
CSCE 750, Homework 7

This assignment covers material from the lectures on Chapters 19–22 [3rd ed. Chapters 21–24],
in preparation for Quiz 7.

Page 523, Exercise 19.1-1 [3rd ed. Page 564, Ex 21.1-1]: The Connected-Components
procedure is run on the undirected graph G = (V,E), where V = {a, b, c, d, e, f, g, h, i, j, k},
and the edges of E are processed in the order (d, i), (f, k), (g, i), (b, g), (a, h), (i, j), (d, k), (b, j),
(d, f), (g, j), (a, e). List the vertices in each connected component after each iteration of
lines 3–5.

Page 523, Exercise 19.1-3 [3rd ed. Page 564, Ex 21.1-3]: During the execution of Connected-
Components on an undirected graph G = (V,E) with k connected components, how many
times is Find-Set called? How many times is Union called? Express your answers in terms
of |V |, |E|, and k.

Page 526, Exercise 19.2-2 [3rd ed. Page 567, Ex 21.2-2]: Show the data structure that re-
sults and the answers returned by the Find-Set operations in the following program. Use
the linked-list representation with the weighted-union heuristic. Assume that if the sets con-
taining xi and xj have the same size, then the operation Union(xi, xj) appends xj ’s list onto
xi’s list.

1 for i = 1 to 16
2 Make-Set(xi)
3 for i = 1 to 15 by 2
4 Union(xi, xi+1)
5 for i = 1 to 13 by 4
6 Union(xi, xi+2)
7 Union(x1, x5)
8 Union(x11, x13)
9 Union(x1, x10)
10 Find-Set(x2)
10 Find-Set(x9)

Page 531, Exercise 19.3-1 [3rd ed. Page 572, Ex 21.3-1]: Redo Exercise 9.2-2 using a disjoint-
set forest with union by rank and path compression. Show the resulting forest with each node
including its xi and rank.

Page 552, Exercise 20.1-1 [3rd ed. Page 592, Ex 22.1-1]: Given an adjacency-list represen-
tation of a directed graph, how long does it take to compute the out-degree of every vertex?
How long does it take to compute the in-degrees?
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Page 553, Exercise 20.1-3 [3rd ed. Page 592, Ex 22.1-3]: The transpose of a directed graph
G = (V,E) is the graph GT = (V,ET), where ET = {(v, u) ∈ V × V : (u, v) ∈ E}. That is,
GT is G with all its edges reversed. Describe efficient algorithms for computing GT from G,
for both the adjacency-list and adjacency-matrix representations of G. Analyze the running
times of your algorithms.

Page 562, Exercise 20.2-1 [3rd ed. Page 601, Ex 22.2-1]: Show the d and π values that re-
sult from running breadth-first search on the directed graph of Figure 20.2(a), using vertex 3
as the source.

Page 562, Exercise 20.2-2: Show the d and π values that result from running breadth-first
search on the undirected graph of Figure 20.3, using vertex u as the source. Assume that
neighbors of a vertex are visited in alphabetical order.

NIT1: Redo the previous exercise (Exercise 20.2-2) except use this graph instead:

r s t u

v w x y

Use vertex u as the source. [3rd ed. Page 601, Ex 22.2-2]

Page 563, Exercise 20.2-7 [3rd ed. Page 602, Ex 22.2-7]: There are two types of professional
wrestlers: “faces” (short for “babyfaces,” i.e., “good guys”) and “heals” (“bad guys”). Be-
tween any pair of professional wrestlers, there may or may not be a rivalry. You are given the
names of n professional wrestlers and a list of r pairs of wrestlers for which there are rivalries.
Give an O(n+ r)-time algorithm that determines whether it is possible to designate some of
the wrestlers as faces and the remainder as heels such that each rivalry is between a face and
a heel. If it is possible to perform such a designation, your algorithm should produce it.

Page 571, Exercise 20.3-2 [3rd ed. Page 610, Ex 22.3-2]: Show how depth-first search works
on the graph of Figure 20.6. Assume that the for loop of lines 5–7 of the DFS procedure
considers the vertices in alphabetical order, and assume that each adjacency list is ordered al-
phabetically. Show the discovery and finish times for each vertex, and show the classification
of each edge.

Page 575, Exercise 20.4-1 [3rd ed. Page 614, Ex 22.4-1]: Show the ordering of vertices pro-
duced by Topological-Sort when it is run on the dag of Figure 20.8. Assume that the
for loop of lines 5–7 of the DFS procedure considers the vertices in alphabetical order, and
assume that each adjacency list is ordered alphabetically.

NIT2: Recall that Corollary 21.2 [3rd ed. Corollary 23.2] identifies certain edges that can safely be
added to a partial minimum spanning tree. The diagram below shows a partially completed
minimum spanning tree, with edges selected for the MST in bold. Which edges does this
corollary guarantee are safe to add to the MST next?
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NIT3: Use Kruskal’s algorithm to find a minimum spanning tree of the graph below. List the edges
considered by the algorithm in order, and indicate whether each one is selected or rejected
by the algorithm.
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Page 598, Exercise 21.2-6 [3rd ed. Pages 637–638, Ex 23.2-8]: Professor Borden proposes
a new divide-and-conquer algorithm for computing minimum spanning trees, which goes as
follows. Given a graph G = (V,E), partition the set V of vertices into two sets V1 and V2

such that |V1| and |V2| differ by at most 1. Let E1 be the set of edges that are incident
only on vertices in V1, and let E2 be the set of edges that are incident only on vertices
in V2. Recursively solve a minimum-spanning-tree problem on each of the two subgraphs
G1 = (V1, E1) and G2 = (V2, E2). Finally, select the minimum-weight edge in E that crosses
the cut (V1, V2), and use this edge to unite the resulting two minimum spanning trees into a
single spanning tree.

Either argue that the algorithm correctly computes a minimum spanning tree of G, or provide
an example for which the algorithm fails.

NIT4: Use Prim’s algorithm to find a minimum spanning tree of the graph of the previous NIT
problem, shown above. Assume that all of the vertices except the root are added to the
priority queue with key ∞ at the start. Use node A as the root. List the vertices added to
the MST, in order, along with any DecreaseKey operations performed on the queue.

Page 624, Exercise 22.3-1 [3rd ed. Page 662, Ex 24.3-1]: Run Dijkstra’s algorithm on the
directed graph of Figure 22.2, first using vertex s as the source and then using vertex z as
the source. In the style of Figure 22.6, show the d and π values and the vertices in set S after
each iteration of the while loop.

Page 625, Exercise 22.3-5 [3rd ed. Page 663, Ex 24.3-4]: Professor Gaedel has written a pro-
gram that he claims implements Dijkstra’s algorithm. The program produces v.d and v.π for
each vertex v ∈ V . Give an O(V + E)-time algorithm to check the output of the profes-
sor’s program. It should determine whether the d and π attributes match those of some
shortest-paths tree. You may assume that all edge weights are nonnegative.
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Page 625, Exercise 22.3-7 [3rd ed. Page 663, Ex 24.3-6]: Consider a directed graph G =
(V,E) on which each edge (u, v) ∈ E has an associated value r(u, v), which is a real number
in the range 0 ≤ r(u, v) ≤ 1 that represents the reliability of a communication channel from
vertex u to vertex v. Interpret r(u, v) as the probability that the channel from u to v will not
fail, and assume that these probabilities are independent. Give an efficient algorithm to find
the most reliable path between two given vertices.
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