ≤ i ≤ d) is the binomial coefficient(
d
i

)
= d!

i!(d−i)! . This explains the name, “binomial tree.”

All of these facts are easily shown by induction on d except the last one, which is shown by induction
on i using the “Pascal’s triangle” recurrence:

(
d
i

)
=

(
d−1
i−1

)
+

(
d−1
i

)
for 0 < i < d with boundary

conditions
(
d
0

)
=

(
d
d

)
= 1.

3 Binomial Heaps

A binomial heap is a sequence of binomial trees of strictly increasing degree. Data (including
keys) are in the tree nodes, each tree being in min-heap order. A node can be implemented as a
record (struct) with five fields:

data — This includes the key and a reference to any satellite information.

degree — The degree of the node.

parent — A pointer to the parent node (Null for the root).

leftmost child — A pointer to the leftmost child of the node (Null for a leaf node).

right sibling — A pointer to the sibling node immediately to the right (Null for the rightmost
child of a parent).

A binomial heap H is a simple linked list of the roots of its trees, where the right sibling pointer of
each root points to the root of the next tree (the last tree having a Null pointer). The attribute
H.trees points to the head (first root) of this list or is Null for an empty heap. H.min is an
optional additional attribute that points to the node with minimum key in the heap (necessarily
one of the roots, since each tree is in min-heap order). We will assume this attribute is included
with H.

2



A binomial heap has a structure (i.e., arrangement of nodes without regard to the data they
contain) uniquely determined by the number of items in the heap. Let’s see why. Every natural
number n is the unique sum of increasing powers of 2: the exponents correspond to the positions of
the 1’s in n’s binary representation. Since a binomial tree of degree d has exactly 2d many nodes,
a binomial heap of n items must be made up of trees whose degrees are these exponents. For
example, a binomial heap with 13 items is made up of trees with degrees 0, 2, and 3 in that order
(13 = 20 + 22 + 23 = 1101 in binary).

It follows that a binomial heap with n items has ≤ 1 + lg n many trees, each of degree ≤ lg n.

3.1 Min-heap operations on binomial heaps

Here are all min-heap operations for a binomial heap except for Merge (some use Merge or
DecreaseKey as a subroutine). Times given are worst-case times, assuming H has n items.

FindMin(H) — Return H.min. This takes Θ(1) time.

Insert(x,H) — Create a new heap H ′ with x as its sole element (a single tree of degree 0). Then
set H := Merge(H,H ′). This takes Θ(lg n) time.

DecreaseKey(H,x, k) — Change x’s key to k, then “bubble up”: While k < x.parent.key, swap
x with its parent (just the data, not the degrees or the pointers, so the structure of the tree
does not change). If k < H.min, then set H.min := x (which must be a root by this point).
This takes Θ(lg n) time.

Delete(x,H) — Call DecreaseKey(H,x,−∞) then DeleteMin(H). This takes Θ(lg n) time.

DeleteMin(H) — Unlink the tree root r pointed to by H.min from the list of tree roots (which
requires finding the predecessor root, if any); reverse the list of r’s children so that the degrees
are increasing, giving it the structure of a binomial heap H ′; set H := Merge(H,H ′) and
update H.min if necessary. This takes Θ(lg n) time.

The Merge operation uses the subroutine MergeTree for combining two binomial trees of
the same degree. MergeTree takes Θ(1) time.

MergeTree(T1, T2) // Precondition: T1 and T2 are binomial trees of the same degree d.
if T1.key < T2.key:

Swap(T1, T2) // Pointer swap; now T1.key ≤ T2.key.
Prepend root of T2 onto the front of the list of T1’s children // I had this backward in lecture.
Increment T1.degree
Return T1 // T1 is a “carry tree” of degree d+ 1.

The Merge(H1, H2) operation on heaps H1 and H2 takes time Θ(lgn), where n is the total
number of items in H1 and H2 combined. It produces a heap H in three steps:

1. Merge the two linked lists H1.trees and H2.trees into a single linked list L in ascending order
by degree. This step is just like the recombination phase of MergeSort. If there are ties,
add the tree from H1 to L first then H2, so that the tree from H1 appears in L before the
tree from H2. (This is an arbitrary convention and does not affect run time or correctness.)
L may contain duplicate degrees, and if so, they always appear consecutively.

3



2. In a loop, traverse L from front to rear by advancing a list pointer p, merging trees of equal
degree and placing the results back into L as you go. This is accomplished as follows: Initially,
p points to the first tree in L and advances through L until it becomes Null. At any time, let
T1 be the tree that p currently points to, T2 the tree immediately after T1 on L (if it exists),
and T3 the tree immediately after T2 on L (if it exists). Each iteration of the loop applies
one of three cases:

Case 1: If T2 does not exist or if T1.degree < T2.degree, then there is nothing to combine;
advance p.

Case 2: If T1.degree == T2.degree == T3.degree, then there is nothing to combine. Advance
p as in Case 1. (T1 must have been a “carry tree” resulting from a previous MergeTree
operation; this is the only way to have three trees of equal degree on L.)

Case 3: If T1.degree == T2.degree and T3 either does not exist or T3.degree > T2.degree, then
replace T1 and T2 on L with MergeTree(T1, T2) and leave p pointing to the combined
tree (i.e., don’t advance p before the next iteration of the loop).

3. Set H.trees := L, and set H.min to either H1.min or H2.min, whichever has the smaller key
value. Return H.

Three things to note: (1) the list L stays in ascending order by degree throughout the loop, and
when the loop finishes, L consists of trees of strictly increasing degree; (2) at any time, there are
at most three trees in L of the same degree; (3) no actual data is moved during the entire Merge
operation as only pointers change.

Example

Here is a sample Merge operation. Let H1 and H2 be as below (.min pointers are omitted, as are
non-root key values, which are of no consequence):

H1.trees H2.trees 62453

After Step 1 we have

p

L 654 23

4



The loop in Step 2 iterates as follows:

p

p

L

Case 3:

L

Case 1:

L

p
Case 3:

p

L

Case 2:

6

5

4

652

4

3

4

3

4

3

2

2

2

6

3

65

5

Step 3 sets H.trees := L. This is the combined heap.

5



3.2 A more efficient implementation of binomial heaps

Since the shape of a binomial heap, including the degrees of all the roots, is uniquely determined
by its size, we can forgo the degree field in each node in favor of a single size attribute for the
entire heap.

6


