
CSCE 750, Homework 4

This assignment covers material from the lectures on Chapters 8, 9, 11, 12, and 13, in prepara-
tion for Quiz 4.

NIT1: In the search problem, the input is an array A of size n along with a search key k. The
output is an integer i such that A[i] = k, or −1 if k is not in A. Prove, using the decision
tree method, that any correct algorithm for this problem based on comparisons (<,>,≤,≥,
and =) between elements takes Ω(lg n) time.

Page 236, Exercise 9.2-2 [3rd ed. Page 219, Ex 9.2-3]: Write an iterative version of Ran-
domized-Select.

Page 236, Exercise 9.2-3 [3rd ed. Page 220, Ex 9.2-4]: Suppose thatRandomized-Select
is used to select the minimum element of the array A = ⟨2, 3, 0, 5, 7, 9, 1, 8, 6, 4⟩. Describe a
sequence of partitions that results in a worst-case performance of Ransomized-Select.
[Optionally use A = ⟨3, 2, 9, 0, 7, 5, 4, 8, 6, 1⟩ instead to match the 3rd ed.]

Page 241, Exercise 9.3-3: Show how to use Select as a subroutine to make quicksort run in
O(n lg n) time in the worst case, assuming that all elements are distinct.

Page 243, Problem 9-1: Largest i numbers in sorted order
You are given a set of n numbers, and you wish to find the i largest in sorted order using a
comparison-based algorithm. Describe the algroithm that implements each of the following
methods with the best asymptotic worst-case running time, and analyze the running times
of the algorithms in terms of n and i.

a. Sort the numbers, and list the i largest.

b. Build a max-priority queue from the numbers, and call Extract-Max i times.

c. Use an order-statistic algorithm to find the ith largest number, partition around that
number, and sort the i largest numbers.

Pages 244–245, Problem 9-3(b,c,d): Weighted median
Consider n elements x1, x2, . . . , xn with positive weights w1, w2, . . . , wn such that

∑n
i=1wi = 1.

The weighted (lower) median is an element xk satisfying∑
xi<xk

wi <
1

2
and

∑
xi>xk

wi ≤
1

2
.

For example, consider the following elements xi and weights wi:

i 1 2 3 4 5 6 7

xi 3 8 2 5 4 1 6
wi 0.12 0.35 0.025 0.08 0.15 0.075 0.2

1

For these elements, the median is x5 = 4, but the weighted median is x7 = 6. To see why the
weighted median is x7, observe that the elements less than x7 are x1, x3, x4, x5, and x6, and
the sum w1 + w3 + w4 + w5 + w6 = 0.45, which is less than 1/2. Furthermore, only element
x2 is greater than x7, and w2 = 0.35, which is no greater than 1/2.

b. Show how to compute the weighted median of n elements in O(n lg n) worst-case time
using sorting.

c. Show how to compute the weighted median in Θ(n) worst-case time using a linear-time
median algorithm such as Select from Section 9.3.

The post-office location problem is defined as follows. The input is n points p1, p2, . . . , pn with
associated weights w1, w2, . . . , wn. A solution is a point p (not necessarily one of the input
points) that minimizes the sum

∑n
i=1wi d(p, pi), where d(a, b) is the distance between points

a and b.

d. Argue that the weighted median is a best solution for the one-dimensional post-office
location problem, in which points are simply real numbers and the distance between
points a and b is d(a, b) = |a− b|.

Page 281, Exercise 11.2-2 [minor rewording of 3rd ed. Page 261, Ex 11.2-2]: Consider a
hash table with 9 slots and the hash function h(k) = k mod 9. Demonstrate what happens
upon inserting the keys 5, 28, 19, 15, 20, 33, 12, 17, 10 wiht collisions resolved by chaining.

Page 282, Exercise 11.2-5 [minor rewording of 3rd ed. Page 261, Ex 11.2-5]: You need to
store a set of n keys in a hash tabel of size m. Show that if the keys are drawn from a universe
U with |U | > (n− 1)m, then U has a subset of size n consisting of keys that all hash to the
same slot, so that the worst-case searching time for hashing with chaining is Θ(n).

Page 282, Exercise 11.2-6 [minor rewording of 3rd ed. Page 261, Ex 11.2-6]: You have stored
n keys in a hash table of size m, with collisions resolved by chaining, and you know the length
of each chain, including the length L of the longest chain. Describe a procedure that selects
a key uniformly at random from among the keys in the hash table and returns it in expected
time O(L · (1 + 1/α)).

Page 292, Exercise 11.3-1 [3rd ed. Pages 268–269, Ex 11.3-1, reworded]: You wish to search
a linked list of length n, where each element contains a key k along with a hash value h(k).
Each key is a long character string. How might you take advantage of the hash values when
searching the list for an element with a given key?

NIT2: Write an algorithm that uses a hash table to solve the element uniqueness problem:

• Input: An array A of n elements.

• Output: “True” if the elements of A are all distinct, or “False” if A contains at least
one pair of duplicate elements.

How efficient is your algorithm in the worst case? How efficient is it under the simple uni-
form hashing assumption? Can you design a different algorithm, not based on hashing, that
performs better?

2

Page 315, Exercise 12.1-1 [3rd ed. Page 289, Ex 12.1-1]: For the set {1, 4, 5, 10, 16, 17, 21}
of keys, draw binary search trees of heights 2, 3, 4, 5, and 6.

Pages 319, Exercise 12.2-1 [3rd ed. Page 293, Ex 12.2-1, reworded]: You are searching for
the number 363 in a binary search tree containing numbers between 1 and 1000. Which of
the following sequences cannot be the sequence of nodes examined?

a. 2, 252, 401, 398, 330, 344, 397, 363.

b. 924, 220, 911, 244, 898, 258, 362, 363.

c. 925, 202, 911, 240, 912, 245, 363.

d. 2, 399, 387, 219, 266, 382, 381, 278, 363.

e. 935, 278, 347, 621, 299, 392, 358, 363.

Page 320, Exercise 12.2-4 [3rd ed. Page 293, Ex 12.2-4, reworded]: Professor Kilmer claims
to have discovered a remarkable property of binary search trees. Suppose that the search for
key k in a binary search tree ends up at a leaf. Consider three sets: A, the keys to the left of
the search path; B, the keys on the search path; and C, the keys to the right of the search
path. Professor Kilmer claims that any three keys a ∈ A, b ∈ B, and c ∈ C must satisfy
a ≤ b ≤ c. Give a smallest possible counterexample to the professor’s claim.

Page 337: Exercises 13.2-3, 13.2-4 [Page 314: Exercises 13.2-3 (correction: change “left subtree”
to “right subtree”), 13.2-4]

Page 337, Exercise 13.2-3 [3rd ed. Page 314, Ex 13.2-3, corrected]: Let a, b, and c be ar-
bitrary nodes in subtrees α, β, and γ, respectively, in the right tree of Figure 13.2. How do
the depths of a, b, and c change when a left rotation is performed on node x in the figure?

Page 337, Exercise 13.2-4 (corrected) [3rd ed. Page 314, Ex 13.2-4]: Show that any ar-
bitrary n-node binary search tree can be transformed into any other arbitrary n-node binary
search tree [with the same keys] using O(n) rotations. (Hint: First show that at most n− 1
right rotations suffice to transform the tree into a right-going chain.)

NIT3: Suppose min-treap T 1 contains the following (key:priority) pairs:

(A:10), (B:7), (C:25), (D:9), (E:23), (F :2), (G:4), (H:5), (I:73), (K:65) .

a. Draw T as a binary tree.

b. Show the result of inserting (J :8) into T .

c. Show the result of inserting (J :1) into T .

For each insertion, list the rotations performed by the insertion.

1A min-treap differs from the treap described in the notes only in that the priorities from a min-heap rather than
a max-heap.

3

