
CSCE 750: Analysis of Algorithms

Course Notes

Stephen A. Fenner

Lecture 1
Introduction to Algorithms Analysis

I’m assuming you’ve all had CSCE 350 or the equivalent. I’ll assume some basic things from
there, and sometimes quickly review the more important/subtle points.

We’ll start with Appendix A in CLRS — Summations. Why? They are essential tools in
analyzing the complexity of algorithms.

A First Example

Consider the following two C code fragments:

/* Fragment 1 */
sum = 0;
for (i=1; i<n; i*=2)

for (j=0; j<i; j++)
sum++;

and

/* Fragment 2 */
sum = 0;
for (i=1; i<n; i*=2)

for (j=i; j<n; j++)
sum++;

Note the subtle difference. Is there a difference in running time (order-of-magnitude as a
function of n)?

Yes there is. Sample 1 runs in time Θ(n) and Sample 2 runs in time Θ(n log n), so Sample 2
runs significantly longer.

[Recall:

• f = O(g) means f(n) is at most a constant times g(n) for all n large enough.

• f = Ω(g) means f(n) is at least a (positive) constant times g(n) for all n large enough.
(Equivalently, g = O(f).)

1

• f = Θ(g) means both f = O(g) and f = Ω(g). “f = Θ(g)” is an equivalence relation between
f and g.

Also, log n means log2 n.]
Here’s the intuition: in both fragments, the variable i does not run from 1 to n at an even pace.

Since it doubles each time, it spends most of its time being very small compared to n, which makes
the first j-loop run faster and the second j-loop run slower.

Let’s analyze the running times more rigorously. We generally don’t care about constant factors,
so it is enough to find, for each fragment, an upper bound and a lower bound that are within a
constant factor of each other. This looseness usually makes life a lot easier for us, since we don’t
have to be exact.

Claim 1 The running time for Fragment 2 is O(n log n).

Proof The body of the inner loop (j-loop) takes O(1) time. Each time it runs, the j-loop iterates
n − i ≤ n times, for a time of O(n) per execution. The outer i-loop runs about log n many times
(actually, exactly dlog ne many times). So the total time for the fragment (including initialization,
loop testing, and increment) is O(n log n). 2

Claim 2 The running time for Fragment 2 is Ω(n log n).

Proof Note that for all iterations of the i-loop except the last one, the j-loop iterates at least n/2
times (because i < n/2 and thus n− i > n− n/2 = n/2). Thus the sum variable is incremented at
least n

2 × (log n− 1) times total, which is clearly Ω(n log n). 2

Claim 3 The running time for Fragment 1 is Ω(n).

Proof To get a lower bound, we only need to look at the last iteration of the i-loop! (Digression:
the late Paul Erdős, arguably the greatest mathematician of the 20th century, once described the
art of mathematical analysis as “knowing what information you can throw away.”) The value of i
in the last i-loop iteration must be at least n/2. In this iteration (as in all iterations), j runs from
0 through i− 1, so the sum variable is incremented i ≥ n/2 times. 2

But maybe we threw too much away in ignoring the previous i-loop iterations, so that our lower
bound of Ω(n) is not tight enough. Actually, it is tight.

Claim 4 The running time for Fragment 1 is O(n).

Proof Now we must be more careful; the simple analysis that worked for Fragment 2 is not good
enough here. We must bite the bullet and take a sum of the running times of the j-loop as i
increases. For all 0 ≤ k < dlog ne, during the (k+1)st iteration of the i-loop we clearly have i = 2k.
For this (k + 1)st iteration of the i-loop, the j-loop iterates i = 2k times, so it takes time at most
C · 2k for some constant C > 0. So the total time for the fragment is

T ≤
dlog ne−1∑

k=0

C · 2k.

2

This is a finite geometric series (see below) whose exact value is

C · 2
dlog ne − 1

2− 1
= C · (2dlog ne − 1).

But dlog ne < log n + 1, so

T ≤ C · (2log n+1 − 1) < C · 2log n+1 = 2Cn,

which is O(n) as claimed. Even if we add the extra bits (initialization, loop testing, incrementing),
these can be “absorbed” into the O(n) bound. 2

headSeries

Geometric Series

Geometric series come in two flavors: finite and infinite. A finite geometric series is of the form
n−1∑
i=0

ri,

where r is a constant (real, but could also be complex), and n is a nonnegative integer. If r = 1,
then this sum is clearly equal to n. To find a closed form when r 6= 1, let S be the value of the sum
above. Then

S − rS =
n−1∑
i=0

ri − r

n−1∑
i=0

ri

=
n−1∑
i=0

ri −
n−1∑
i=0

ri+1

=
n−1∑
i=0

ri −
n∑

i=1

ri

= 1− rn.

The last equation holds because most of the terms in the two sums cancel. This is called telescoping.
Dividing by 1− r (which is not zero!), we get

S =
1− rn

1− r
.

An infinite geometric series has the form
∞∑
i=0

ri,

which is the limit of the finite geometric series as n→∞. We have
∞∑
i=0

ri = lim
n→∞

n−1∑
i=0

ri

= lim
n→∞

1− rn

1− r

=
1

1− r
− 1

1− r
lim

n→∞
rn.

3

This last limit exists if and only if |r| < 1, in which case it is zero. So for |r| < 1, the infinite
geometric series above has value 1/(1− r).

Lecture 2
More About Sums

Arithmetic Series

How to compute a closed form for
∑n

i=1 i? This method is attributed to Gauss as a child: Let
S =

∑n
i=1 i. Then reversing the terms, we see that S =

∑n
i=1(n + 1 − i). Then adding these two

sums term by term, we get

2S =
n∑

i=1

(i + (n + 1− i)) =
n∑

i=1

(n + 1) = n(n + 1),

so S = n(n + 1)/2. Notice that this means that
∑n

i=1 i = Θ(n2).

Higher Powers

Closed forms can be computed for
∑n

i=1 ik for any integer k ≥ 0. We have
∑n

i=1 i2 = n(n+1)(2n+
1)/6 and

∑n
i=1 i3 = n2(n + 1)2/4. More generally, we know that

n∑
i=1

ik = Θ(nk+1)

for all integers k ≥ 0.

Supplement: Finding Closed Forms for
∑n−1

i=0 ik

The sum
∑n−1

i=0 ik has a closed form for every integer k ≥ 0. The closed form is always a polynomial
in n of degree k + 1. Here’s how to find it using induction on k. For each i and k ≥ 0 define
ik := i(i − 1)(i − 2) · · · (i − k + 1) (k many factors). First, we’ll find a closed form for the sum∑n−1

i=0 ik, and from this we can easily get a closed form for
∑n−1

i=0 ik. Consider the sum

S :=
n−1∑
i=0

[
(i + 1)k+1 − ik+1

]
.

This sum telescopes in two different ways. First of all, we clearly have that S = nk+1−0k+1 = nk+1.
Second, each term of the sum can be factored:

n−1∑
i=0

[
(i + 1)k+1 − ik+1

]
=

n−1∑
i=0

[((i + 1)i(i− 1) · · · (i− k + 1))− (i(i− 1) · · · (i− k + 1)(i− k))]

=
∑

i

[(i + 1)− (i− k)] i(i− 1) · · · (i− k + 1)

= (k + 1)
∑

i

ik.

4

Equating these two expressions for S and dividing by k + 1, we get

n−1∑
i=0

ik =
nk+1

k + 1
=

1
k + 1

n(n− 1)(n− 2) · · · (n− k),

which is a closed form for
∑n−1

i=0 ik. Now to get a closed form for
∑n−1

i=0 ik, we first expand the
product ik completely. For example, for k = 2 we would get i2 = i(i − 1) = i2 − i. We then sum
this for i going from 0 to n− 1 and use the closed form we got above:

n−1∑
i=0

(i2 − i) =
∑

i

i2 =
1

2 + 1
n(n− 1)(n− 2) =

n(n− 1)(n− 2)
3

.

The left-hand side is equal to
∑n−1

i=0 i2−
∑n−1

i=0 i. We already know the second term—it is n(n−1)/2,
and so we move it to the other side:

n−1∑
i=0

i2 =
n(n− 1)(n− 2)

3
+

n(n− 1)
2

=
n(n− 1)(2n− 1)

6
.

So we have a closed form for the sum of squares. For more general k, when we expand ik and sum,
we’ll get some combination

∑
i i

k + · · · , where the other terms all involve sums of smaller powers
of i. Assuming by induction that we have closed forms for all the smaller power sums, we then get
a closed form for

∑
i i

k.
As an exercise, apply the ideas above to find a closed form for

∑n−1
i=0 i3.

Harmonic Series

What about k = −1? We show that
∑n

i=1 1/i = Θ(log n) (more accurately,
∑n

i=1 1/i = ln n+O(1)).
We use the technique of nested sums. Assume n ≥ 1 and let m = blog(n + 1)c, that is, m is the
largest integer such that 2m ≤ n + 1. Then,

n∑
i=i

1
i

=
m−1∑
b=0

2b−1∑
i=0

1
2b + i

+
n∑

i=2m

1
i
. (1)

The inner sum on the right-hand side gives a block of contiguous terms in the sum on the left-hand
side. The last sum on the right gives the terms left over after all the complete blocks are counted.

We use (1) to get both lower and upper bounds on the harmonic series. For the upper bound,
we see that

m−1∑
b=0

2b−1∑
i=0

1
2b + i

≤
m−1∑
b=0

2b−1∑
i=0

1
2b

=
m−1∑
b=0

1 = m,

and
n∑

i=2m

1
i
≤

n∑
i=2m

1
2m
≤ 1,

since there are at most 2m terms in this sum. Thus
∑n

i=1 1/i ≤ m + 1 = O(log n).

5

We do something similar for the lower bound.

m−1∑
b=0

2b−1∑
i=0

1
2b + i

≥
m−1∑
b=0

2b−1∑
i=0

1
2b+1

=
m−1∑
b=0

1
2

=
m

2
,

so
∑n

i=1 1/i ≥ m/2 = Ω(log n).
Differentiating and Integrating Series
Closed forms for some series can be obtained by differentiating or integrating term-by-term

another series with a known closed form. For example, consider the series

n∑
i=1

iri, (2)

for some fixed r 6= 1. There are at least two ways for finding a closed form for (2).
Direct Method: Set S =

∑n
i=1 iri. Then, as in the case of the geometric series, we have

S − rS =
n∑

i=1

iri −
n∑

i=1

iri+1

=
n∑

i=1

iri −
n∑

i=0

iri+1

=
n∑

i=1

iri −
n+1∑
i=1

(i− 1)ri

=
n∑

i=1

iri −
n+1∑
i=1

iri +
n+1∑
i=1

ri

= −(n + 1)rn+1 + r

n∑
i=0

ri

= −(n + 1)rn+1 +
r(1− rn+1)

1− r
,

so
n∑

i=1

iri =
r(1− rn+1)

(1− r)2
− (n + 1)rn+1

1− r
. (3)

Differentiation Method: Differentiate both sides of the equation

n∑
i=0

ri =
1− rn+1

1− r

with respect to r. By linearity of d/dr, we get

n∑
i=0

iri−1 =
−(n + 1)rn(1− r) + (1− rn+1)

(1− r)2
.

Multiplying both sides by r, ignoring the i = 0 term on the left, and rearranging the right gives
(3).

6

Taking the limit as n→∞ in (3), we get, for all r such that |r| < 1,

∞∑
i=1

iri =
r

(1− r)2
.

Note that (n + 1)rn+1 tends to zero, because n + 1 increases only linearly in n, but rn+1 decreases
exponentially in n.

Integrating a series term by term can also be useful.
Exercise Find a closed form for the series

∑∞
i=1

ri

i , where |r| < 1. [Hint: integrate the infinite

geometric series term by term. Doing this is legal because the series
∑∞

i=1

∣∣∣xi

i

∣∣∣ converges uniformly
for x in some neighborhood of r.]

Lecture 3
More Math

Products
A product is like a sum, but the terms are multiplied instead of added. For example,

n! =
n∏

i=1

i.

By convention, an empty sum has value 0, and an empty product has value 1. So in particular,

0! =
0∏

i=1

i = 1.

There are tricks for getting a closed form for a product, but a good fall-back method is to just
take the logarithm (to any convenient base b). This turns the product into a sum. Simplify the
sum, then take b to the power of the result, then simplify further if possible. For example, suppose
we want to evaluate

S =
n∏

i=0

2 · 3i.

Taking the log (to base two) of both sides we have

log S =
n∑

i=0

log(2 · 3i)

=
n∑

i=0

(log 2 + i log 3)

= n + 1 + log 3
n∑

i=0

i

= n + 1 + log 3
n(n + 1)

2
.

7

Taking 2 to the power of each side, we get

S = 2n+1 · 2(log 3)n(n+1)/2

= 2n+1 · (2log 3)n(n+1)/2

= 2n+1 · 3n(n+1)/2.

A quicker (but essentially equivalent) way to get the same closed form is to split the product,
then use the fact that the product of b to the power of some term is equal to b to the power of the
sum of the terms. So we have

n∏
i=0

2 · 3i =
n∏

i=0

2 ·
n∏

i=0

3i

= 2n+1 · 3
Pn

i=0 i

= 2n+1 · 3n(n+1)/2,

as we had before.
Bounding Sums
We’ve already done a few of these. Here’s one more: we show that

∑n
i=1 ik = Θ(nk+1) for all

fixed k ≥ 0.
For the upper bound, we have

n∑
i=1

ik ≤
n∑

i=1

nk = nk+1.

For the lower bound, we have
n∑

i=1

ik ≥
n∑

i=dn/2e

ik

≥
n∑

i=dn/2e

(n

2

)k

≥ n

2

(n

2

)k

=
nk+1

2k+1
.

Integral Approximation
Sums can be approximated closely by integrals in many cases.

Definition 5 Let I ⊆ R be an interval with endpoints a < b (a could be −∞, and b could be ∞).
A function f : I → R is monotone increasing on I if, for all x, y ∈ I, if x ≤ y then f(x) ≤ f(y).
The function f is monotone decreasing on I if we have x ≤ y implies f(x) ≥ f(y).

Theorem 6 Let I, a, and b be in Definition 5, and let f : I → R be some function integrable on
I. For any integers c and d such that a ≤ c− 1 < d + 1 ≤ b, we have∫ d

c−1
f(x)dx ≤

d∑
i=c

f(i) ≤
∫ d+1

c
f(x)dx

8

if f is monotone increasing on I, and∫ d+1

c
f(x)dx ≤

d∑
i=c

f(i) ≤
∫ d

c−1
f(x)dx

if f is monotone decreasing on I.

Proof Define g(x) = f(bxc) and h(x) = f(dxe). Assume first that f is monotone increasing. Then
g(x) ≤ f(x) ≤ h(x) for all c− 1 ≤ x ≤ d + 1. Thus we have∫ d

c−1
f(x)dx ≤

∫ d

c−1
h(x)dx

=
d∑

i=c

f(i)

=
∫ d+1

c
g(x)dx

≤
∫ d+1

c
f(x)dx,

which proves the first two inequalities in the theorem. Now if f is monotone decreasing, then
g(x) ≥ f(x) ≥ h(x), and so we get the same chain of inequalities as above but with the sense of
the inequalities reversed. This proves the second two inequalities in the theorem. 2

It is sometimes useful to know how tight the integral approximation is. This is done by comput-
ing the difference between the upper- and lower-bounding integrals. For the monotone increasing
case (the decreasing case is similar), we have∫ d+1

c
f(x)dx−

∫ d

c−1
f(x)dx

=
∫ d+1

d
f(x)dx−

∫ c

c−1
f(x)dx

≤ f(d + 1)− f(c− 1).

This is usually tight enough for our purposes.
Let’s redo our estimation of

∑n
i=1 ik using the integral approximation method. We can get our

two constants much closer together in this case. Since f(x) = xk is monotone increasing on [0,∞)
for k ≥ 0, we use the first inequalities of Theorem 6 to get

nk+1

k + 1
≤

n∑
i=1

ik ≤ (n + 1)k+1 − 1
k + 1

.

So we get not only that
∑n

i=1 ik = Θ(nk+1) but also that we can choose our constants c1 = 1/(k+1)
and c2 to be anything greater than 1/(k+1), provided we then choose our threshold n0 large enough.

Math Odds and Ends:
More Asymptotic Notation

9

We’ve seen O-, Ω-, and Θ-notation. There are two more o- (little “oh”) and ω- (little omega)
notation.

f(n) = o(g(n)) means that f(n) grows strictly more slowly than any positive constant times
g(n). That is, for any c > 0 there is an n0 such that

f(n) < c · g(n)

for all n ≥ n0. Equivalently,

lim
n→∞

f(n)
g(n)

= 0.

f(n) = o(g(n)) implies f(n) = O(g(n)) and f(n) 6= Ω(g(n)), but is strictly stronger than both
combined.

f(n) = ω(g(n)) means that f(n) grows strictly faster than any positive constant times g(n).
That is, for any c > 0 there is an n0 such that

f(n) > c · g(n)

for all n ≥ n0. Equivalently,

lim
n→∞

f(n)
g(n)

=∞,

or equivalently, g(n) = o(f(n)). f(n) = ω(g(n)) implies f(n) = Ω(g(n)) and f(n) 6= O(g(n)), but
is strictly stronger than both combined.

Modular Arithmetic
For integers a and n with n > 0, we define a mod n to be the remainder after dividing a by n.

That is,
a mod n = a− ba/ncn.

If a mod n = b mod n, then we may write

a ≡ b (mod n).

This is true if and only if n is a divisor of a− b.
Exponentials

lim
n→∞

nb

an
= 0

for any real constants a and b with a > 1. That is, nb = o(an).

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · =

∞∑
i=0

xi

i!
.

In particular, ex ≥ 1 + x for any real x. We also have

ex = lim
n→∞

(
1 +

x

n

)n
.

Two useful identities are

• 1 + x ≤ ex for all x ∈ R.

10

• ex ≤ 1 + x + x2 for all x ∈ R such that |x| ≤ 1.

Logarithms
For all real a > 0, b > 0, c > 0 and n,

a = blogb a,

logc(ab) = logc a + logc b,

logb an = n logb a,

logb a =
logc a

logc b
,

logb(1/a) = − logb a,

logb a =
1

loga b
,

alogb c = clogb a,

where we assume none of the logarithm bases are 1.
The natural logarithm ln x = loge x =

∫ x
1 dr/r satisfies

• ln(1 + x) = x− x2/2 + x3/3− x4/4 + · · · = −
∑∞

i=1(−1)ixi/i (Taylor series),

• lnx ≤ x− 1 for all x > 0.

In mathematics, lnx is often denoted as log x. We will use lg x to denote log2 x.

Lecture 4
Starting Algorithms

Problems, Algorithms, and the RAM Model
Types of problems: decision, search, arrangement, optimization. We have examples for each,

and there can be overlap.
An algorithm is a careful, step-by-step procedure for performing some task. It should allow no

room for judgment or intuition.
To analyze algorithms rigorously, we must express them concretely as programs on a completely

specified mathematical model of computation. One such popular model (which is essentially equiva-
lent to several others) is the RAM (Random Access Machine) model. Defining this model rigorously
would be too tedious, so we’ll only describe it. A RAM algorithm is a sequence of RAM instructions
that act on (read and write) individual registers in a one-way infinite array (indexed 0, 1, 2, . . .).
Each register is a finite sequence of bits. Typical allowed instructions include arithmetic (addition,
substraction, multiplication, and division) on registers (both integer and floating point), loading
and storing values from/in registers, indirect addressing, testing (equality, comparison) of registers
(both integer and floating point), and branching. Thus the RAM model looks like some generic
assembly language.

We count each instruction execution as costing one unit of time. This is only realistic, however,
if we limit the range of possible values that can be stored in a register. A restriction that is
commonly agreed upon is that for problems of size n, each register is allowed to be only c log n bits,
where c ≥ 1 is some constant that we can choose as big as we need for the problem at hand, so

11

long as it is independent of n. If we didn’t restrict the size of registers, then we could manipulate
huge amounts of data in a single register in a single time step (say, by repeated squaring). This is
clearly unrealistic.

Sometimes it is unclear whether or not we should allow a particular operation as a (primitive)
instruction in the RAM model. For example, exponentiation. Generally, exponentiation is not
considered a primitive operation, however, most architectures allow arithmetic shifts by k bits,
which is essentially multiplication by 2k. Provided k is small, we’ll sometimes treat this as a
primitive operation.

Data Structures
Data structures support algorithms, making them faster. Algorithms support data structures

(as basic operations), making them more efficient. We’ll look at algorithms on simple data structures
(linear arrays) at first, then later we’ll look at more sophisticated data structures and the algorithms
that support them.

Lecture 4
A Tale of Two Algorithms

Insertion Sort and MergeSort in pseudocode. MergeSort uses the Divide-and-Conquer tech-
nique, with Merge as the combining subalgorithm.

Analysis: InsertionSort takes Θ(n2) (quadratic) time to sort n numbers, in the worst case. In
the best case, when the list is already sorted or almost sorted, the running time is Θ(n) (linear)
time. The average case (over all possible arrangements of the initial data) is Θ(n2), sort of because
each item is inserted about half way into the sorted list to its left, on average.

Merge takes time Θ(m+n) to merge a sorted list of m items with a sorted list of n items. Since
the total input size is m + n, this makes Merge linear time.

Since MergeSort is recursive, we cannot do a direct tally of the total running time like we did
with InsertionSort. Instead, we let T (n) be the (worst-case) time to MergeSort an array of n items.
Then we do a direct tally of the time for each line of code, and we get the relation

T (n) = 2T (n/2) + Θ(n).

This is an example of a recurrence relation. We’ll see how to solve this and other recurrence relations
soon.

Lecture 6
Recurrences

When an algorithm is recursive, we cannot just add up the component times directly, since we
don’t know how long the recursive calls take. Instead, if we let T (n) be the (worst case) time of
a given recursive algorithm A, then adding up the times gives us an equation expressing T (n) in
terms of T (m) for m < n.

For example, suppose A takes a list of n numbers, and

• in the base case (n = 1, say) runs in constant time, and

• otherwise calls itself recursively twice, each time on a list of size bn/2c, as well as taking Θ(n)
time outside of the recursive calls.

12

Then we know that

T (1) = O(1),
T (n) = 2T (bn/2c) + Θ(n),

where the second equation assumes n > 1. This is an example of a recurrence relation. It uniquely
determines the asymptotic growth rate of T (n). The time for Mergesort roughly satisfies this
recurrence relation. More accurately, it satisfies

T (1) = O(1),
T (n) = T (bn/2c) + T (dn/2e) + Θ(n).

To get a relation that uniquely defines values (not just the asymptotics) of a function bounding
the run time, we supply constants in place of the asymptotic notation:

T (1) = d,

T (n) = 2T (bn/2c) + cn,

where c and d are positive constants. This uniquely determines the value of T (n) for all positive
integers n, and allows us to manipulate it more directly.

When we only care about asymptotics, we often omit c (tacitly assuming c = 1), as well as
omitting the base case, which is always of the form, “if n is bounded by (some constant), then
T (n) is bounded by (some constant).” The actual choice of these constants does not affect the
asymptotic growth rate of T (n), so we can just ignore this case altogether.

Solving Recurrence Relations
We now concentrate on techniques to solve recurrence relations. There are three main ap-

proaches: the substitution method, the tree method, and the master method.
The Substitution Method
This method yields a rigorous proof by induction that a function given by a recurrence relation

has a given asymptotic growth rate. It is, in some sense, the final word in the analysis of that
function. A drawback is that you have to guess what the growth rate is before applying the
method.

Consider the relation

T (0) = 1,

T (n) = 3T (bn/4c) + n2 (for n > 0),

where c > 0 is a constant. Clearly T (n) = Ω(n2), because T (n) ≥ n2 for all n > 0. We guess that
this is tight, that is, T (n) = O(n2). Guessing the asymptotic growth rate is the first step of the
method.

Now we try to prove our guess; we must show (by induction) that there is an n0 and constant
c > 0 such that

T (n) ≤ cn2 (4)

for all n ≥ n0. For the inductive step, we assume that (4) holds for all values less than n, and show

13

that it therefore holds for n (where n is large enough). We have

T (n) = 3T (bn/4c) + n2

≤ 3(cbn/4c2) + n2 (inductive hyp.)
≤ 3c(n/4)2 + n2

=
(

3
16
· c + 1

)
n2.

We’re done with the inductive case if we can get the right-hand side to be ≤ cn2. This will be the
case provided

3
16
· c + 1 ≤ c,

or equivalently, c ≥ 16/13. Thus, so far we are free to choose c to be anything at least 16/13. The
base case might impose a further constraint, though.

Now the base case, where we decide n0. Note that T (0) = 1 > c · 02 for any c, so we cannot
choose n0 = 0. We can choose n0 = 1, though, as long as we establish (4) for enough initial values
of n to get the induction started. We have

T (1) = 4,

T (2) = 7,

T (3) = 12.

All higher values of n reduce inductively to these three, so it suffices to pick n0 = 1 and c = 4, so
that (4) holds for n ∈ {1, 2, 3}. Since 4 ≥ 16/13, our choice of c is consistent with the constraint
we established earlier. By this we have shown that T (n) = O(n2), and hence T (n) = Θ(n2).

In the future, we will largely ignore floors and ceilings. This almost never gets us into serious
trouble, but doing so make our arguments less than rigorous. Thus after analyzing a recurrence by
ignoring the floors and ceilings, if we want a rigorous proof, we should use our result as the guess
in an application of the substitution method on the original recurrence.

Changing Variables
Sometimes you can convert an unfamiliar recurrence relation into a familiar one by changing

variables. Consider
T (n) = 2T (

√
n) + lg n. (5)

Let S be the function defined by S(m) = T (2m) for all m. Then from (5) we get

S(m) = T (2m) = 2T (2m/2) + lg 2m = 2S(m/2) + m. (6)

So we get a recurrence on S without the square root. This is essentially the same recurrence as
that for MergeSort. By the tree or master methods (later), we can solve this recurrence for S to
get S(m) = Θ(m lg m). Thus,

T (n) = S(lg n) = Θ(lg n lg lg n).

The Tree Method
The execution of a recursive algorithm can be visualized as a tree. Each node of the tree

corresponds to a call to the algorithm: the root being the initial call, and the children of a node

14

being the recursive calls made at that node. Each node is labeled with the time taken in that node.
We can often solve a recurrence by looking at the structure of the corresponding tree.

Consider the recurrence
T (n) = T (n/3) + T (2n/3) + n.

The root is labeled n, with two children, the left labeled n/3 and the right labeled 2n/3, etc. The
shallowest leaf in the tree (that is, when the argument is about 1) is along the leftmost path, at
depth log3 n. The deepest leaf is along the rightmost path, at depth log3/2 n. Now we add up the
labels level-by-level, starting at the root (level 0). To get a lower bound on T (n), we only count
full levels, so we go down to the level of the shallowest leaf. Each of these levels is found to add
up to n, so the first log3 n + 1 levels give a total of n(log3 n + 1). Thus T (n) = Ω(n lg n). For an
upper bound, we continue counting all the levels in the tree as if they were full (and thus added up
to n). We thus get an upper bound of n(log3/2 n + 1) = O(n lg n). Thus T (n) = Θ(n lg n).

Lecture 7
Recurrences (continued)

The Master Method
The master method solves recurrences of the form

T (n) = aT (n/b) + f(n)

for a wide variety of functions f(n) and values of a and b. It derives directly from the following
theorem:

Theorem 7 (Master Theorem) Let f(n) be a function, and let a and b be real with a ≥ 1 and
b > 1. Suppose T (n) is given by the recurrence

T (n) = aT (n/b) + f(n),

where we interpret n/b to be either bn/bc or dn/be. Then, letting t = logb a ≥ 0,

1. if there is an ε > 0 such that f(n) = O(nt−ε), then T (n) = Θ(nt).

2. if f(n) = Θ(nt), then T (n) = Θ(nt lg n).

3. if there is an ε > 0 such that f(n) = Ω(nt+ε), and there is a c < 1 such that af(n/b) ≤ cf(n)
for all sufficiently large n, then T (n) = Θ(f(n)).

Proof We will prove the theorem without worrying about floors and ceilings. Also, we’ll only prove
the most important special cases of the theorem—those in which f(n) = nd for some real d ≥ 0.
The general theorem (including floors/ceilings) can be reduced rather easily to these cases.

Let f(n) = nd for d ≥ 0. If d < t, then we are in Case 1. If d = t, then Case 2, otherwise if
d > t then it is Case 3. In any case, using the tree method, we get a completely balanced tree of

15

depth logb n, where the total for level i is aif(n/bi). Thus,

T (n) =
logb n∑
i=0

aif(n/bi)

=
logb n∑
i=0

ai
(n

bi

)d

= nd

logb n∑
i=0

(a

bd

)i

= nd

logb n∑
i=0

ri,

where r = a/bd. This is clearly a finite geometric series. Noting that bd = a/r, and thus logb r =
logb a− d = t− d, we see that r > 1, r = 1, or r < 1 just as t > d, t = d, or t < d, respectively.

We consider the three possibilities:

t > d. This corresponds to Case 1 of the theorem. We have,

T (n) = nd

(
rlogb n+1 − 1

r − 1

)
=

1
r − 1

nd(r · rlogb n − 1)

=
r

r − 1
nd

(
rlogb n − 1

r

)
=

r

r − 1
nd

(
nlogb r − 1

r

)
=

r

r − 1
nd

(
nt−d − 1

r

)
=

r

r − 1

(
nt − nd

r

)
= Θ(nt)

as in Case 1. Note that nd = o(nt).

t < d. This corresponds to Case 3 of the theorem. We first verify the regularity property of f(n) =
nd:

af(n/b) = (a/bd)nd = r · nd = r · f(n),

and thus we can take c = r < 1 to make the regularity property hold. Next, since 0 < r < 1,

16

we see that for all n ≥ 1,

nd = nd
0∑

i=0

ri

≤ nd

logb n∑
i=0

ri

= T (n)

≤ nd
∞∑
i=0

ri

=
nd

1− r
,

and thus T (n) = Θ(nd) = Θ(f(n)), as in Case 3.

t = d. This corresponds to Case 2 of the theorem. We have r = 1, so

T (n) = nd

logb n∑
i=0

1 = nd(logb n + 1) = Θ(nd lg n),

as in Case 3.

2

Remark. In Case 1 of the theorem, the tree is bottom-heavy, that is, the total time is dominated
by the time spent at the leaves. In Case 3, the tree is top-heavy, and the time spent at the root
dominates the total time. Case 2 is in between these two. In this case, the tree is “rectangular,”
that is, each level gives about the same total time. Thus the total time is the time spent at level 0
(the root, i.e., Θ(nt)) times the number of levels (i.e., Θ(lg n)).

The Master Method
Use the master theorem to solve the following recurrences:

1. T (n) = 2T (n/2) + n (Case 2),

2. T (n) = 8T (n/3) + n2 (Case 3),

3. T (n) = 9T (n/3) + n2 (Case 2),

4. T (n) = 10T (n/3) + n2 (Case 1),

5. T (n) = 2T (2n/3) + n2 (Case 3),

6. T (n) = T (9n/10) + 1 (Case 2).

The first recurrence is that of MergeSort. The Master Theorem gives a time of Θ(n lg n). In each
case, go through the following steps:

1. What is a?

2. What is b?

17

3. Compare logb a with the exponent of f(n).

4. Determine which case of the Master Theorem applies (if any)

5. Read off the asymptotic expression for T (n) from the Theorem.

Fast Integer Multiplication

To see a good example of divide-and-conquer with an analysis using the Master method, we look
at the task of multiplying (large) integers. Let’s assume we have two integers b, c ≥ 0, represented
in binary, with n bits each. Here, n is assumed to be large, so we cannot assume as we usually do
that b and c can be added, subtracted, or multiplied in constant time.

We imagine that the b and c are both represented using arrays of n bits: b = bn−1 · · · b0 and
c = cn−1 · · · c0, where the bi and ci are individual bits (leading 0s are allowed). Thus,

b =
n−1∑
i=0

bi2i,

c =
n−1∑
i=0

ci2i.

Addition
The usual sequential binary add-with-carry algorithm that we all learned in school takes time

Θ(n), since we spend a constant amount of time at each column, from right to left. The sum is
representable by n + 1 bits (at most). This algorithm is clearly asymptotically optimal, since the
produce the correct sum we must at least examine each bit of b and of c.

Subtraction
Similar to addition, the usual subtract-and-borrow algorithm takes Θ(n) time, which is clearly

asymptotically optimal. The result can be represented by at most n bits.
Multiplication
Now the interesting bit. If we multiply b and c using the naive grade school algorithm, then it

takes quadratic (Θ(n2)) time. Essentially, this algorithm is tantamount to expanding the product
bc according to the expressions above:

bc =

(
n−1∑
i=0

bi2i

)n−1∑
j=0

cj2j

 =
∑
i,j

bicj2i+j ,

then adding everything up term by term. There are n2 many terms.
Multiplying with Divide-and-Conquer
If n = 1, then the multiplication is trivial, so assume that n > 1. Let’s further assume for

simplicity n is even. In fact, we can assume that n is a power of 2. If not, pad each number with
leading 0s to the next power of 2; this doubles the input size at worst.

Let m = n/2. Split b and c up into their m least and m most significant bits. Let b` and bh be
the numbers given by the low m bits and the high m bits of b, respectively. Similarly, let c` and ch

be the low and high halves of c. Thus, 0 ≤ b`, bh, c`, ch < 2m and

b = b` + bh2m,

c = c` + ch2m.

18

We then have

bc = (b` + bh2m)(c` + ch2m) = b`c` + (b`ch + bhc`)2m + bhch2n.

This suggests that we can compute bc with four recursive multiplications of pairs of m-bit numbers—
b`c`, b`ch, bhc`, and bhch—as well as Θ(n) time spent doing other things, namely, some additions
and multiplications by powers of two (the latter amounts to arithmetic shift of the bits, which can
be done in linear time.) The time for this divide-and-conquer multiplication algorithm thus satisfies
the recurrence

T (n) = 4T (m) + Θ(n) = 4T (n/2) + Θ(n).

The Master Theorem (Case 1) then gives T (n) = Θ(n2), which is asymptotically no better than
the naive algorithm.

Can we do better? Yes. Split b and c up into their low and high halves as above, but then
recursively compute only three products:

x := b`c`,

y := bhch,

z := (b` + bh)(c` + ch).

Now you should verify for yourself that

bc = x + (z − y − x)2m + y2n,

which the algorithm then computes. How much time does this take? Besides the recursive calls,
there’s a linear time’s worth of overhead: additions, subtractions, and arithmetic shifts. There are
three recursive calls—computing x, y, and z. The numbers x and y are products of two m-bit
integers each, and z is the product of (at most) two (m + 1)-bit integers. Thus the running time
satisfies

T (n) = 2T (n/2) + T (n/2 + 1) + Θ(n).

It can be shown that the “+1” doesn’t affect the result, so the recurrence is effectively

T (n) = 3T (n/2) + Θ(n),

which yields T (n) = Θ(nlg 3) by the Master Theorem.1 Since lg 3 .= 1.585 < 2, the new approach
runs significantly faster asymptotically.

This approach dates back at least to Gauss, who discovered (using the same trick) that multi-
plying two complex numbers together could be done with only three real multiplications instead of
the more naive four. The same idea has been applied to matrix multiplication by Volker Strassen.

Lecture 8
Sorting and Order Statistics: Heapsort

1If you’re really worried about the “+1,”, you should verify that T (n) = Θ(nlg 3) directly using the substitution
method. Alternatively, you can modify the algorithm a bit so that only m-bit numbers are multiplied recursively and
the overhead is still Θ(n).

19

Finally, we look at algorithms for some specific problems. Note that we are skipping Chapter 5,
although we will use some of its techniques eventually.

The Sorting Problem

Input: A sequence of n numbers 〈a1, a2, . . . , an〉.

Output: A permutation (reordering) 〈a′1, a′2, . . . , a′n〉 of the input sequence such that a′1 ≤ a′2 ≤
· · · ≤ a′n.

Items usually stored in an array (or a linked list), perhaps as keys of records with additional
satellite data. If the amount of satellite data in each record is large, we usually only include a pointer
to it with the key, in order to minimize data movement while sorting. These are programming details
rather than algorithmic—i.e., methodological—issues, so we usually consider the array to consist
of numbers only.

Sorting is fundamental in the study of algorithms, with a wide variety of applications.
We’ve seen Insertion Sort (Θ(n2) time in the worst case, but sorts in place) and MergeSort

(Θ(n lg n) time), but the Merge subroutine does not rearrange data in place.
We’ll see two other in-place sorting routines: HeapSort (Θ(n lg n) worst-case time) and Quick-

Sort (Θ(n2) worst-case time, but Θ(n lg n) average-case time). Both sort in place (O(1) extra space
used).

The Order Statistics Problem
The ith order statistic of a (multi)set of n numbers is the ith smallest number in the set. We

can find the ith order statistic by sorting the numbers in the set, then indexing the ith element.
This takes time asymptotically equal to that of sorting, e.g., Θ(n lg n) for MergeSort. But there is
actually a linear time algorithm for finding the ith order statistic.

Heaps
A heap is used to implement a priority queue, and is also used in Heapsort
Heaps are collections of objects with keys taken from a totally ordered universe. There are two

types of heap: min heap and max heap. Min heaps support the following operations:

Insertion Adding an element to the heap

Deletion Removing an element with minimum key value

Finding the minimum Returing an object with minimum key value (the heap is unchanged)

Decrease key Decreasing the key value of an element of the heap

Max heaps support the same operations with “minimum” replaced with “maximum” and “decrease”
replaced with “increase.”

An Implementation
Binary Heap: array A with two attributes: length[A] and heap-size[A], which is at most

length[A]. The elements of the heap reside in A[1 . . . heap-size[A]] and can be pictured as an almost
full binary tree. (A binary tree is almost full if all its leaves are either on the same level or on two
adjacent levels with the deeper leaves as far left as possible.

The correspondance between node locations on the tree and array indices is obtained by travers-
ing the tree in level order, left to right within each level. The root is at index 1. The left and right
children of the node with index i have indices 2i and 2i + 1, respectively, and for any nonroot note

20

with index i > 1, the index of its parent is bi/2c. So, for example, the rightmost leaf on the bottom
level has index heap-size[A]. Thus we have the following functions running in O(1) time:

Parent(i)
return bi/2c

Left(i)
return 2i

Right(i)
return 2i + 1

The elements of the heap are kept in either max heap order or min heap order, depending on the
type of heap. Max heap order means that for any 2 ≤ i ≤ heap-size[A] we have A[parent(i)] ≥ A[i]
(the inequality is reversed for min heaps).

Lecture 9
Heaps and Heapsort(continued)

Recall:
A[1 . . . length[A]] holds heap items (numbers)
The actual heap is kept in A[1 . . . heap-size[A]], where heap-size[A] is always less than length[A].
Now, we show how to take an arbitrary array A[1 . . . n] and put it into max-heap order. This

uses MaxHeapify, an important subroutine for other heap operations.
The idea is that we make each subtree a max-heap, starting from the bottom of the tree and

working up toward the root. This means that when we make the tree rooted at index i into a heap,
we can assume that the subtrees rooted at Left(i) and Right(i) are heaps already.

Each leaf is already a max-heap, so we start with the nonleaf with highest index, that is,
Parent(heap-size[A]).

BuildMaxHeap(A,n)
// Makes a max-heap out of the
// first n elements of A.
// Precondition: 1 ≤ n ≤ length[A]

for i ←Parent(n) downto 1 do
MaxHeapify(A,n, i)

heap-size[A]←n

MaxHeapify(A,n, i)
// Makes the subtree of A[1 . . . n]
// rooted at i into a max-heap
// Precondition: 1 ≤ i ≤ n
// Precondition: the subtrees rooted at
// Left(i) and Right(i) are
// in max-heap order
// Method: cascade the root down into the tree

21

m←j←i
repeat forever

if Left(j) ≤ n and A[Left(j)] > A[m] then
m←Left(j)

if Right(j) ≤ n and A[Right(j)] > A[m] then
m←Right(j)

// m is index of largest item
// among A[j], A[left(j)], A[right(j)].
if m = j then

return
else

swap A[j]↔ A[m]
j←m // this doubles j (at least)

We need to show that these algorithms are correct. We leave that for later, but now just mention
that if MaxHeapify correctly does what it is supposed to, then clearly MakeMaxHeap is correct as
well.

We now look at the run time of MaxHeapify and MakeMaxHeap. In MaxHeapify, each iteration
of the repeat-loop takes O(1) time, as well as all the stuff outside the repeat-loop. Thus the time
for MaxHeapify(A,n, i) is asymptotically equal to the number of iterations of the repeat-loop. This
is clearly equal to one plus the depth of the subtree rooted at index i. Clearly, a longest path from
the root in this tree is down the left spine, and the length of this path is the largest k such that
k applications of Right to i is ≤ n. That is, the largest k such that i2k ≤ n. Thus k = blg(n/i)c,
and the number of iterations of the repeat-loop is thus 1 + blg(n/i)c. Therefore, the time for
MaxHeapify(A,n, i) is Θ(blg(n/i)c) = Θ(lg(n/i)).

To get the total time T (n) for MakeMaxHeap(A,n), first we note that clearly, T (n) = Ω(n),
since it has at least bn/2c loop iterations. To get an upper bound, we take a sum and split it. Let
m be least such that n < 2m. Note that 2m ≤ 2n. By the analysis of MaxHeapify, we get that

T (n) = Θ

bn/2c∑
i=1

blg(n/i)c

 .

22

So for large enough n, there is a constant C such that

T (n) ≤ C

bn/2c∑
i=1

blg(n/i)c

≤ C

2m−1∑
i=1

blg(2m/i)c

= C

2m−1∑
i=1

bm− lg ic

= C

2m−1∑
i=1

(m− dlg ie)

= C

m−1∑
k=0

2k−1∑
j=0

(m− dlg(2k + j)e)

≤ C
∑

k

∑
j

(m− k)

= C
∑

k

(m− k)2k

= C

m∑
r=1

r2m−r

= C2m
m∑

r=1

r/2r

≤ C2m
∞∑

r=1

r/2r.

We know that this last sum converges to some constant D (exercise: what is D?). Thus for all
sufficiently large n,

T (n) ≤ CD2m ≤ 2CDn = O(n).

Thus MakeMaxHeap(A,n) takes time Θ(n).
We now implement other heap operations. We do this for max-heaps.

FindMax(A)
// Precondition: heap-size[A] ≥ 1

return A[1]

DeleteMax(A) // Precondition: heap-size[A] ≥ 1
A[1]←A[heap-size[A]]
heap-size[A]←heap-size[A]− 1
MaxHeapify(A, heap-size[A], 1)

Finally, HeapSort:

23

HeapSort(A,n)
// Sort A[1 . . . n]
// Precondition: n ≤ length[A]

MakeMaxHeap(A,n)
while heap-size[A] > 0 do

save ←FindMax(A)
DeleteMax(A) // also decrements heap-size[A]
A[heap-size[A] + 1] ←save

As we’ve seen, MakeMaxHeap(A,n) takes Θ(n) time. The while-loop iterates n times, and the
bulk of the work of each iteration is done by DeleteMax. We’ve seen that DeleteMax called with a
heap of size i takes time Θ(lg i) in the worst case, so the total time taken by the calls to DeleteMax
in the while-loop is asymptotically equal to

D(n) =
n∑

i=1

lg i.

The fact that D(n) = Θ(n lg n) follows from the following inequalities, which hold for n > 0:

n(lg n− 1)
2

=
n

2
lg

n

2

≤
n∑

i=dn/2e

lg
n

2

≤
n∑

i=dn/2e

lg i

≤ D(n)

≤
n∑

i=1

lg n

= n lg n.

Lecture 10
Quicksort

Quicksort is a divide-and-conquer sort that takes Θ(n2) time in the worst case but Θ(n lg n)
time in the average case. Like Mergesort, it splits the list in two, sorts both sublists recursively,
then recombines the results. Unlike Mergesort, the major work is in splitting the list, while the
recombination is trivial.

Quicksort uses a Partition subroutine to split the lists. Partition(A, p, r) takes a list A[p . . . r]
(assuming p ≤ r) and rearranges its elements so that there is an index q such that p ≤ q ≤ r and
A[i] ≤ A[q] ≤ A[j] for all i, j such that p ≤ i < q < j ≤ r. The index q is returned by the Partition
procedure. The value A[q] is called the pivot. Once Partition returns q, we simply sort the sublists
A[p . . . q − 1] and A[q + 1 . . . r] recursively. When the recursive sorting is done, it is clear that the
list is entirely sorted, so there is no recombining step needed.

24

Quicksort(A, p, r)
// Sorts A[p . . . r]

if p < r then
q ←Partition(A, p, r)
Quicksort(A, p, q − 1)
Quicksort(A, q + 1, r)

Quicksort runs fastest when the list is split into roughly equal-sized sublists each time. Thus
the Partition procedure should choose the partition to be at least reasonably close to the median.
If we expect randomly arranged initial data, then any element of A[p . . . r] is just as likely to be
near the median as any other, so we could naively just choose A[p] as the pivot. Let’s call this
value x.

The partitioning procedure described here is closer to Hoare’s original partitioning procedure
than the one given in the textbook. It is not particularly better or worse than the textbook’s, just
different. We start from the extremes of the list and work towards the middle, whenever we come
upon a pair of indices i < j for which A[i] > x > A[j], we swap A[i] with A[j] and continue. We
end up somewhere in the array, and this index is the return value q. We move x into A[q] and
return.

Verifying the correctness of this procedure is a tricky business, so the pseudocode includes
several assertions to help with this. You should verify that all assertions are true each time they
occur.

Partition(A, p, r)
// Precondition: p ≤ r

x←A[p] // x is the pivot
i←p
j←r + 1
// A[p] = x throughout the following loop.
repeat

// i < j and A[i] ≤ x.
repeat j←j − 1 until j ≤ i or A[j] < x
// j ≥ i and A[j] ≤ x.
// All elements of A[j + 1 . . . r] are ≥ x.
repeat i←i + 1 until i ≥ j or A[i] > x
// All elements of A[p . . . i− 1] are ≤ x.
if i < j then

// A[i] > x > A[j]
swap(A[i], A[j])

until i ≥ j
// p ≤ j ≤ r and j ≤ i.
// (Actually, either i = j or i = j + 1.)
// A[j] ≤ x.
// All elements of A[j + 1 . . . r] are ≥ x.
// All elements of A[p . . . i− 1] are ≤ x.
// Thus all elements of A[p . . . j] are ≤ x.
swap(A[p], A[j])

25

// A[j] = x and A[p] ≤ x.
// Thus all elements of A[p . . . j] are ≤ x.
q←j
// A[q] = x.
return q

The time taken by Partition is clearly asymptotically dominated by the number of times i is
incremented and j is decremented in the inner repeat-loops, since each happens at least once in any
iteration of the outer repeat-loop. But i = p and j = r + 1 initially, and afterwards, j ≤ i ≤ j + 1,
so the total number of increment/decrement operations is between r− p + 1 and r− p + 2. Letting
n = r − p + 1 be the number of elements in the list, we see that Partition takes time linear in n,
i.e., Θ(n).

In this version of Partition, the pivot is always the first element of the (sub)list. If the initial
n-element list is already sorted, then the first element is also the least, so the partition is into an
empty list and a list of size n − 1, which is also sorted. Thus if T (n) is the time for Quicksort in
this case, we have

T (n) = T (n− 1) + Θ(n),

which is easily solved to get T (n) = Θ(n2). This is the worst case behavior of Quicksort. The best
case is when the pivot is always close to the median. Then we get essentially the same recurrence
as with Mergesort, yielding T (n) = Θ(n lg n). Assuming a uniformly random input distribution,
one can also show that the average time for Quicksort over all possible input arrangements is also
Θ(n lg n); the pivot is close enough to the median most of the time on average. (This analysis is
done in the textbook.)

Unfortunately, it is often not reasonable to assume a completely random distribution. For
example, the list may be almost sorted, which leads in our case behavior close to the worst case.
Some alternative deterministic partition strategies can help with some of these cases, for example,
choosing the pivot to be the median of A[p], A[r], and A[bp + r/2c] (the so-called median-of-
three strategy), which gives good behavior when the list is almost sorted. Still, there are initial
arrangments (rather contrived) that make the median-of-3 strategy exhibit worst-case behavior.

Another approach is to choose the pivot at random from A[p . . . r]. This procedure is no longer
deterministic, but randomized. We assume a procedure Random(p, r) that returns an integer in the
range p . . . r uniformly at random, i.e., so that each integer in the range has an equal probability of
being returned. We also assume that successive calls to Random return independently random—
i.e., uncorrelated—values. Finally, it is reasonable to assume that Random runs in constant time
for “reasonable” values of p and q.

RandomPartition(A, p, r)
m ←Random(p, r)
swap(A[p], A[m])
return Partition(A, p, r)

When analyzing a randomized algorithm, we usually do not average over different inputs, but
rather over the random choices made in the algorithm for any fixed input. We now see that for
any initial arrangement of A[p . . . r] the expected running time of RandomizedQuicksort(A, p, r)
(averaged over all possible sequences of return values of Random) is Θ(n lnn), where n = r −

26

p + 1 and RandomizedQuicksort is the same as Quicksort except that we replace Partition with
RandomPartition.

Consider the first call to RandomizedQuicksort(A, p, r). Since the pivot is chosen uniformly at
random from A[p . . . r], the return value of the first call to RandomPartition(A, p, r) is distributed
uniformly at random in the range p . . . r. Thus if k is the size of the left-hand list (the size of the
right-hand list then being n− k− 1), its possible values range from 0 to n− 1, inclusive, with each
size occurring with probability 1/n. Let E(n) be the expected time for RandomizedQuicksort of n
elements. Then we see that E(n) is an average over the expected running times for each possible
value of k. Thus for all n ≥ 2 (that is, when partition occurs and recursive calls are made),

E(n) = Θ(n) +
1
n

n−1∑
k=0

(E(k) + E(n− k − 1))

= Θ(n) +
2
n

n−1∑
k=0

E(k)

≤ an +
2
n

n−1∑
k=0

E(k),

where a is some constant such that an bounds the running time of the initial call to RandomPar-
tition.

We get an upper bound for E(n) using the substitution method. We guess that E(n) ≤ cn lg n+b
for some constants b, c > 0, since we guess (we hope!) that the average case should act like Θ(n lg n).
(The additive term b is important for the base case. Since lg 1 = 0 and 0 lg 0 = 0 by convention, the
equation above cannot hold for n = 0 or n = 1 unless b is big enough, i.e., b ≥ max(E(0), E(1)).)

So we fix n ≥ 2 and assume that E(m) ≤ cm lnm + b for all m < n, where lnn is the natural
logarithm (to base e) of n. We wish to show that E(n) ≤ cn lnn+ b. We use the natural logarithm
here because we will use an integral approximation. We have

E(n) ≤ an +
2
n

n−1∑
k=0

E(k)

≤ an +
2
n

n−1∑
k=0

(ck ln k + b)

= an + 2b +
2c

n

n−1∑
k=1

k ln k

≤ an + 2b +
2c

n

∫ n

1
x lnx dx

= an + 2b +
2c

n

(
n2 lnn

2
− n2

4
+

1
4

)
= cn lnn− c

(
n2 − 1

2n

)
+ an + 2b

≤ cn lnn− c(n− 1)
2

+ an + 2b

≤ cn lnn + b,

27

with the last inequality holding provided

c ≥ 2(an + b)
n− 1

.

Since n ≥ 2, we have
2(an + b)

n− 1
≤ 4(an + b)

n
≤ 4a + 2b,

and therefore it suffices first to let
b = max(E(0), E(1))

to handle the case where n < 2, then to let

c = 4a + 2b.

This proves that E(n) = O(n lnn) = O(n lg n) as desired.
Putting it all together, we see that RandomizedQuicksort runs in expected time Θ(n lg n).

Lecture 11
Comparison-Based Sorting Lower Bounds,

Selection Problem

A comparison-based sorting algorithm is one which only inspects the data when comparing two
elements. There are other sorting algorithms that take advantage of certain properties of the data,
such as: the data are integers in a certain range, or each datum is given in binary, for example.
These are not comparison-based, since they look at and manipulate the data in ways other than
simple comparisons.

All the sorting algorithms we’ve seen so far (Insertion Sort, MergeSort, HeapSort, QuickSort)
are comparison-based.

Today we show that any deterministic (e.g., not randomized) comparison-based sorting algo-
rithm requires Ω(n lg n) time to sort n items in the worst case. In particular, in the worst case,
such an algorithm makes Ω(n lnn) comparisons. This shows that MergeSort and HeapSort are
asymptotically optimal worst-case comparison-based sorting algorithms. One can also show (we
won’t) that any deterministic or randomized comparison-based sorting algorithm must also take
Ω(n lg n) time in the average case, so QuickSort is optimal in the average case.

For the proof, we model the behavior of a comparison-based algorithm by a decision tree.
Each nonleaf node of our decision tree is labeled with a comparison, and its subtrees represent the
alternative computations based on the answer to the comparison. Our comparisons are binary (e.g.,
“Is A[17] < A[14]?”), so our decision tree is a binary tree. A particular execution of the algorithm
corresponds to a path through the tree from the root to a leaf. Each intermediate node along the
path corresponds to the algorithm making the corresponding comparison, and the path continues
according to the answer to the comparison. The leaf represents the end of the computation.

Let P be any deterministic comparison-based algorithm that correctly sorts any initial arrange-
ment of n distinct items. Let T be its corresponding decision tree.

Claim 8 T has at least n! leaves.

28

Proof There are n! ways of arranging n distinct items in the input array. Each path through T
effects a permutation of the items in the array (to get it sorted). Since any two different initial
arrangements of the array must be permuted differently to sort them, the algorithm cannot take
the same path through the tree on both initial arrangements (otherwise that would lead to the
same permutation of the two different arrangements, so at least one of them would not be sorted in
the end). Thus by the pigeon hole principle, the number of distinct root-leaf paths in the tree—and
hence the number of leaves—must be at least the number of possible initial arrangements of the
data, that is, n!. 2

Exactly n! of the leaves of T are actually reachable by the algorithm on some input arrangement.
If T has more than n! leaves, then some are not reachable. We’ll assume that T is pruned of all its
unreachable nodes.

Lemma 9 Any binary tree with k leaves has depth at least lg k.

Proof Suppose T is a binary tree of depth d that has the maximum number of leaves possible of
any tree of depth at most d. Then all the leaves of T are on level d: if there were a leaf on some
level i < d, then we could replace that leaf with a full binary subtree of depth d− i with a net gain
of 2d−i − 1 > 0 leaves. There are 2d many nodes possible on level d, so T has 2d leaves. Thus for
any binary tree of depth d with k leaves, we must have

k ≤ 2d.

Taking the lg of both sides proves the lemma. 2

Let T again be the decision tree for P acting on a list of n elements, where T is pruned of
unreachable nodes. By the Claim, above, T has n! many leaves, and hence by the Lemma, T has
depth at least lg n!, so there is some initial arrangement of the input that forces P to make at least
lg n! comparisons. We’ll be done if we can show that lg n! = Ω(n lg n).

The usual tricks will work here. We have, for large enough n,

lg n! =
n∑

i=1

lg i

≥
n∑

i=dn/2e

lg i

≥
n∑

i=dn/2e

lg(n/2)

≥ (n/2) lg(n/2)
= (n/2)(lg n− 1)
≥ (n/4) lg n

= Ω(n lg n).

Order Statistics and Selection

Given an array A of n numbers, the ith order statistic of A is the ith smallest element of A,
for 1 ≤ i ≤ n. Theselection problem is: given A and integer i, return the ith order statistic of A.

29

Instances of this problem include finding the minimum, maximum, median, 75th percentile, etc. in
A.

Any of these selection instances require linear time at least, because the ith order statistic, for
any i, cannot be determined without examining all the elements of the array. Conversely, finding
the minimum and maximum both easily take linear time. How about the median? This looks
harder. We can find the median in time O(n lg n), say, by first HeapSorting or MergeSorting the
list, then picking out the middle element.

Can we do better? Yes. First, we’ll give a randomized selection algorithm that runs in linear
expected time (and quadratic worst-case time). This algorithm works well in practice.

Finally, we’ll give a deterministic algorithm for selection that runs in worst-case linear time,
and is thus asymptotically optimal. The deterministic algorithm, however, usually does worse than
the randomized one, and so it is more of theoretical than practical interest.

Both algorithms use the same Partition subroutine as Quicksort. To find the ith order statistic
in A[p . . . r] with p < r, the idea is to partition the array by some pivot value in the array. After
partitioning, if the left list has length exactly i − 1, then the ith smallest element is equal to the
pivot, so we just return it. Otherwise, if the left list has length at least i, then the ith order statistic
is in the left list, so we recurse on the left list. Otherwise, we recurse on the right list.

The two algorithms only differ by how the partitioning is done.
Randomized Selection
The first algorithm uses RandomPartition.

RandomizedSelect(A, p, r, i)
// Returns the ith smallest element of A[p . . . r].
// Preconditions: p ≤ r and 1 ≤ i ≤ r − p + 1.

if p = r then
return A[p]

// p < r
q ←RandomPartition(A, p, r)
// the left list is A[p . . . q − 1], and
// the right list is A[q + 1 . . . r].
if q − p = i− 1 then

// Return the pivot
return A[q]

if q − p > i− 1 then
// Recurse on the left list
return RandomizedSelect(A, p, q − 1, i)

else
// Recurse on the right list
return RandomizedSelect(A, q + 1, r, i− (q − p + 1))

In the last line, we subtract q − p + 1 from i in the recursive call to account for the pivot and
all the elements of the left list.

Let E(n) be the expected running time for RandomizedSelect. Since RandomPartition (which
takes linear time) selects a pivot uniformly at random from the list, the probability that the left
list will have length k is the same for all 0 ≤ k ≤ n− 1, namely, 1/n. It is a reasonable assumption

30

that E(n) is monotone increasing in n, which means that it will always take at least as long if we
recurse on the larger of the two lists each time. Thus,

E(n) = Θ(n) +
1
n

n−1∑
k=0

max(E(k), E(n− k − 1)),

similar to the analysis of RandomizedQuicksort. The right-hand side is at most

Θ(n) +
2
n

n−1∑
k=bn/2c

E(k).

One can then prove using the substitution method that E(n) = O(n).

Lecture 12
Selection in Deterministic Linear Time

Defining the Median
For odd n, the median for an array of n elements (assume that they are all distinct) is defined

to be the (n+1)/2-order statistic. If n is even, then the array actually has two medians, the (n/2)-
and the (n/2+1)-order statistic. In statistics we usually define “the median” in this case to be the
average of the two medians. Here, we will simply take the lower of the two. So for us, the median
will be the dn/2e-order statistic, regardless of the parity of n.

Selection in Deterministic Linear Time
For the deterministic linear time selection algorithm, the idea is that we choose a pivot that is

guaranteed to be close enough to the median each time. This choice requires some work, and there
is a delicate balance between how hard we are willing to work to find a good pivot versus the time
saved by choosing a good pivot.

A Recurrence
Before getting to the algorithm, we will first solve an important recurrence.

Lemma 10 Suppose α and β are real numbers with 0 < α, β and α+β < 1. Then if T (n) is given
by the recurrence

T (n) = T (αn) + T (βn) + Θ(n),

then T (n) = Θ(n).

It is important here that the sum of α and β be strictly less than one. The lemma does not
hold otherwise.
Proof Clearly, T (n) = Ω(n). We show that T (n) = O(n) via the substitution method. For the
induction, we assume that n is large enough, and that T (n′) ≤ cn′ for all n′ < n, where c > 0 is
some constant. We prove that it follows that T (n) ≤ cn. We have, for some constant a > 0,

T (n) ≤ T (αn) + T (βn) + an

≤ cαn + cβn + an

= (c(α + β) + a)n
≤ cn,

31

provided c(α + β) + a ≤ c, or equivalently,

c ≥ a

1− α− β
.

Since the denominator is positive, the right-hand side is a finite number, so we can set c = a/(1−
α− β) to satisfy the inequality. 2

The Algorithm
The linear-time Select algorithm is the same as RandomizedSelect, above, but where we replace

RandomPartition(A, p, r) with the following procedure:

1. Let n = r−p+1 be the number of items in the array. Divide A[p . . . r] into blocks B1, . . . , Bk

of five contiguous elements each. Thus k = dn/5e, and Bi = A[(p + 5i − 5) . . . (p + 5i − 1)]
for 1 ≤ i < k, and Bk = A[(p + 5k− 5) . . . r], which may have fewer than five elements if n is
not a multiple of five.

2. For all 1 ≤ i ≤ k, find the median mi of block Bi. Put m1, . . . ,mk into a separate array
B[1 . . . k]. (Note that this takes constant time per block, since each block has at most five
elements).

3. Recursively call Select(B, 1, k, dk/2e) to find the median x of m1, . . . ,mk.

4. Partition A[p . . . r] as usual, using x as the pivot. Return the index q where x is placed after
partitioning.

Let T (n) be the running time of Select(A, p, r, i), where n = r−p+1. The partitioning procedure
above clearly takes linear time (in n) except for the recursive call to Select, which runs on an array
of size about n/5.

How close is x to the median of A[p . . . r]? Let’s count the minimum number of elements in
A[p . . . r] that are less than x. Since x is the median of m1, . . . ,mk, about k/2 of the mi are less
than x. But since each of these mi is the median of a block of five elements there are at least
two more elements of the array A less than mi, so there are at least roughly 3k/2 or about 3n/10
elements of A less than x. It follows that there are at most 7n/10 elements greater than x. A
symmetrical argument shows that there are at least 3n/10 elements of A greater than x, so there
are at most 7n/10 elements less than x. So in the worst case, when Select recurses on one of its
sublists after partitioning, that sublist will have size at most 7n/10. Thus in the worst case, the
time for Select satisfies the following recurrence:

T (n) = T (n/5) + T (7n/10) + Θ(n).

Letting α = 1/5 and β = 7/10, we see that α + β = 9/10 < 1, so we apply the lemma to get that
T (n) = Θ(n). Thus Select takes linear time in the worst case.

There was a bit of slop in the previous analysis. We ignored round-off errors, for instance.
Taking these into account, one can show that there are constants a, b such that the worst-case time
satisfies

T (n) ≤ T (n/5 + a) + T (7n/10 + b) + Θ(n).

One can still apply the lemma in this case, however. By letting α′ be just slightly bigger than α
and β′ just slightly bigger than β, we still have α′ + β′ < 1, and

T (n) ≤ T (α′n) + T (β′n) + Θ(n)

32

for large enough n, since the additive constants a and b are absorbed. In our particular case, we
can set α′ = α + 1/30 = 7/30 and β′ = β + 1/30 = 11/15, and we still have α′ + β′ = 29/30 < 1.

Lecture 13
Pointers and Records Using Arrays

Explicit Memory Management
Representing Trees

Binomial Coefficients

Explicit pointer and record types are not required to implement linked structures. Any pro-
gramming environment that supports arrays (and there are some that only do this) will do. One
can mechanically convert any program to an equivalent program without pointers or records. We’ll
show how this is done in two steps: first removing explicit pointer types, then removing record
types.

Doing Without Pointers
Pointers are typically used to support linked structures, in which case the pointers point to

records. To do without pointer types, one must do one’s own memory management, rather than
letting the system do it for you. There are some limitations to this (discussed below), but for most
algorithms these limitations are not a problem. You declare an array of records big enough to
hold the maximum number of records you expect to have active at any one time. This will serve
as a surrogate to the systems dynamic memory store (often called the “heap,” although it has no
relation to priority queues). Then, instead of an explicit pointer to a record, you use the (integer)
index of the record in the array. So pointer types become integer types in link fields or any other
pointer variables, and dereferencing becomes array indexing.

We must do our own memory management in this case, simulating dynamic allocation (malloc
in C, or new in C++) and deallocation (free in C, or delete in C++). Even if the system does
support pointers and dynamic memory allocation, doing our own memory management is sometimes
more efficient, both timewise and memorywise. Suppose we have the following declarations in C++:

struct node {
double data;
struct node * link;

}

struct node * my_list = 0;

Here, the pointer value 0 (the null pointer) is guaranteed not to point to any available memory,
and thus my list is initialized as an empty linked list. We replace the above with the following
declarations (any identifier not explicitly declared or defined is assume to be previously):

struct node {
double data;
int link;

}

33

struct node heap[MAX_NUM_RECS];
int heap_size = 0;
int free_list = -1;

int my_list = -1;

Note that the pointer type has been changed to int. Analogous to the first declaration above, the
value −1 (the “null” index) is guaranteed not to be a legal index into the array. The heap array
will hold records that we dynamically allocate. The heap size variable keeps track of how much
of the heap has been used so far (initially none). The free list variable will be explained below.

To allocate a new record, we could use heap[heap_size], then increment heap_size. Unfortu-
nately, this only allows a fixed finite number of allocations, and does not take advantage of reusing
records that are previously deallocated. To fix this, we could tag records that we deallocate, then
search the heap linearly for a tagged record when we want to allocate a new one. This allows
recycling of old records, but the time-cost of linearly searching the heap each time we want a new
record is prohibitively high.

The best approach is to maintain a (linked) list of deallocated nodes in the heap. Inserting and
removing from this list (at the front) takes O(1) time, so this is very efficient (the best we can do,
asymptotically). The free list variable points to this list. So to deallocate a record, we insert it
into the free list. To allocate a record, we first check if one is available on the free list and use that.
Only when the free list is empty do we resort to incrementing heap size. Thus deallocation and
allocation are implement as follows:

void deallocate(int p)
/* Deallocates a node pointed to by p */
{

heap[p].link = free_list;
/* instead of

p->link = free_list */
free_list = p;

}

int allocate()
/* Return a pointer to a newly allocated record,

or a null pointer if no memory is available */
{

int ret;
if (free_list != -1) {

ret = free_list;
free_list = heap[free_list].link;

/* instead of
free_list = free_list->link */

return ret;
}
if (heap_size < MAX_NUM_RECS)

return heap_size++;

34

return -1; /* out of memory */
}

This explicit memory management strategy can also be used with system dynamic allocation,
where you maintain your own free list. In the current situation with arrays, it works great provided
you know in advance roughly how many records you’ll need at any given time. If you don’t know
this, however, or you have two or more different record types (maybe of different size) competing
for memory, then this scheme is less useful than system allocation. The operating system uses a
more sophisticated heap management system, whereby different sized chunks of memory can be
allocated. These chunks are kept on a doubly linked circular list. If two deallocated chunks of
memory are seen to be contiguous, then they are combined into one big chunk, which is more
useful than two smaller chunks. Despite this, heaps can still be subject to fragmentation if two or
more different sizes of records are used. System heap management is an interesting topic that every
student should know about, since it can significantly influence the performance of algorithms that
use dynamic memory. Sometimes it should be avoided because of fragmentation problems, where
an explicit management scheme tailored to the problem at hand would work better.

Doing Without Records
Instead of an array of records, one can declare multiple arrays, one for each field of a record.

So the heap and struct declarations above become simply

double data[MAX_NUM_RECS];
int link[MAX_NUM_RECS];

The data originally kept in the record at index i is now kept separately at data[i] and at link[i].
Deallocation and allocation thus become

void deallocate(int p)
/* Deallocates a node pointed to by p */
/* Similar to free() in C or delete in C++ */
{

link[p] = free_list;
free_list = p;

}

int allocate()
/* Return a pointer to a newly allocated record,

or a null pointer if no memory is available */
/* Similar to malloc() in C or new in C++ */
{

int ret;
if (free_list != -1) {

ret = free_list;
free_list = link[free_list];
return ret;

}
if (heap_size < MAX_NUM_RECS)

return heap_size++;

35

return -1; /* out of memory */
}

Doing Without Multidimensional Arrays
If we were only allowed linear arrays (of simple types) we could still simulate multidimensional

arrays by storing the multidimensional array in a linear array in row-major order. Intead of

double matrix[HEIGHT][WIDTH];
int i, j;
/* ... */
matrix[i][j] = 3.14;

we would thus have

double matrix[HEIGHT*WIDTH];
int i, j;
/* ... */
matrix[WIDTH*i+j] = 3.14;

This is exactly how multidimensional arrays are stored and indexed in memory, anyway.
Trees
Hopefully, all these definitions are more or less familiar.
A tree is an undirected, connected, acyclic graph. If T is a tree, then the size of T is the number

of vertices (nodes) in T . We will only consider trees of finite size. A tree of size n > 0 always has
exactly n− 1 edges. This is worth stating as a theorem and proving. First, we define the degree of
a vertex to be the number of vertices adjacent to it, i.e., the number of edges incident to it.

Theorem 11 Any tree with n > 0 vertices has exactly n− 1 edges.

Proof We go by induction on n. If n = 1, then the only tree on one vertex consists of that vertex
and no edges. Thus the theorem is true for n = 1. Now assume that n > 1 and that the statement
of the theorem holds for all trees of size n− 1. Let T be any tree of size n.

Claim 12 T has a vertex of degree 1 (i.e., a leaf).

Proof[of Claim] First, since T is connected with at least two vertices, it cannot have a vertex of
degree 0. Suppose then that there is no vertex in T with degree 1. Then every vertex in T has
degree at least 2. Start at any vertex v1 and follow some edge to some other vertex v2. Since v2

has degree ≥ 2, there is some other edge to follow from v2 to some new vertex v3. We can continue
in this way, building a path v1, v2, v3, . . . by following new edges each time, but since T is finite, we
must eventually come back to a vertex already on the path, i.e., vi = vj for some i < j. Thus we
have a cycle vi, vi+1, vi+2, . . . , vj = vi, which is impossible since T is a tree. Thus T must have a
vertex of degree 1. 2

Let v be a vertex of T with degree 1. If we remove v and its only edge from T , then the resulting
graph T ′ is clearly still connected and acyclic, so it is a tree. Further, T ′ has size n− 1, so by the
inductive hypothesis, T ′ has exactly n− 2 edges. We obtained T ′ from T by removing one vertex
and one edge, so T must have exactly n− 1 edges. 2

36

A rooted tree is a tree T that is either empty (no nodes) or has a distinguished node, called the
root and denoted root[T] (if T is empty, then root[T] is a null reference). There is then a unique
path from the root to any node. The depth of a node p in T is the length of the path from the root
to p, and the depth of T is the maximum depth of any node in the tree (if the tree is empty, we’ll
take the depth to be −1). For nodes p and q in T , we say that p is an ancestor of q, or that q is
a descendant of p, if p lies along the unique path from root[T] to q. If, in addition, p 6= q, then we
say that p is a proper ancestor of q or that q is proper descendant of p. The subtree of T rooted at
p is the tree of all descendants of p.

If T is a rooted tree and p is a nonroot node in T , then the parent of p is the (unique) immediate
predecessor of p on the path from the root. The children of p are all nodes that share p as a parent.
A leaf is a node with no children. The root has no parent. The parent of the parent is the
grandparent ; a child of a child is a grandchild, etc. The height of a node p is the length of the
longest path from p to a leaf. The height of T is the height of its root, which is the same as the
depth of T . (The height of an empty tree is −1 by convention, as with the depth.)

A rooted tree T is ordered if there is a linear order (“left to right”) imposed on the children of
each node. A binary tree is a rooted, ordered tree where each node has at most two children: the
left child and the right child—roots of the left and right subtrees, respectively (if a child is missing,
then that subtree is empty).

Representing Trees
Except for binary heaps, trees are usually represented as linked structures with information and

links at each node. A node p of a binary tree, as well as containing a reference to satellite data,
typically contains three links: to the parent (parent[p]), to the left subtree (left[p]), and to the right
subtree (right[p]). parent[root[T]] is always a null pointer. In many applications, the parent field is
not needed at any node, and can be omitted to save space.

For an arbitrary rooted ordered tree (not necessarily binary), we cannot use a fixed number
of child fields, since we may not have any a priori bound on the number of children a node may
have. Instead, each node has a pointer to a simple linked list of its children. Thus, together with
a reference to satellite data, the three links of a node p are parent[p], leftmost[p] (pointing to the
leftmost child, if there is one), and rightsibling[p] (pointing to p’s immediate right sibling, if there
is one).

Binomial Coefficients

For any integer k ≥ 0 and any n (which could be any real number or even complex number),
we define the binomial coefficient(

n

k

)
=

n(n− 1)(n− 2) · · · (n− k + 1)
k!

.

We will only consider the case where n is an integer and 0 ≤ k ≤ n. In this case,(
n

k

)
=

n!
k!(n− k)!

=
(

n

n− k

)
.

(
n
k

)
is the number of ways to pick a subset of k elements from a set of n elements. It also figures

prominently in the Binomial Theorem

37

Theorem 13 (Binomial Theorem) For any real or complex x and y, and any integer n ≥ 0,

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k.

The Binomial Theorem immediately gives us some identities:

n∑
k=0

(
n

k

)
= (1 + 1)n = 2n,

and (
n

0

)
−
(

n

1

)
+ · · · ±

(
n

n

)
= (1− 1)n = 0.

The first identity is also evident because both sides are the number of ways to choose a subset (of
any size) of a set of n elements.

A Recurrence for Binomial Coefficients
For any integer n ≥ 0, we have (

n

0

)
=
(

n

n

)
= 1,

and for integer k with 0 < k < n, we have(
n

k

)
=
(

n− 1
k − 1

)
+
(

n− 1
k

)
.

These equations are immediate from the definition.
Some Inequalities
A sometimes useful inequality is(

n

k

)
=
(n

k

)(n− 1
k − 1

)
· · ·
(

n− k + 1
1

)
≥
(n

k

)k
.

An upper bound on
(
n
k

)
comes from Stirling’s Approximation, which implies that k! ≥ (k/e)k.

Whence, (
n

k

)
≤ nk

k!
≤
(en

k

)k
.

Actually, it can be shown that (
n

k

)
≤ nn

kk(n− k)n−k
,

and this is a good approximation. Letting k = λn for some 0 ≤ λ ≤ 1, we get(
n

λn

)
.=

nn

(λn)λn((1− λ)n)(1−λ)n

=

((
1
λ

)λ(1
1− λ

)1−λ
)n

= 2nH(λ),

38

where H(λ) = −λ lg λ− (1−λ) lg(1−λ) is the binary entropy of λ. (Our convention is always that
0 lg 0 = 0.)

The Beads Problem
You have n boxes labeled 1, . . . , n and k identical beads. How many distinct ways can you put

the k beads into the n boxes, where each box can hold at most one bead? The answer is
(
n
k

)
. Now,

suppose that a box can hold any number of beads. Now how many ways are there? Imagine the
boxes lined up in a row, with n − 1 dividers between them. Then any arrangement of beads in
boxes is represented uniquely by a string such as

|*||*|***|||******|*

Here, the beads are represented as asterisks (*), and the dividers by vertigules (|). This string
represents nine boxes and 16 beads, with two beads in the first box, three in the second, none in
the third, one in the fourth, etc. So there is a one-to-one matching between arrangements of k
beads in n boxes and strings consisting of k asterisks and n − 1 vertigules. The number of such
strings is evidently

(
n+k−1

k

)
.

Lecture 14
Probability Theory

Hash Tables

All the laws of probability can be derived from a few basic axioms. We start with a sample
space, which is just an arbitrary set S. The elements of S are called elementary events. (We will
assume here that S is discrete, i.e., S is either finite or countably infinite. One could be more
general.) An event is any subset of S. As is customary, we write P(S) for the set of all events. The
empty set ∅ is called the null event. Two events A,B ⊆ S are mutually exclusive if A ∩B = ∅.

A probability distribution on S is a mapping Pr : P(S)→ R, mapping events to real numbers,
that satisfies the following axioms:

1. Pr[A] ≥ 0 for any event A ⊆ S.

2. Pr[S] = 1.

3. Pr[A∪B] = Pr[A]+Pr[B] for any two mutually exclusive events A,B ⊆ S. More generally, if
A1, A2, . . . is some finite or countably infinite sequence of pairwise mutually exclusive events,
then

Pr

[⋃
i

Ai

]
=
∑

i

Pr[Ai].

We say that Pr[A] is the probability of the event A, or the probability that A occurs. For x ∈ S,
we will abuse notation and write Pr[x] for Pr[{x}], the probability of the elementary event x.
Axiom three implies that the probability of any event is the sum of the probabilities of its members
(elementary events).

Here are some easy consequence of the axioms. For any event A, we let A denote the complement
S −A of A in S.

39

• Pr[∅] = 0. This is because ∅ ∩ ∅ = ∅, that is, ∅ is mutually exclusive with itself. Applying the
third axiom, we get

Pr[∅] = Pr[∅ ∪ ∅] = Pr[∅] + Pr[∅].

Subtract Pr[∅] from both sides.

• Pr[A] = 1− Pr[A] for any event A. Exercise.

• Pr[A ∪B] = Pr[A] + Pr[B]− Pr[A ∩B] for any events A,B. Exercise.

• If A ⊆ B then Pr[A] ≤ Pr[B]. Exercise.

• Pr[A] ≤ 1 for any event A.

Conditional Probability
Let A and B be events with Pr[B] > 0. Define

Pr[A | B] =
Pr[A ∩B]

Pr[B]
.

This is the conditional probability of A given B. (Look at a Venn diagram.) Note that Pr[B | B] = 1.
This is the probability we would get if we restrict our sample space from S to B, redefine events
accordingly, and rescale the probability distribution to satisfy the second axiom.

Dependence
Events A and B are independent if Pr[A∩B] = Pr[A] ·Pr[B]. If Pr[B] > 0, then clearly, A and

B are independent iff Pr[A] = Pr[A | B]. Thus, conditioning on B does not affect the probability
of an independent event A.

A1, A2, . . . are mutually independent if Pr[A1 ∩A2 ∩ · · ·] = Pr[A1] · Pr[A2] · · · · .
Examples
Let S represent two independent flips of a fair coin, i.e., S = {H,T} × {H,T} (H for heads,

T for tails), and for any a, b ∈ {H,T} we set Pr[(a, b)] = 1/4. Let A be the event, “the first flip
is heads.” Thus A = {(H,H), (H,T)}. Let B be the event, “the two flips are different.” Thus
B = {(H,T), (T,H)}. We have Pr[A] = Pr[B] = 1/2, and

Pr[A ∩B] = Pr[(H,T)] = 1/4 = Pr[A] · Pr[B],

so A and B are independent.
The following easy theorem relates Pr[A | B] with Pr[B | A]. It forms the basis of Bayesian

analysis.

Theorem 14 (Bayes’s Theorem) If A and B are events with positive probability, then

Pr[A | B] =
Pr[A] Pr[B | A]

Pr[B]
.

A p-biased coin flip is given by the sample space S = {H,T}, with Pr[H] = p and Pr[T] = q =
1−p, where p is some real number with 0 ≤ p ≤ 1. If we flip a p-biased coin n times (independently),
then the sample space is {H,T}n, and

Pr[(a1, a2, . . . , an)] =
n∏

i=1

Pr[ai],

40

where each ai ∈ {H,T} and each term of the product is either p or 1−p. For 0 ≤ k ≤ n, there are
(
n
k

)
many tuples with exactly k heads, and the probability of each such tuple is pk(1− p)n−k = pkqn−k.
Thus,

Pr[exactly k heads] =
(

n

k

)
pkqn−k,

which is just the kth term in the binomial expansion of 1 = 1n = (p + q)n. If p = 1/2, then we call
the coin unbiased or fair, and we have Pr[k heads] = 2−n

(
n
k

)
.

Random Variables
As above, we assume a sample space S with a probability distribution Pr : S → R satisfying

the usual axioms.
A random variable over S is any mapping X : S → R. (Thus the probability distribution is

itself a random variable.) The expectation value of a random variable X is defined to be

E(X) =
∑
a∈S

X(a) Pr[a].

Linearity of Expectation
For any two random variables X and Y and any real constant c, we have

E(cX + Y) = cE(x) + E(Y).

For example, suppose 0 ≤ p < 1 and we flip a p-biased coin until we see tails. Then the sample
space is

S = {T,HT, HHT,HHHT, . . . ,HkT, . . .},
with Pr[HkT] = pkq, where q = 1− p. Note that this really is a probability distribution, since

∞∑
k=0

pkq = q

∞∑
k=0

pk =
q

1− p
= 1.

Let random variable X be the number of heads before the first tail. That is, X(HkT) = k for all
k ≥ 0. What is E(X)?

E(X) =
∞∑

k=0

X(HkT) Pr[HkT]

=
∞∑

k=0

kpkq

= q

∞∑
k=0

kpk

=
qp

(1− p)2

=
p

q
.

Indicator Random Variables
If A is an event, then there is a natural random variable associated with A, namely I[A], the

indicator random variable of A. The function I[A] maps an elementary event x to 1 if x ∈ A, and
to 0 otherwise. Notice that E(I[A]) is just Pr[A].

41

Hash Tables

A hash table is an array T [1 . . .m] (in this case we say that T has m slots) together with a
function h mapping key values to integers in the range 1 . . .m. The function h, called the hash
function, is assumed to be easy to compute. We would also like h to look as “random” as possible.
We store n elements into the hash table T . To insert an item with key k, we first compute i = h(k),
then place the item at T [i]. We may have collisions, i.e., two or more different items mapping (or
“hashing”) to the same index. Collisions can be resolved by either chaining or open addressing.
We’ll only discuss chaining, which is maintaining at each location T [i] a linked list of all the items
inserted into T whose keys hash to i.

We’d like to analyze the performance of a hash table, assuming that h maps keys to indices
uniformly at random, independently for different keys. For a hash table with m slots containing n
items, we define the load factor

α =
n

m
.

This is the expected length of a linked list in the table. Note that with chaining it is possible that
n > m, and so α > 1.

We assume that h takes Θ(1) time to compute. Clearly then, the expected time for an unsuc-
cessful search is Θ(1 + α). The 1 is the time to compute h of the key, and the α is the time to
traverse the corresponding linked list.

Analyzing a successful search is a bit harder, assuming any existing element is equally likely to
be searched. This is because if we restrict our sample space to just the items that are already in
the table, then any given item is more likely to be in a longer list than a shorter one. Nevertheless,
the expected successful search time can still be shown to be Θ(1 + α).

Assume that distinct keys k1, . . . , kn are inserted in order into an initially empty hash table
with m slots, and let α = n/m as before. We’ll assume that each key k is are inserted onto the
front of the linked list of keys hashing to h(k). This means that the time to successfully search for
k is one plus the number of items inserted after k that hash to the same list as k. For 1 ≤ i, j ≤ n,
let Xij be the event that h(ki) = h(kj). Then we have

E(successful seach time)

= E

 1
n

n∑
i=1

1 +
n∑

j=i+1

I[Xij]

=

1
n

n∑
i=1

1 +
∑

j

E(I[Xij])

=

1
n

∑
i

1 +
∑

j

1
m

= 1 +

1
nm

∑
i

(n− i)

= 1 +
n− 1
2m

= 1 +
α

2
− α

2n
.

The second equality follows by linearity of expectation.

42

Lecture 15
Binary Search Trees

Red-Black Trees

We all know what a Binary Search Tree (BST) is. Access, insertion, and deletion all take Θ(h)
time in the worst case, where h is the height of the tree. At best, a binary tree of size n > 0 will
have height blg nc (e.g., the almost full tree used for the binary heap). At worst, the height is
n − 1, and tree operations are no faster than with a linked list, i.e., linear time. This latter case
occurs, for example, when items are inserted into the tree in order (increasing or decreasing). Note
that Quicksort displays worst-case behavior with a sorted array (when the pivot is always chosen
to be the first element of the list). This is not a coincidence; there is a close connection between
the sequence of pivot choices and a preorder traversal of the corresponding BST built by inserting
items from the array by increasing index.

By the way, the book allows duplicate keys in a BST. I don’t allow them. If you really want
duplicate keys (with different satellite data, of course), then store all duplicate keys at the same
node, i.e., have the node point to a linked list of all the items with that key.

Although for random insertions and deletions, the expected height of a BST is O(lg n), this is
not satisfactory, because inputs often don’t look “random,” i.e., some input orders (e.g., sorted or
almost sorted) occur with above average frequency. Thus we would like a way to keep the worst-case
time for tree operations to O(lg n), that is, keep the height of the tree O(lg n). This is typically
done by performing structural alterations to the tree to balance it when it gets too out of balance.
We need to keep some extra information at each node to help us detect when the tree is becoming
too unbalanced.

One such scheme is the AVL tree, which I cover in CSCE 350. Here we’ll see a different scheme:
red-black trees.

A red-black (RB) tree is a BST where each node at any given time has a color: red or black. If
T is a RB tree, we assume that any null child pointer points to a phantom leaf node. Thus every
key-bearing node is considered an internal node. A leaf has no information other than its color,
which is always black. Thus we can implement leaves by a single shared black node, nil[T], that is
pointed to by any child pointer that would otherwise be null in an ordinary BST.

The conditions for a nonempty RB tree are as follows:

1. The root is always black.

2. Every leaf is black.

3. If a node is red, then both its children are black.

4. For any node p in the tree, all paths from p to leaves go through the same number of black
nodes.

Here is a RB tree:

43

8 17

1

4 11 16 20

13

red

black

The small black nodes (dummy nodes) are the leaves (which can be implemented by a single shared
node). The data are contained in the internal nodes. It is not necessary that all data-bearing nodes
on the same level are the same color.

First we prove that a BST satisfying these conditions (the RB conditions) must have height
O(lg n). We first define the black height bh(x) of a node x in a RB tree to be the number of black
nodes encountered on some (any) path from x to a leaf, including the leaf, but not including x
itself.

Lemma 15 Let T be a red-black tree with n nodes with height h. Then

h ≤ 2 lg(n + 1).

Proof We prove by induction on the height of a node x that the subtree rooted at x has size
at least 2bh(x) − 1. If x has height zero, then it is a leaf with black height 0 and subtree of size
1 ≥ 0 = 20 − 1, which satisfies the base case. Now assume that x has positive height, and let y
and z be the children of x. Clearly, y and z have black height at least bh(x)− 1, and since y and
z have height less than the height of x, we can apply the inductive hypothesis to y and z. Let sx,
sy, and sz be the sizes of the subtrees rooted at x, y, and z, respectively. Then,

sx = sy + sz + 1

≥ (2bh(y) − 1) + (2bh(z) − 1) + 1
≥ (2bh(x)−1 − 1) + (2bh(x)−1 − 1) + 1
= 2bh(x) − 1,

which proves the induction.
Now let r be the root of T . r has height h, and since no two adjacent nodes on any path from

r to a leaf can be red, at least half the nodes on such a path must be black. Thus, bh(r) ≥ h/2.
By the inequality we just proved, we have

n ≥ 2bh(r) − 1 ≥ 2h/2 − 1,

44

since n is the size of the subtree rooted at r, i.e., T itself. Solving this inequality for h proves the
lemma. 2

An empty tree contains just the single leaf node nil[T]. Insertion into a RB tree T happens in
two phases. In the first we insert a node just as in the case for a BST. If T was empty before the
insertion, then this first node inserted becomes the root, so it must be colored black. Otherwise,
each inserted node is initially colored red. The second phase restores the RB conditions, which
may have been violated after the first phase. This latter phase may only adjust colors of nodes, or
it may structurally alter the tree. We look at this phase in more detail now.

The tree will be altered by means of rotations. There are left- and right-rotations. In a left-
rotation, a parent p and its right child q move so that q takes the place of the parent and p becomes
the left child of q. The three subtrees below p and q are reattached the only way they can to
preserve the BST order of the tree. We’ll call this operation LeftRotate(p, q). A right-rotation is
just the inverse of a left-rotation. We’ll call this RightRotate(p, q).

RightRotate(p, q)

LeftRotate(p, q)

p

α
q

β γα β

γ
p

q

Note that the arguments to LeftRotate and RightRotate always come in increasing order.
Now for the second phase (“clean-up” or “fix-up”). Assume a node x is inserted into a nonempty

RB tree T . Then x is not the root, so it has a parent y = parent[x] and an initial color of red.
Note that this does not affect the fourth RB condition. If y’s color is black, there is nothing to do
(both children of x are leaves and hence black). The problem is when y is red; then we have two
red nodes in a row. We now assume this case.

The node y is red, so it cannot be the root. We consider y’s sibling s (x’s uncle or aunt), and
their common parent p (x’s grandparent), which must be black. If s is red, then we: (i) switch the
colors of both y and s to black, and (ii) switch the color of p to red (unless p is the root, in which
case we’re done). Note that we did not structurally alter the tree in this case, but merely changed
colors of some nodes. Although we fixed the problem with x and y both being red, we may have
created the same problem with p and its parent, which may also be red (p was black originally;
now it’s red). If this is the case then we do the entire operation again (calling FixUp recursively,
say) with p and its parent in place of x and y, respectively. We make progress this way, because
we get closer to the root.

Now suppose s is black. Here we will have to structurally alter the tree. We’ll assume that y is
the left child and s is the right child of p. If not, then we simply swap the roles of left and right in
everything that follows.

45

If x is a right child of y, then we do a LeftRotate(y, x) so that now y is a left child of x;
otherwise, we don’t rotate. In either event, we now have a node z and its left child w both red
(here, {z, w} = {x, y}). s (black) is the right sibling of z (red) with common parent p (black).

p

sz

w

We do a RightRotate(z, p), so that p is now the right child of z. Finally, we make z black and p
red.

p

z

w

s

A simple case analysis shows that the RB properties are restored by these operations, so there is
nothing more to do.

Fixing up after regular BST insertion takes time O(h) (h is the height of the tree) in the worst
case (i.e., when we must propagate red parent-child pairs all the way up to the root), so it does not
affect the total asymptotic running time for insertion. Note also that at most two rotations occur
for any insertion.

Deletion from red-black trees is similar (first a regular BST deletion, then a fix-up), but there
are more cases to consider, and we won’t do it here.

46

Lecture 16
The AVL Condition

Augmented Structures

A binary tree satisfies the AVL condition at a node x if the heights of the right and left subtrees
of x differ by at most one. The tree itself is an AVL tree if it satisfies the AVL condition at each
of its nodes. Like red-black trees, AVL trees of size n are guaranteed to have height Θ(lg n). So
if we have a BST that is an AVL tree, searching is asymptotically optimal (i.e., Θ(lg n)) in the
worst case. One can show (exercise) that one can maintain the AVL condition given insertions and
deletions, and that the cost of maintenance of the condition does not asymptotically increase the
time of insertion/deletion. Thus, AVL trees (like RB trees) are a worst-case asymptotically optimal
way to implement BSTs.

Here we show that any AVL tree of size n has height O(lg n). We do this by considering the
smallest possible size mh of an AVL tree with height h ≥ −1. Clearly, we have

m−1 = 0,

m0 = 1.

Now suppose h > 0, and consider an AVL tree T of height h and of minimum size mh. T consists
of a root r with left and right subtrees T1 and T2, respectively. At least one of T1 and T2 has
height h− 1; say T2. Then T2 has size mh−1, since otherwise we can reduce the size of T (without
changing its height) by reducing the size of T2 (without changing its height). The possible heights
of T1 are then h− 1 or h− 2. Since T is as small as possible, T1 must have the smaller height, i.e.,
h− 2, and be of size mh−2 (if T1 had height h− 1, then deleting all the nodes on its bottom level
would make T1 a strictly smaller AVL tree of height h − 2, thus reducing the size of T). We thus
get the recurrence,

mh = mh−2 + mh−1 + 1,

for all h ≥ 1. This bears some resemblance to the Fibonacci sequence:

F0 = 0,

F1 = 1,

Fn = Fn−2 + Fn−1,

for n ≥ 2. In fact,

Claim 16 For all h ≥ −1,
mh = Fh+3 − 1.

Proof It suffices to show that the function f(h) = Fh+3−1 satisfies the same relations as mh, since
those relations uniquely determine mh. We have

f(−1) = F2 − 1 = 1− 1 = 0,

f(0) = F3 − 1 = 2− 1 = 1,

47

and for h ≥ 1,

f(h) = Fh+3 − 1
= Fh+1 + Fh+2 − 1
= (Fh+1 − 1) + (Fh+2 − 1) + 1
= f(h− 2) + f(h− 1) + 1.

Thus f(h) satisfies the same relations as mh, so f(h) = mh for all h ≥ −1. 2

In a previous exercise, you showed that Fh = Θ(ϕh), where ϕ = (1 +
√

5)/2 .= 1.6 . . . is the
Golden Ratio. Thus mh = Θ(ϕh+3) = Θ(ϕ3ϕh) = Θ(ϕh). Thus for any AVL tree of size n and
height h, we have

n ≥ mh = Θ(ϕh),

and hence
n = Ω(ϕh).

Taking the logϕ of both sides gives

h = O(logϕ n) = O(lg n),

which is what we wanted to show.

Augmented Structures

Sometimes it is useful to add more information to data structure to allow it to do more things.
For example, consider the problem of dynamic order statistics. You have a collection of n keys

that is changing over time, with keys being inserted and deleted. You wish to allow the usual
dictionary operations, such as insert, delete, look-up, print in order, etc., so you use a BST, say, a
red-black tree. Suppose you also wish to support the Select operation, which finds the kth smallest
key, for input k. You can always do this in time Θ(k + lg n), say, by cycling through the first k
elements in order. This is fine if we expect that Select operations will only be done rarely. But if
they are done frequently, we can do much better.

Maintain an additional field in each node that contains the size of the subtree rooted at that
node. If we have this, then Select can easily be done in O(lg n) time. It is easy to show how this
extra field can be updated correctly with insertion/deletion without affecting the asymptotic run
times of those operations, even if rotations are allowed (e.g., for an AVL or red-black tree).

Lecture 17
Dynamic Programming

Sometimes a recursive implementation is too inefficient, because of redundant recursive calls.
If the range of possible values passed to recursive calls is not too large, then it is usually better to
build the solution bottom-up rather than solve it recursively top-down. This bottom-up technique,
which usually involves filling in entries of a table, is called dynamic programming.

Example: computing Fibonacci numbers, binomial coefficients

48

The sequence of Fibonacci numbers {Fn}n≥0 is given by the relations

F0 = 0,

F1 = 1,

Fn = Fn−2 + Fn−1,

for n ≥ 2. One could translate this directly into C++ code:

unsigned int fib(unsigned int n)
{

if (n==0) return 0;
if (n==1) return 1;
return fib(n-2) + fib(n-1);

}

This code will correctly compute Fn, but it is very inefficient. For example, fig(5) calls fib(3)
recursively twice, and so on. The number of redundant recursive calls is exponential in n. A much
saner approach is to use the relations to fill up a table with the Fibonacci sequence:

unsigned int fib(unsigned int n)
{

unsigned int *tab = new unsigned int[n+2];
tab[0] = 0;
tab[1] = 1;
for (i==2; i<=n; i++)

tab[i] = tab[i-2] + tab[i-1];
return tab[n];

}

Ignoring overflow, this routine runs linearly in n. This is a classic example of dynamic programming.
The code above can be improved further with the observation that only two adjacent Fibonacci
numbers need to be remembered at any given time, thus we only need constant extra space:

unsigned int fib(unsigned int n)
{

unsigned int current=0, next=1, temp;
for (; n>0; n--)
{

temp = current + next;
current = next;
next = temp;

}
return current;

}

(Exercise: can you get by with only two local variables?)
Example: the Knapsack Problem

49

You have a knapsack with capacity c and you are given a collection of k drink containers of
varying sizes a1, a2, . . . , ak. You want to determine if you can select some subset of the available
containers to fill up your knapsack completely without overfilling it. You can assume that the
containers are flexible so that they can assume any shape, thus only their sizes are relevant. You
can also assume that c and all the ai are positive integers. Thus the problem is equivalent to: given
a list a1, . . . , ak of positive integers and a positive integer c, is there a sublist that adds up to c
exactly? Equivalently, to there exist b1, . . . , bk ∈ {0, 1} such that

k∑
i=1

biai = c?

This decision problem is known as the 0−−1 Knapsack problem, or the Subset Sum problem.
Here’s a straightforward solution that involves recursive backtracking. The function Fill takes

c and 〈a1, . . . , ak〉 and returns a Boolean value.

Fill(c, 〈a1, . . . , ak〉)
// Preconditions: c ≥ 0 and a1, . . . , ak > 0 (all integers)
// Returns TRUE iff some sublist of the ai adds exactly to c

IF c = 0 THEN return TRUE
IF k = 0 THEN return FALSE
return Fill(c, 〈a1, . . . , ak−1〉) OR

(c− ak ≥ 0 AND Fill(c− ak, 〈a1, . . . , ak−1〉))

Although correct, this solution suffers from the same redundancies that afflicted the recursive fib
program above: there may be several calls to Fill(d, 〈a1, . . . , ai〉) for d < c and i < k.

Here’s a dynamic programming solution that builds a table of intermediate results, ensuring
that each intermediate result is computed only once. We maintain an array B[0 . . . c, 0 . . . k] of
Booleans such that each B[d, i] holds the value Fill(d, 〈a1, . . . , ai〉). We fill in the entries of B in
order of increasing d and i.

Fill(c, 〈a1, . . . , ak〉)
// Preconditions: c ≥ 0 and a1, . . . , ak > 0 (all integers)
// Returns TRUE iff some sublist of the ai adds exactly to c

let B[0 . . . c, 0 . . . k] be an array of Boolean values
B[0, 0]← TRUE
FOR d := 1 TO c DO

B[d, 0]← FALSE
FOR i := 1 TO k DO

FOR d := 0 TO c DO
B[d, i]←B[d, i− 1]
IF d− ai ≥ 0 AND B[d− ai, i− 1] THEN

B[d, i]← TRUE
return B[c, k]

This version follows the same logical rules as the recursive solution, but takes time and space Θ(ck),
since that’s the size of the table B, and each entry in B takes O(1) time to compute. The time
may be much less than the time taken by the recursive solution. The table is computed column

50

by column, and each successive column only requires the previous column. Thus the space can be
reduced to that required for two adjacent columns: Θ(c). Can you get by with only one column?
Yes, provided you fill in the entries of the column in reverse, i.e., for d running from c down to 0.

Example: optimal order for matrix multiplication
A m × n matrix is a two-dimensional array of numbers, with m rows (indexed 1 . . .m) and n

columns (indexed 1 . . . n), for m,n ≥ 1. Two matrices A and B can be multiplied together, forming
the product AB, provided they are compatible which means that the number of columns of A is
the same as the number of rows of B. Multiplying an m×n matrix A by an n× p matrix B yields
an m× p matrix C = AB, where

C[i, j] =
n∑

k=1

A[i, k]B[k, j].

Thus the straightforward way of multiplying A with B requires mnp many scalar multiplications,
which dominates the total running time.

Matrix multiplication is associative, i.e., (AB)C = A(BC). (It is not commutative, however; it
may be that AB 6= BA.) Although (AB)C = A(BC) so the order of multiplication does not affect
the result, the time taken for one order may be vastly different from the time taken by the other.
For example, suppose A is 5× 20, B is 20× 2, and C is 2× 10. Then computing (AB)C requires

• 5 · 20 · 2 = 200 scalar multiplications for computing AB, plus

• 5 · 2 · 10 = 100 scalar multiplcations for matrix-multiplying the result by C,

for a total of 300 scalar multiplications. On the other hand, computing A(BC) requires

• 20 · 2 · 10 = 400 scalar multiplications for computing BC, plus

• 5 · 20 · 10 = 1000 scalar multiplcations for matrix-multiplying the result by C,

for a total of 1400 scalar multiplications. Thus if we are multiplying lots of matrices together, we
can get significant savings by choosing the order of multiplication wisely.

Suppose we have a list of matrices A1, . . . , An, where Ai and Ai+1 are compatible, for 1 ≤ i < n.
Thus we have integers p0, p1, . . . , pn ≥ 1 such that Ai is pi−1×pi. Given these values pi, we would like
to find a way to fully parenthesize A1 · · ·An to minimize the total number of scalar multiplcations.
This is a job for dynamic programming!

For 1 ≤ i ≤ j ≤ n, we will let Ai···j denote the product AiAi+1 · · ·Aj . Note that Ai···j has
dimensions pi−1 × pj . Suppose i < j and that Ai · · ·Aj has been optimally parenthesized. Then
the last matrix multiplication to be performed will be multiplying some Ai···k by A(k+1)···j , where
i ≤ k < j is chosen to minimize the overall number of scalar multiplications. This last matrix
multiplication alone requires pi−1pkpj scalar multiplications. Further, Ai···k and A(k+1)···j must
both be parenthesized optimally, for otherwise an improved parenthesization of one or the other
will lead to a better parenthesization of Ai···j overall. Let m(i, j) be the optimal number of scalar
multiplications needed to compute Ai···j . From the considerations above, we have

m(i, j) =
{

0 if i = j,
mini≤k<j [m(i, k) + m(k + 1, j) + pi−1pkpj) if i < j.

51

The optimal number of scalar multiplications for computing A1···n is then m(1, n]). Note that each
m(i, i) = 0, because Ai···i is just Ai, and so there is nothing to compute.

A naive implementation of m(i, j) as a recursive function would take exponential time. Instead,
we note that there are only n(n + 1)/2 many different m-values that need to be computed. Thus
we can compute the m-values by putting them into a reasonably sized array m[1 . . . n, 1 . . . n]. Each
diagonal element will be 0. Whenever we compute m[i, j] with i < j, we already have computed
m[i, k] and m[k + 1, j] for all i ≤ k < j, so computing m[i, j] is straightforward. In this case, we
also wish to keep track of the value of k that achieves the minimum, since this will tell us where
Ai···j can be optimally split. We could put these k values in another two-dimensional array, or we
could just use m[j, i] to hold these values, since these entries are not being used for m-values.

MatrixChainOrder(p, n)
// p[0 . . . n] is an array of positive integers.
// Returns an m-array as described above.

let m[1 . . . n, 1 . . . n] be an integer array
for i←n downto 1 do

m[i, i] = 0
for j←i + 1 to n do // compute m[i, j]

m[i, j]←∞
for k←i to j − 1 do

s←m[i, k] + m[k + 1, j] + p[i− 1]p[k]p[j]
if s < m[i, j] then

m[i, j]←s
m[j, i]←k

return m

What is the running time of this procedure? How much space is used? Assume that the matrix
entries do not get very large.

Example: longest common subsequence
Two finite sequences of objects X = 〈x1, . . . , xm〉 and Y = 〈y1, . . . , ym〉 can be considered

similar if they have a long subsequence in common. For example, if two strands of DNA have
a long sequence of base pairs in common, then they are likely to have descended from a recent
common ancestor. We’d like to find the length of a longest common subsequence (LCS) of X and
Y .

A subsequence of a sequence X is any sequence obtained from X by removing zero or more
elements from X. Thus 〈z1, . . . , zk〉 is a subsequence of 〈x1, . . . , xm〉 iff there exist indices 1 ≤ i1 <
i2 < · · · < ik ≤ m such that zj = xij for all 1 ≤ j ≤ k.

Here is a recursive solution to the problem of finding an LCS of X and Y . If m = 0 or n = 0,
that is, one of the sequence is empty, then clearly the only LCS is the empty sequence, of length 0.
This is the base case. Now suppose m,n > 0, and consider the prefixes Xm−1 and Yn−1 of X and
Y , respectively. (If Z is any sequence, we let Zi denote the sequence containing the first i elements
of Z.) If xm = yn, then clearly, any LCS of X and Y must end in this common value, and be
preceded by an LCS of Xm−1 and Yn−1. If xm 6= yn, then any LCS of X and Y includes at most
one of xm and yn as its last element. Thus, such an LCS must be either an LCS of X and Yn−1 or
an LCS of Xm−1 and Y , whichever is longer.

52

Let c[i, j] be the length of an LCS of Xi and Yj , for 0 ≤ i ≤ m and 0 ≤ j ≤ n. Then,

c[i, j] =

0 if ij = 0, else
c[i− 1, j − 1] + 1 if xi = yj ,
max{c[i, j − 1], c[i− 1, j]} otherwise.

Lecture 18
LCS (continued)

Greedy Algorithms: Huffman Codes

The recurrence relations for c[i, j] make them easy to compute with dynamic programming,
using nested for-loops for i and j where each index is increasing. This algorithm takes Θ(mn) time
and space, but the space can be reduced to Θ(min(m,n)).

How can we recover an actual LCS if we want one? We keep track of how each c[i, j] is obtained.
If xi = yj , then we label c[i, j] with a diagonal arrow (↗); otherwise, we label c[i, j] with either
a left arrow (←) or an up arrow (↑), whichever points to the entry equal to c[i, j] (if there is a
tie, either arrow can be used; this reflects the fact that there may be more than one LCS, or that
the same LCS can be obtained in more than one way). When the table calculation is complete,
we build an LCS by following the arrows back from c[m,n], prepending xi onto the LCS we are
building whenever a diagonal arrow is encountered at some row i. One proves that this is indeed
an LCS by induction on m,n, much the same way as the proof that the relations obeyed by c[i, j]
imply correctness of the c[i, j].

Greedy Algorithms

For some optimization problems, even dynamic programming can be overkill. When reducing
a problem for a recursive solution, one typically has a choice of possible reductions, one of which
eventually leads to a globally optimal solution. Sometimes we don’t know which choice is the
right one, so we must try all of them (by dynamic programming, say). Sometimes, however, if one
chooses a locally optimal reduction (by some measure) each time, then this provably leads to a
global optimum. A greedy algorithm is one that follows this strategy, i.e., it always picks a locally
optimal step, or more informally, a step that looks best at the time. If correct, this can lead to
significant speed-up over trying all possible reductions.

Huffman Codes
We’ll only look at one example of a greedy algorithm: constructing an optimal binary prefix

code for an alphabet given that each letter has a frequency. Such a code is called a Huffman
Code. Huffman codes are used for data compression. Given an alphabet C = {c1, . . . , cn}, a binary
prefix code for C is a mapping ϕ : C → {0, 1}∗ such that ϕ(ci) is never a prefix of ϕ(cj) for any
i 6= j. Elements of the range of ϕ are called codewords. We can extend ϕ to encode a string
σ = ci1ci2 · · · cik ∈ C∗ as the concatenation

ϕ(σ) = ϕ(ci1)ϕ(ci2) · · ·ϕ(cik) ∈ {0, 1}∗.

Since no codeword is a prefix of any other codeword, the string σ can be uniquely recovered from
ϕ(σ) (and a description of ϕ itself). Such a property of a code is called unique decodability. All

53

prefix codes are thus uniquely decodable, further, the decoding can be done in real time by reading
the code once left to right.

Example
Suppose C = {a, b, c, d}. A simple prefix code for C is to encode each character as two bits:

a 7→ 00
b 7→ 01
c 7→ 10
d 7→ 11

Suppose σ ∈ C∗ is a string of length 1000. Then this code encodes σ by a string of 2000 bits. If
the frequencies of the letters in σ are not uniform, however, we may be able to find a better code
(one whose encoding of σ is shorter). Suppose a occurs in σ about half the time, c occurs about
one quarter of the time, and b and d each occur about one eighth of the time. Thus we have the
following letter frequences for σ:

letter frequency
a 500
b 125
c 250
d 125

Suppose we use the following prefix code instead:

a 7→ 0
b 7→ 110
c 7→ 10
d 7→ 111

Then σ is now encoded by a bit string of length 500 · 1 + 250 · 2 + 125 · 3 + 125 · 3 = 1750, which
is only seven eighths as long as with the original code. The reason this code does better is that we
encode more frequent letters by shorter strings.

There are some uniquely decodable codes that are not prefix codes, but it can be shown that
for any uniquely decodable code, there is a prefix code that compresses just as much. Hence we
can restrict our attention to prefix codes.

So our task is: given an alphabet C with a frequency corresponding to each letter, find a binary
prefix code that yields the shortest encoding given the frequencies. Such an optimal code is a
Huffman Code.

An easy way to picture a binary prefix code for an alphabet C is by a binary tree where each
letter of C is the label of a unique leaf. Then the codeword for a given letter c is found by taking a
path from the root to the leaf c: if the path goes to the left child, then the next bit of the codeword
is 0; if right child, then the next bit is 1. Since no labeled node is the ancestor of any other, the
tree describes a prefix code. [Draw the tree for the example above.]

Here is the algorithm to construct a Huffman encoding tree bottom-up, given an alphabet
C = {c1, . . . , cn}, where each c ∈ C has a integer frequency attribute f [c] > 0.

54

HuffmanTree(C)
Let Q be a min priority queue (empty)
Insert all letters c ∈ C into Q, keyed by frequency
For i←1 to n− 1 do

x ← ExtractMin(Q)
y ← ExtractMin(Q)
Form a new internal node z
f [z]←f [x] + f [y]
left[z]←x
right[z]←y
Insert z into Q

// Return the root of the tree
Return ExtractMin(Q)

The algorithm works by repeatedly merging a pair of nodes into a new node whose frequency
is the combined frequencies of the original nodes. What is greedy about it? By merging two trees,
we are essentially adding 1 to the lengths of all the codewords in the two trees (by virtue of the
two edges from the new parent). Since we are making these codewords longer, we want their total
frequency to be as low as possible. Hence, at each step we only merge the two available nodes with
lowest possible frequency.

The algorithm above can be recast as a recursive algorithm. It may be easier to see how the
correctness proof works for the recursive version:

HuffmanTree(C)
if |C| = 1 then

return the sole element of C
let x, y be two elements of C

with lowest freqency
let z /∈ C be a letter
f [z]←f [x] + f [y]
C ′←(C − {x, y}) ∪ {z}
r ← HuffmanTree(C ′)
let T ′ be the tree rooted at r
make leaf z in T ′ an internal node

with children x and y
return r

Lecture 19
Huffman Codes:

Proof of Correctness

To show that this algorithm produces an optimal tree, we first give an expression for the cost
of a tree T , which is the total length of the encoding of a string whose letters occur with the given
frequencies. The length of the codeword for a letter c ∈ C is the depth of c in T . Thus the cost of

55

the tree is
B(T) =

∑
c∈C

f [c]dT (c),

where dT (c) is the depth of c in the tree T .
We fix an alphabet C = {c1, . . . , cn}, where n ≥ 2, and each ci has a frequency f [ci]. Our

proof follows from two lemmas. The first says that the initial greedy merging step we take inside
the for-loop is safe, in the sense that we won’t miss an optimal tree starting this way. For our
purposes, an encoding tree for C is a binary tree whose leaves are identified with the elements of C
and each of whose internal nodes has two children. An encoding tree T for C is optimal if it B(T)
is minimum among the costs of all encoding trees for C.

Lemma 17 Let T be any encoding tree for C, and let x, y ∈ C have the two lowest frequencies
of any letter in C. Then there is an encoding tree T ′ for C such that x and y are siblings on the
deepest level of T ′, and further, B(T ′) ≤ B(T).

Proof Let a and b be the two leftmost nodes on the deepest level of T . It is easy to see that a
and b must have a common parent. Now if {x, y} = {a, b}, then we let T ′ = T and we are done.
Otherwise, suppose WLOG that x /∈ {a, b} and a /∈ {x, y}. Then x is somewhere else in T , and
f [a] ≥ f [x] by the choice of x and y. Let T ′ be the tree that results from swapping a with x in T .
Then the only difference between T and T ′ is with the nodes x and a, where dT (x) = dT ′(a) and
dT (a) = dT ′(x). Thus we have

B(T)−B(T ′) = f [x]dT (x) + f [a]dT (a)
− f [x]dT ′(x)− f [a]dT ′(a)

= f [x]dT (x) + f [a]dT (a)
− f [x]dT (a)− f [a]dT (x)

= (f [a]− f [x])(dT (a)− dT (x))
≥ 0,

because a is a node of maximum depth in T . Now if b = y, we’re done. Otherwise, alter T ′ in
the same manner as above by swapping b with y to get another tree with the same or smaller cost
satisfying the lemma. 2

The next lemma finishes the proof of correctness. It says that our sequence of reductions
actually produces an optimal tree.

Lemma 18 Let x and y be two letters in C with minimum frequency. Let C ′ = (C −{x, y})∪ {z}
be the alphabet obtained from C by removing x and y and adding a new letter z (not already in
C). Define the frequencies for letters of C ′ to be the same as for C except that f [z] = f [x] + f [y].
Suppose that T ′ is any optimal encoding tree for C ′, and let T be the encoding tree for C obtained
from T by replacing leaf z with an internal node with children x and y. Then T is an optimal
encoding tree for C.

Proof First, we compare B(T) with B(T ′). The only difference is that z in T ′ is replaced with the
parent of added nodes x and y in T , and so dT (x) = dT (y) = dT ′(z) + 1. All the other nodes are

56

the same in T as in T ′. Thus,

B(T) = B(T ′)− f [z]dT ′(z) + f [x]dT (x)
+ f [y]dT (y)

= B(T ′)− f [z]dT ′(z) + f [x](dT ′(z) + 1)
+ f [y](dT ′(z) + 1)

= B(T ′) + (f [x] + f [y]− f [z])dT ′(z)
+ f [x] + f [y]

= B(T ′) + f [x] + f [y].

Now we’ll prove the lemma by contradiction. Assume that the hypotheses of the lemma but
that T is not an optimal encoding tree for C. Then there is some encoding tree T ′′ for C with
B(T ′′) < B(T). We’ll use T ′′ to construct an encoding tree T ′′′ for C ′ with B(T ′′′) < B(T ′), which
contradicts our assumption that T ′ was optimal.

By Lemma 17, we may assume WLOG that x and y are siblings in T ′′. Let T ′′′ be the tree
we get by removing x and y and replacing their parent with z. Note that T ′′′ bears the exactly
analogous relation to T ′′ as T ′ bears to T , namely, having z instead of a parent of x and y. Thus
we can do the exact same calculation as we did above with B(T) and B(T ′), but this time with
B(T ′′) and B(T ′′′). This gives

B(T ′′) = B(T ′′′) + f [x] + f [y].

Subtracting the second equation from the first, we get

B(T)−B(T ′′) = B(T ′)−B(T ′′′).

The left-hand side is positive by assumption, so the right-hand side is also positive. But this means
that B(T ′′′) < B(T ′), so T ′ is not optimal. 2

It follows from this lemma that our algorithm is correct: the first iteration of the for-loop
effectively reduces the construction of T to that of T ′. Assuming inductively that the rest of the
algorithm produces an optimal T ′, we know by the lemma that our T is optimal.

Lecture 20
Amortized Analysis

When performing a sequence of n operations on a data structure, we often are less concerned
with the worst-case time taken by any single operation in the sequence, but rather the worst-case
cost per operation averaged over the n operations.

Example: binary counter
Maintain an integer in binary. Operations: Reset (to zero), Increment, Display. Assume Reset

is done once (at the beginning to initialize), followed by n increments, followed by Display. We
will need k = blg nc + 1 bits for the counter. Incrementing is done in the usual way: adding 1
with possible carries. In the worst case, a single increment may take Θ(k) steps, e.g., when a carry
propagates through all k bits. So we immediately get a bound of O(nk) = O(n lg n) for the total
time taken for incrementing, for an average of O(k) time per increment.

57

This is not tight, however, and we can do much better. The key observation is that the worst
case does not happen very often. In fact, we require exactly i carries if and only if the result of the
increment is an odd multiple of 2i, since the carries will clear the i least significant bits, leaving
the (i + 1)st least significant bit equal to 1. This gives us a way to better compute the total time
T (n) taken by n increments (starting at zero). We’ll assume that each carry takes unit time, and
that the total cost of an increment other than carries is also unit time, so that the total cost of an
increment is one more than the number of carries. We group the sum for T (n) by the number i of
carries required. Note that there are O(n/2i) many odd multiples of 2i between 1 and n.

T (n) =
blg nc∑
i=0

(i + 1)O(n/2i)

= O

n

blg nc∑
i=0

i + 1
2i

= O

(
n

∞∑
i=0

i + 1
2i

)
= O(n),

since the infinite sum converges.
Three methods for analyzing the amortized complexity: aggregate, accounting, and potential.

The potential method subsumes the other two.
Example: stack with multipop
Amortized time for a sequence of n operations (starting with an empty stack) is O(1) per

operation, since at most n items are ever added to the stack, and each such item is “handled” for
only O(1) time. (Aggregate analysis.)

Example: dynamically resizing an table (array)
Assume Insert and Delete take unit time each (one dollar). If only Insert is performed, then

a standard practice when the array becomes full is to allocate another array twice the size, and
copy elements from the old array into the new. (Assume that the cost of the actual allocation is
dominated by the copying costs, so we ignore it.) Thus the array will always be at least half full.
We “charge” three units (three dollars) for each insertion. One dollar pays for the current insertion,
one dollar pays for the next time the item is copied into a larger array (which we assume has unit
cost), and the last dollar pays for another item’s next copy into a larger array. Assuming an array
currently of size s ≥ 2 (s is a power of 2) containing exactly n = s/2 items. Then exactly n more
items will be inserted before the array is resized. Each such additional item pays three dollars, one
of which is spent immediately to insert the item, with the other two “put in the bank.” After the
n additional insertions, there are exactly 2n = s dollars in the bank, which is just enough to pay
for the s items being copied from the smaller to the larger array. We withdraw all this money from
the bank. (Accounting method.)

It is desirable to save space by allocating no more than O(1) space per item, so if Delete
operations are possible, we want to reduce the space allocated for the array when the number of
items reaches 1/4 of the capacity of the array. (Why not 1/2?) We’ll use this case to illustrate the
potential method.

The Potential Method

58

We analyze the amortized complexity of a sequence of operations a1, . . . , an on a data structure
S. Let Si be the state of the S after the ith operation ai (S0 is the initial state of S before
a1). For 0 ≤ i ≤ n we assign a real value Φ(Si) (the potential), which depends on the state
of S. Initially, Φ(S0) = 0, and Φ(Si) will always be nonnegative. In analogy to the accounting
method, the potential represents how much money the data structure has stored up to pay for
future operations. If ci is the actual cost of operation ai, then we define the amortized cost of
operation ai to be

ĉi = ci + Φ(Si)− Φ(Si−1).

That is, ĉi is the actual cost, adjusted by the net change in the potential. Let T be the total actual
time for operations a1, . . . , an. Since the potential starts at zero and remains nonnegative, we have

T =
n∑

i=1

ci

≤
n∑

i=1

ci + Φ(Sn)

=
n∑

i=1

[ci + Φ(Si)− Φ(Si−1))]

=
n∑

i=1

ĉi.

Thus the total time is bounded from above by the total amortized time, and so any bound on the
amortized time gives at least as good a bound on the actual time. We choose a potential function
to make the worst-case amortized time of any operation as small as possible.

Back to Array Resizing
Let n be the current number of items in the array (between operations), and let s be the current

size of the array. Set α = n/s (the load factor). Then it is always the case that α ≥ 1/4. Define
the potential in this case as

Φ =
{

2n− s if α ≥ 1/2,
s/2− n if α < 1/2.

There are several cases to work through here (Exercise):

• α < 1/2 after Insert,

• α < 1/2 before Insert, and α ≥ 1/2 afterwards,

• α ≥ 1/2 before Insert, and α < 1 afterwards,

• Insert makes α = 1 so array needs expanding,

• α ≥ 1/2 after Delete,

• α ≥ 1/2 before Delete, but α < 1/2 afterwards,

• α < 1/2 before Delete, and α > 1/4 afterwards,

• Delete makes α = 1/4 so array needs contracting.

59

In all cases we see that the amortized time of any operation is always O(1), so this is optimal.
Potential Method for Previous Examples
Multipop stack: Let Φ(S) be the number of items in S. Push only increases the potential by 1,

so its amortized cost is 2. Pop and multipop both have amortized cost 0.
Binary counter: Let Φ(C) be the number of ones in counter C. Then each increment just

changes the least significant 0 to 1, and each carry changes a 1 to 0, and thus is compensated for
by a decrease in the potential. Thus increment has amortized cost O(1).

When is amortized complexity not an appropriate measure of complexity? In real-time systems,
especially critical systems, or when data structures are shared between many users (e.g., in a
database), so that fair access is desired.

Lecture 21
Binomial Heaps

Disjoint Sets

Mergeable Heaps
A mergeable heap (min heap) supports all the usual heap operations: MakeHeap, Insert, Min-

imum, ExtractMin, as well as supporting Union, which takes two mergeable heaps and returns a
single (mergeable) heap with all the items of the two heaps combined (the two original heaps are
destroyed). Without Union, regular binary heaps work fine, but combining two binary heaps into
one needs linear time. We’ll see an implementation of mergeable heaps: binomial heaps, where all
these operations, including Union, take time O(lg n) in the worst case. These heaps also support
DecreaseKey and Delete in O(lg n) time.

Binomial Heaps
A binomial tree Bk of height k is an ordered tree whose shape is defined recursively in k as

follows:

• B0 is a single node.

• For k > 0, Bk is the tree that results from linking two binomial trees Bk−1 of height k − 1,
so that the root of one becomes the leftmost child of the other.

[Draw a picture of B0, B1, B2, and B3.]
The following properties of Bk are verified by induction:

• Bk has exactly 2k nodes.

• Bk has height k.

• There are exactly
(
k
i

)
many nodes at depth i in Bk, for 0 ≤ i ≤ k. (Induction on k and i.)

• The root of Bk has degree k, which greater than that of any other node.

• If the children of the root are numbered from left to right by k − 1, k − 2, . . . , 0, then child i
is the root of a subtree Bi.

It follows immediately that the maximum degree of any node in a binomial tree of size n is lg n.
A binomial heap H is a list of binomial trees, whose nodes contain items, satisfying the following

binomial heap properties:

60

• Each binomial tree in H obeys the usual min-heap property: the key of any nonroot node is
at least the key of its parent. (The tree is min-heap-ordered.)

• The heights of successive trees in the list H are strictly monotone increasing. (In particular,
no two trees in H have the same height.)

Suppose H has size n > 0 and consists of ` > 0 many trees. Let k0 < k1 < · · · < k`−1 be the
sequence of tree heights. Then, since k`−1 ≥ `− 1, we have

n =
`−1∑
i=0

2ki ≥ 2`−1.

This implies ` = O(lg n). Conversely, any number n > 0 is uniquely expressible as a nonempty sum∑`−1
i=0 2ki of increasing powers of two, thus the whole shape of H is determined exactly by its size

alone.
We use the leftmost-child/right-sibling representation to implement binomial heaps. We use

the right-sibling link to link the roots of the trees together (the root list, pointed to by head[H]).
Each node x also contains the number of its children in degree[x].

Making an Empty Binomial Heap
An empty binomial heap H is represented by head[H] being null. This is what MakeHeap

accomplishes, and it takes O(1) time.
Finding the Minimum in a Binomial Heap
Traverse the list of tree roots, and return the minimum key found. This takes time linear in

the number of trees, which is O(lg n).
Merging Two Binomial Heaps
Given binomial heaps H1 and H2, we traverse forward the root lists head[H1] and head[H2],

merging the two lists by increasing tree height. If we encounter a tree Bk in H1 and another tree
Bk in H2, then we perform a “carry” operation: we link the two together into a single Bk+1 by
making the root with bigger key the child of the root with smaller key. We then merge this new
Bk+1 (a one-item list) in with the two other lists. Since we never encounter more than three trees
of the same size this way, it will work. This is the Union operation.

Since we do a constant amount of work on each tree, the time we take is linear in the total
number of trees, which is logarithmic in the size of the newly created heap.

Inserting into a Binomial Heap
To insert x into H with n items, we first make a one-element heap H ′ containing x, then merge

it with H. This takes time O(lg n).
Extracting a Minimum from a Binomial Heap
To remove a minimum element from H, we first find a minimum element, which will be the

root of one of H’s trees Bk. We remove Bk from the root list head[H]. Then we remove the root
of Bk, leaving a list of exactly k children of heights k − 1, k − 2, . . . , 0. We then reverse this list to
make a binomial heap H ′. Finally, we merge H ′ with H.

The total time for this is O(lg n): since k = O(lg n), we can reverse the list of children within
this time, and finding a minimum and merging each can be done within this time.

Decreasing a Key in a Binomial Heap
After decreasing the key of some node in some tree Bk of H, we simply cascade the node up

through Bk as necessary, just like we did with binary heaps. Since Bk has height k = O(lg n), the
time taken is O(lg n).

61

Deleting a Node from a Binomial Heap
To delete an arbitrary node x in H, first perform DecreaseKey, decreasing x’s key to −∞. Then

do an ExtractMin. The two actions combined take O(lg n) total time.
Question: How can we augment a binomial heap so that finding the minimum takes O(1)

time, without affecting the asymptotic times of the other operations? (This is mostly an academic
exercise; there is not much practical reason to do this.)

Lecture 22
Disjoint Sets

Starting Graph Algorithms

Another useful data structure is one for maintaining a collection of pairwise disjoint nonempty
sets C = {S1, . . . , Sk}. Each set Si contains a unique distinguished element called its representative.
Any element of Si can serve as its representative, but there are never two or more representatives
of Si at the same time. The set Si is identified by its representative.

The three supported operations are as follows:

MakeSet(x) creates a new set whose sole element is x. The representative of the new set is x (of
course). To maintain disjointness with other sets, we require that x not belong to any other
set.

Find(x) returns the unique set Si containing x. Actually, it returns the representative of Si.

Union(x,y) merges the set containing x with the set containing y into a single set (if the two sets
were different). The two original sets are destroyed.

Note that we can test whether two elements x and y are in the same set, because this is equivalent
to Find(x) and Find(y) being equal.

Applications
This data structure has many applications.
Example: connected components in a graph
Example: building a maze
Example: Unification pattern matching
We’ll see others.
We often represent each set in the collection as an unordered, rooted tree of its elements, with

the representative at the root and the other elements linked using parent pointers only. (This is
the so-called disjoint set forest.)

We can implement Find(x) by following the parent pointers along the path from x to the root.
We can implement Union(x, y) by first finding the roots of the corresponding trees (using Find(x)
and Find(y)), then making one root a child of the other. The one remaining root becomes the
representative of the combined set.

This basic approach works. If we are not careful, however, it may produce tall trees which could
make Find(x) costly in the worst case. We can remedy this by following two additional heuristics:

Path-compression When performing Find(x), once the root is found, alter the parent pointers
of all nodes on the path just traversed to point to the root directly. This requires keeping
each node along the path in some data structure, like a stack, during traversal.

62

Union-by-rank When performing Union(x, y), choose more wisely which root to make a child of
the other. Augment the data structure by maintaining some kind of extra information at
each root (its rank) to help with the decision. Always make the root with smaller rank point
to the root with larger rank, then update the rank of the remaining root.

There are different possibilities for union-by-rank. If we keep track of the height of each tree at its
root (so rank equals height), then we would always make the root of the shorter tree the child of
the root of the taller one. This won’t increase the height unless the two heights are equal to begin
with. Unfortunately, maintaining the height of a tree (e.g., updating it correctly after a Find) is
too difficult and time-consuming for this approach to be useful. Instead, we define the rank as if
it were the height, except that we don’t try to alter it after a Find operation. Thus the rank is an
upper bound on the height. When combining via Union two trees T1 and T2 with ranks r1 and r2

respectively, we increment the rank of the combined root if r1 = r2, and otherwise leave it alone.
Analysis
The time to perform m disjoint-set operations on n elements is known to be O(mα(n)), where

α is a monotone, very slowly growing (but still unbounded) function of n. For example, α(n) grows
even more slowly than lg∗ n. So for all practical purposes, we have nearly constant amortized time
per operation. We won’t do the analysis here, but it is very clever, and you are welcome to read it
from the book (I won’t test on it).

Graph Algorithms

Let G = (V,E) be a directed graph (digraph). V = {v1, . . . , vn} is the set of vertices of G, and
E ⊆ V × V is the set of edges of G. If (u, v) ∈ E, then we say that v is adjacent to u, but not vice
versa unless (v, u) ∈ E (adjacency is not necessarily a symmetric relation).

There are two standard ways of representing G with a data structure.

Adjacency Matrix. We encode G by an n× n matrix A whose (i, j)th entry is

A[i, j] =
{

1 if (vi, vj) ∈ E,
0 otherwise,

for 1 ≤ i, j ≤ n.

Adjacency List. We maintain an array V [1 . . . n] of n linked lists, where V [i] is (a reference to)
a list of records representing edges leaving vi (in no particular order). Each record in the list
V [i] records a different index j such that (vi, vj) ∈ E. (This is also known as the edge list
representation.)

These data structures may be augmented with other information, such as edge weights, vertex
weights, Boolean markers, et cetera.

We sometimes depict the directed edge (u, v) as u → v or as v ← u. We usually disallow
self-loops in a graph, i.e., edges of the form v → v.

We can use the same structures to represent undirected graphs by considering a undirected
graph to be a special case of a digraph where each undirected edge u ↔ v is represented by the
pair of directed edges u → v and u ← v. Thus the adjacency matrix for an undirected graph is
symmetric (A[i, j] = A[j, i] for all i, j).

63

Note that |E| ≤ |V |2. If |E| = Ω(|V |2) then we say that the graph is “dense.” Likewise, if
|E| = o(|V |2), then the graph is “sparse.” (We are abusing terminology here. These properties
really only apply to infinite classes of graphs rather than individual graphs.) The adjacency matrix
for G has size Θ(|V |2), and the adjacency list for G has size Θ(|V | + |E|). If G is dense, then
both representations above are roughly equivalent in size. If G is sparse, however, the adjacency
list representation is more compact, and so we generally prefer it. We’ll assume that all our input
graphs are given in the adjacency list representation, and hence the size of G will be the size of
this representation of G, i.e., Θ(|V |+ |E|).

If G is dense, the adjacency matrix representation may be more useful if we want to find out
quickly whether two given vertices are connected by an edge. It’s easy to convert between the two
representations.

Exercise: The edge list representation is convenient for following edges forward, but inconvenient
for following edges backward (which we occasionally wish to do). For any digraph G = (V,E), we
define GT to be the graph (V,E′), where E′ = {(v, u) | (u, v) ∈ E}. Thus GT is the same as G
but with all edges pointing in the opposite direction. Traversing an edge backward in G is thus
the same as traversing the corresponding edge forward in GT . Describe an algorithm that takes
an edge list representation of any digraph G and produces an edge list representation of GT . Your
algorithm should run in linear time (linear in the size of the input representation). (We use the
notation GT because the adjacency matrix of GT is the transpose of that of G. Some people use
GR or Gr instead.)

Lecture 23
Graph Search

Probably the most fundamentally useful graph algorithm is search, which systematically visits
all vertices or edges in a graph or part of a graph. There are different kinds of graph search, but all
common types of graph search are special cases of a generic search algorithm that we now describe.
(This is not in the book!)

During the search, each vertex will be one of three colors: white, grey, or black. White vertices
are those that have not been found yet; grey vertices are those that have been discovered but
not completely processed; black vertices have been completely processed and will not be processed
further. We use some collection B (called the “box”) to hold the grey vertices. The data structure
used for B can vary depending on the type of search. The only operations we require B to support
are

Make(B) (re-)initializes B to be empty,

Empty(B) tests whether B is empty,

Insert(x,B) inserts a vertex x into B, and

Delete(B) removes and returns some element x from B (assuming B is not empty).

Possible box “types” include stack, queue, or priority queue.
We assume that each vertex has a color attribute that is either white, grey, or black.
GenericSearch takes a graph G = (V,E) as input, and searches all white vertices of G.

64

GenericSearch(G)
for each vertex v of G do

if color[v] = white then
GenericSearchAt(G, v)

GenericSearchAt takes a graph G = (V,E) and a vertex v ∈ V as input, and searches that
portion of the graph that is reachable from v through white vertices only. We use three “visitation”
subroutines: Start, Update, and Finish. These three routines will vary depending on the type of
search. They may also share a persistent state (e.g., they build some structure incrementally over
several calls). We assume that none of these routines alters the color attribute of any vertex; we
do that explicitly in GenericSearchAt.

65

GenericSearchAt(G, v)
// Assumes color[v] = white

// B is a local box
Make(B)
Start(v;nil)
color[v]←grey
Insert(v,B)
Update(v;nil, B)
repeat

u ← Delete(B)
Finish(u)
color[u]←black
for each w adjacent to u do

if color[w] = white then
// we’ll say that u discovers w here
Start(w;u)
color[w]←grey
Insert(w,B)

if color[w] = grey then
Update(w;u, B)

until Empty(B)

66

GenericSearchAt finds new vertices by their being adjacent to old ones. The subroutine Start
is called on a vertex when it is first found and it enters the box (its color changing from white to
grey). Once in the box, the vertex will be Update’d one or more times, once for each edge leading
to it from a black vertex.

The time taken by GenericSearchAt is dominated by the calls to Insert, Delete, Start, Update,
and Finish. The following table gives the maximum number of times each subroutine is called:

Routine # of calls
Insert |V |
Delete |V |
Start |V |

Update |E|+ 1
Finish |V |

Breadth-First Search (BFS)
This is the type of search that results from implementing the box B as a (simple) queue. BFS

finds new vertices in order of increasing (unweighted) distance from v. It is used, for example, to
find the unweighted distance from v to any node. (The unweighted length of a path is the number
of edges along the path; the unweighted distance from node u to node v is the minimum unweighted
length of a path from u to v, or ∞ if there is no path.)

Depth-First Search (DFS)
This type of search results from implementing B as a stack. DFS goes out as far as possible

along a path from v before backtracking to another path.
Search Trees
A useful structure that can be produced from a search from a vertex v of G is a search tree.

A search tree is an unordered, rooted tree (with root v), on some of the vertices of G, whose
parent-to-child edges form a subgraph of G. A vertex is added to the tree as a new leaf when it
is discovered, with parent the vertex that discovers it. Assuming that each vertex has additional
attributes parent, leftmost, and rightsibling, we build a search tree by including the following code
in Start(u;w):

parent[u]←w
leftmost[u]←nil
rightsibling[u]←leftmost[w]
leftmost[w]←u

This code sets u to be a leaf with parent w, and adds u onto w’s list of children.
In a breadth-first search tree, the path from the root to any vertex in the tree is a shortest path

(unweighted).
Depth-first search trees are useful for finding, among other things, strongly connected compo-

nents in a digraph and articulation points in an undirected graph. (A digraph is strongly connected
if for every ordered pair (u, v) of vertices there is a directed path from u to v. In a general digraph
G, we’ll say that two vertices u and v of G are equivalent (u ≡ v) if there are directed paths from
u to v and from v to u. The relation ≡ is clearly an equivalence relation, and the equivalence
classes are the strongly connected components of G. For an undirected, connected graph G, an
articulation point is a vertex whose removal disconnects the remaining graph.)

Dijkstra’s Algorithm for Single-Source Shortest (Weighted) Path

67

We are given a digraph G = (V,E), where each edge (u, v) has a real-valued attribute c[u, v]
called the cost, or distance, of the edge (u, v). (Numerical attributes such as these are called edge
weights. In the adjacency list representation, edge weights are stored in the linked list nodes.) We
are also given a source vertex s ∈ V . We would like to find the distance and a shortest (directed)
path (if it exists) from s to each other vertex, where the length of a path is the sum of the costs
of the edges along the path. BFS solved this in the case where all the edge costs are equal to one,
but here they could be arbitrary (except that we forbid cycles of negative length).

For example, we want to find the shortest routes from the warehouse to each of the retail stores.
A beautiful algorithm of Dijkstra solves this problem in the case where all edge costs are

nonnegative. It is a special case of GenericSearchAt(G, s) above, where

• Each vertex v has two attributes:

– d[v] is a real number that will eventually hold the (shortest) distance from s to v. If v
is not reachable from s, then we make the distance ∞ by convention.

– b[v] will eventually point to the predecessor of v along a shortest path from s to v.
Following these fields backwards gives a shortest path from s to v.

• Initially, d[s] = 0 and d[v] =∞ for all v 6= s.

• Initially, b[u] = nil for all u ∈ V .

• The box B is a min-heap, with items (vertices) keyed by their d attributes. Insert and
DeleteMin are the relevant operations. We’ll also use DecreaseKey (see Update, below).

• Start and Finish are both no-ops.

• The Update(v;u, B) procedure checks if new evidence has been found to decrease d[v] based
on v being adjacent to u. It is defined as follows:

Update(v;u, B)
if d[u] + c[u, v] < d[v] then

// This implicitly sets d[v]←d[u] + c[u, v]
DecreaseKey(B, v, d[u] + c[u, v])
b[v]←u

We don’t bother calling this routine initially on s. Note that d-values can only decrease; they
never increase.

The correctness of the algorithm all hinges on the fact that, when a vertex v is removed from B,
its d and b attributes are correct. We prove this by induction on the number of times DeleteMin(B)
has been called so far. Here is the idea. First, it is clear that we never set the d attribute of any
vertex x to a finite value unless we actually have evidence that there is a path from s to x with at
most that length. This is easily shown by induction. So now we only need to show now that d[v]
is not too large when v leaves B. Suppose a vertex v is just about to be removed from B. Then
d[v] is a minimum key in B. Suppose there is a path p from s to v of length strictly less than d[v].
Following p backwards from v, there must be a point where we first go from a nonblack vertex x to
a black vertex y (since v is grey but s is black). We now know the following are true at this point
in time:

68

• x is grey (and thus x is in B). Since y is black and x is adjacent to y, x is discovered, so it
cannot be white.

• d[y] is at most the length of that part of p that goes from s to y. Since y is black, it was
already removed from B previously, so by the inductive hypothesis, d[y] is correct, i.e., it is
the length of a shortest path from s to y, so d[y] certainly can be no more than the length
along p from s to y.

• d[x] is at most the length of that part of p that goes from s to x. Since y is black, at some
point the edge (y, x) was previously “traversed,” i.e., Update(x; y, B) was called. When this
happened d[x] was set to d[y]+ c[y, x] (if it was larger). But d[y]+ c[y, x] is exactly the length
of that part of p that runs from s to x.

• d[x] < d[v]. By assumption d[v] is strictly greater than the length of p, which in turn is at
least the length along p from s to x (here we need the fact that there are no negative edge
costs).

This last item is a contradiction, because d[v] has to be the minimum key in B. Thus no such
shorter path p can exist.

To show that the b-attributes are correct, we observe (by induction again), that at any time in
the algorithm and any vertex v, if b[v] 6= nil then b[v] is the predecessor to v along a path of length
d[v] from s to v.

The worst-case running time for Dijkstra’s algorithm is Θ((|V |+ |E|) lg |V |) if we implement B
as a binary heap. The reason for this is that B may have size as much as (but no more than) |V |,
and heap operations are logarithmic time.

Lecture 24
Minimum Spanning Trees

You have a bunch of nodes (computers or other devices) and you want to connect them all to
a common LAN in the cheapest possible way by laying physical links between pairs of nodes. The
only restriction is that there be a path in the network connecting any pair of nodes (the path may
go through several other nodes). If c[i, j] is the cost of stringing a link between nodes i and j, then
the total cost of setting up the network is the sum of the costs of all the links strung.

One obvious rule to follow (assuming all the c[i, j] are positive) is that there should be no cycles
in the network, for if there were a cycle p, removing one link from p would give a cheaper network
with the same connectivity. So the cheapest network will be a tree spanning all the nodes.

We’ll go over two greedy algorithms that each find a minimum spanning tree in a graph. The
proofs of correctness for both algorithms are similar, relying on the same lemma.

Definition 19 Let G be an undirected, connected graph. A spanning tree for G is a collection of
edges of G that forms a tree on all the vertices of G. If G has edge weights, then the weight of a
spanning tree T is the sum of the weights of the edges in T . A minimum spanning tree for G is a
spanning tree whose weight is minimum (among all possible spanning trees).

It’s a good exercise to prove the following:

Fact 20 Let G be an undirected graph with n vertices.

69

• If G is connected, then G has at least n− 1 edges.

• If G has at least n edges, then G has a cycle.

• If G is a tree (i.e., connected and acyclic), then G has exactly n−1 edges. (This follows from
the two previous facts.)

Edge weights (costs) for a graph G = (V,E) are assumed given by a function w : E → R.
Kruskal’s Algorithm
This algorithm uses a system of disjoint sets of edges.

KruskalMST(G, w)
T←∅
for each v ∈ V do

MakeSet(v)
sort edges of E into increasing order by w
for each (u, v) ∈ E in order, do

// Invariant (proved below):
// T is a subset of some MST for G
if FindSet(u) 6= FindSet(v) then

T←T ∪ {(u, v)}
Union(u, v)

// T is an MST for G (proved below)
return T

During the execution of this algorithm, T will be a forest of trees unconnected to each other,
starting with |V | many empty trees (single isolated vertices with no edges). We repeatedly add to
T the lightest possible edge that joins two unconnected trees together.

If G is not connected, then no spanning tree exists. The algorithm can detect this: G is
connected if and only if exactly |V | − 1 Union operations are performed (if less, then T will be a
forest of at least two trees).

Prim’s Algorithm
This is a special case of generic search. It is similar to Dijkstra’s algorithm, but with one crucial

difference in the Update routine. Each vertex has a real-valued attribute d and a vertex-valued
attribute π. The MST is built as a rooted tree whose root can be any vertex. The final π-value of
each vertex will be its parent pointer.

PrimMST(G, w)
for each vertex v do

d[v]←∞
π[v]←nil

let s be any vertex of G
d[s]←0
GenericSearchAt(G, s)
// MST is encoded in π-values
T←∅
for each vertex v do

70

if π[v] 6= nil do
T←T ∪ {(v, π[v])}

return T

The subroutine GenericSearchAt(G, s) is implemented as follows:

• The box B is a min-heap with items keyed by their d-values.

• Start and Finish are no-ops.

• Update(v;u, B)
if w[u, v] < d[v] then

π[v]←u
d[v]←w[u, v]

During the generic search phase, a single tree is grown, starting with the root s, by repeatedly
adding new vertices (that are not already part of the tree) as leaves. The new leaf is chosen each
time so as to add the lightest possible edge to the tree.

How can this algorithm be used to test whether G is connected?
Correctness
Each algorithm is greedy in that the lightest edge satisfying some criterion is added to the tree

in each step. The correctness of both approaches will follow from Lemma 23, below, which says
that when building an MST, by accumulating edges, certain edges are “safe” to add.

Definition 21 Let G = (V,E) be an undirected graph. A cut in G is a partition of V into two
sets S and V − S. Such a cut is denoted by (S, V − S).

Definition 22 Let (S, V −S) be a cut in G. An edge (u, v) crosses the cut (S, V −S) if one of the
endpoints u and v is in S and the other is in V − S. If A is a set of edges, then we say that the
cut respects A if no member of A crosses the cut.

Lemma 23 Let G = (V,E) be a connected, undirected graph with edge weights w. Suppose that A
is a subset of some minimum spanning tree for G, and let (S, V −S) be any cut that respects A. If
(u, v) is an edge crossing (S, V − S) of minimal weight, then A ∪ {(u, v)} is also a subset of some
minimum spanning tree for G. (We say that (u, v) is a safe edge to add to A.)

Proof Let T be some MST containing A. If (u, v) ∈ T , we are done, so assume otherwise. Adding
(u, v) to T yields a set U = T ∪ {(u, v)} of |V | many edges, which thus must have a cycle. Further,
U must have a cycle c containing (u, v), since T itself is acyclic. Since (u, v) crosses (S, V − S),
there must be some other edge on c besides (u, v), say (x, y), that also crosses (S, V − S). Then
(x, y) ∈ T , and by the assumption that (u, v) has minimum weight, we have w[x, y] ≥ w[u, v]. Now
let T ′ = U − {(x, y)}. T ′ had exactly |V | − 1 edges and is connected (any path in T that goes
through (x, y) can be rerouted through (u, v) to be a path in T ′). Thus T ′ is a spanning tree, and

w(T ′) = w(T) + w[u, v]− w[x, y] ≤ w(T).

Since T is an MST, we must have w(T ′) = w(T) (and so also w[u, v] = w[x, y]) and T ′ is also an
MST. Further, A ∪ {(u, v)} ⊆ T ′, and so A ∪ {(u, v)} is contained on some MST. 2

71

We now see how Lemma 23 implies the correctness of Kruskal’s and Prim’s algorithms. In each
case, we only add safe edges.

In Kruskal’s algorithm, we accumulate edges into T , maintaining the invariant that T is always
a subset of some MST. We only need to show that when an edge (u, v) is added to T , there is
some cut respecting T such that (u, v) is a minimum weight (“light”) edge crossing the cut. At
any time in the algorithm and any vertex w, we let Sw be the set in the disjoint set system that
currently contains vertex w. When edge (u, v) is added to T , Union(u, v) is called, which joins the
two previously disjoint sets Su and Sv. Consider the cut (Su, V − Su), which clearly respects T
before (u, v) is added. Any edge that crosses this cut has one vertex in Su and the other in some
Sw 6= Su, and so has not previously been added to T . Since we take the edges in increasing order
by weight, it must be that (u, v) is a minimum weight edge crossing the cut. Thus it is safe to add
to T , and the loop invariant is maintained.

In Prim’s algorithm, at any time during execution, let

T = {(v, π[v]) | v is black and not the root}.

T is initially empty, and any edge (v, π[v]) enters T when v is removed from B and turns black.
(T is not actually maintained by the algorithm during the search, but we could easily alter the
search to maintain T .) (Note that π[w] is always black from the time a vertex w is first updated.)
Immediately before v leaves T , let S be the set vertices that are currently black, and consider the
cut (S, V − S), which clearly respects T . Since π[v] is black and v is grey, (v, π[v]) crosses the cut
(S, V − S).

Claim 24 (v, π[v]) is a minimum weight edge crossing the cut (S, V − S), and is thus safe to add
to T .

Proof Let (x, y) be any edge crossing (S, V − S). We show that w[x, y] ≥ w[v, π[v]]. Immediately
before v is removed from B, one of the vertices x or y is black (say x), and the other (say y) is grey,
since it is adjacent to x but not black. So y is in the box at this time. We have d[y] = w[y, π[y]] ≤
w[x, y], because the algorithm guarantees that d[y] is the minimum weight of any edge connecting
a black node with y. We also have d[v] = w[v, π[v]]. But since v is about to be removed from B (a
min-heap), we must have d[v] ≤ d[y], which proves the claim. 2

Prim’s algorithm is thus correct, because only safe edges are added to T during the search
phase.

Lecture 25
NP-Completeness

This is the most important subject that most students don’t learn well enough.

• Given a set of S integers, is there a way to partition S into two subsets whose sums are equal?

• Given a graph G, is there a path in G that goes though each vertex exactly once?

• Given a graph G and an integer K, is there a set C of no more than K vertices such that
every edge in G is incident to at least one vertex in C?

• Given a Boolean formula ϕ, is there a truth-setting of the variables that makes ϕ true?

72

• Given a graph G and an integer K, does G have a complete subgraph of size at least K?

No algorithms are known for any of these problems that run in less than exponential time
(essentially by exhaustive search).

BUT, a fast algorithm for any one of them will immediately give fast algorithms for the rest of
them.

All these problems, and many others, are NP-complete.
The theory of NP-completeness is the best tool available to show that various interesting prob-

lems are (most likely) inherently difficult.
[So far, no one has been able to prove mathematically that NP-complete problems cannot be

solved by fast algorithms, but this hypothesis is supported by a huge amount of empirical evidence,
namely, the failure of anybody to find a fast algorithm for any NP-complete problem despite intense
and prolonged effort.

So if your boss asks you to find a fast algorithm for a problem and you cannot find one, you may
be able to show your boss that the problem is NP-complete, and hence equivalent to the problems
above, which the smartest minds in the field have failed to crack.

At least your boss would know that she won’t do any better by firing you and hiring someone
else.]

Decision Problems
We restrict our attention to decision (i.e., yes/no) problems for convenience.

Definition 25 A decision problem is specified by two ingredients:

1. a description of an instance of the problem (always a finitely representable object), and

2. a yes-no question regarding the instance.

So a decision problem is a set of instances, partitioned into yes- and no-instances.
All the questions above are decision problems. When stating a decision problem, we name it,

then explicitly give its two ingredients. For example,

VERTEX COVER
Instance: an undirected graph G and an integer K.
Question: is there are set of vertices C of size at most K such that every edge in G is

incident to a vertex in C?

All instances of a decision problem are either yes-instances or no-instances, depending on the
answer to the corresponding question.

[We can apply these techniques to other kinds of problems, e.g., search problems, if we wanted.
Often, a fast algorithm for a decision problem can be used to get a fast algorithm for a related
search problem. For example, suppose we had an algorithm for VERTEX COVER, above, and we
wanted an algorithm to find a vertex cover of maximum size in a graph. We can first call VERTEX
COVER repeatedly with different K values to determine first the size of a maximum cover. Then
we can find an actual cover of this size by repeatedly calling VERTEX COVER on graphs obtained
by removing successive vertices from the original graph.]

P and NP
We say that an algorithm A solves a decision problem L if, given any instance of L as input, A

outputs the correct answer to the corresponding question.

73

Definition 26 We define P to be the class of all decision problems that are solvable in polynomial
time. That is, P is the class of all decision problems Π for which there exists a constant k and an
algorithm that solves Π and runs in time O(nk), where n is the size (in bits) of the input.

Thus P is the class of all decision problems that are “easily decidable.” (“easy” = polynomial
time; we don’t need any finer granularity)

[Without loss of generality, we will assume that all algorithms must read their input sequentially,
as if from a file on disk, say. Likewise, all outputs must be written sequentially (e.g., to a disk
file). Thus reading input and writing output take time proportional to the size of each. This will
simplify much of the discussion below.]

A decision problem is in the class NP if all its yes-instances can be easily verified, given the
right extra information.

For example, if a graph G does have a vertex cover C of size ≤ K, this fact can be verified
easily if the actual set C is presented as extra information (we simply check that each edge in G is
incident to a vertex in C).

Such extra information is called a proof or witness.

Definition 27 NP is the class of all decision problems Π for which there exists an algorithm A
that behaves as follows for all instances x of Π:

• x is a yes-instance of Π if and only if there is a y such that A outputs “yes” on input (x, y).

• A runs in time polynomial in the length of x.

Such a y (when it exists) is a witness, and A is the algorithm that verifies, using the witness,
that x is a yes-instance of Π. In the case of VERTEX COVER, x encodes a graph G and integer
K, and y (if it exists) would encode a vertex cover for G of size at most K.

Since A must stop within time O(nk) for some constant k, it can only read the first O(nk) bits
of y, where n is the length of x. Thus we can limit the size of y to be polynomial in n.

All the problems listed above are in NP. Also, it is clear that P ⊆ NP (for a problem Π ∈ P,
a verifying algorithm could ignore any extra proof and just decides whether the input is a yes- or
no-instance in polynomial time; hence Π ∈ NP).

Reductions
We want to compare decision problems by their difficulty.

Definition 28 Given two decision problems Π1 and Π2, we say that Π1 polynomially reduces to
Π2 (Π1 ≤p Π2) if there is a function f such that

• f maps each instance of Π1 to an instance of Π2,

• f can be computed in polynomial time, and

• for each instance x of Π1,

x is a yes-instance of Π1 iff f(x) is a yes-instance of Π2 (and thus x is a no-instance
of Π1 iff f(x) is a no-instance of Π2).

f is called a polynomial reduction from Π1 to Π2.

74

This captures the notion that Π1 is “no harder than” Π2, or, Π2 is “at least as hard as” Π1.
The ≤p relation is reflexive and transitive.

The intuition that≤p at least partially orders problems by difficulty is supported by the following
theorem.

Theorem 29 (Pretty easy) Suppose Π1 ≤p Π2. Then,

• if Π2 ∈ P then Π1 ∈ P, and

• if Π2 ∈ NP then Π1 ∈ NP.

Proof Fix a polynomial reduction f from Π1 to Π2, running in time O(nk) for some k.
First, suppose Π2 ∈ P, decided by a deterministic decision algorithm A running in time O(n`)

for some `. Consider the following decision algorithm B for Π1:

On input x, an instance of Π1:
z←f(x)
run A on input z and output the result

Since f is a reduction, z is an instance of Π2 with the same answer as x in Π1, so B correctly
decides Π1. Further, B runs in time polynomial in n = |x|: it first computes z = f(x) (requiring
time O(nk)), which can have length no more than m = O(nk) (f does not have time to produce a
bigger output); the call to A thus takes time O(m`) = O((nk)`) = O(nk`); thus the total time for
B is polynomial in n. So B decides Π1 in polynomial time, and so Π1 ∈ P.

Second, suppose Π2 ∈ NP, with a yes-instance verifier A running in time O(n`). Consider the
following algorithm B to verify yes-instances of Π1:

On input (x, y), where x is an instance of Π1:
z←f(x)
run A on input (z, y) and output the result

B runs in time polynomial in n = |x| for reasons similar to those above. (Note that we can assume
that |y| = O(|z|`) = O(nk`), since A does not have enough time to read more than this.) For
correctness, we observe that x is a yes-instance of Π1 iff z is a yes-instance of Π2, iff there is a y
such that A accepts (z, y), iff there is a y such that B accepts (x, y). Thus Π1 ∈ NP. 2

Definition 30 Two decision problems Π1 and Π2 are polynomially equivalent (Π1 ≡p Π2) if both
Π1 ≤p Π2 and Π2 ≤p Π1.

NP-Hardness and NP-Completeness

Definition 31 A decision problem Π is NP-hard if, for every problem Π′ ∈ NP, we have Π′ ≤p Π.

Thus a problem is NP-hard iff it is at least as hard as any problem in NP.

Definition 32 A decision problem is NP-complete if it is in NP and it is NP-hard.

Theorem 33 (Easy) Any two NP-complete problems are polynomially equivalent.

75

Proof If Π1 and Π2 are NP-complete, then in particular, Π1 ∈ NP, and everything in NP reduces
to Π2. Thus Π1 ≤p Π2. Likewise, Π2 ≤p Π1. 2

All the problems listed above are NP-complete, and hence polynomially equivalent.

Lecture 26
NP-Completeness, Continued

The Standard Technique
The standard technique that we will use for showing that a problem Π is NP-complete takes

two steps:

1. Show that Π ∈ NP. This is usually obvious.

2. Find a polynomial reduction from Π′ to Π for some known NP-complete problem Π′.

Since all NP problems are reducible to Π′, and since the ≤p relation is transitive, it follows that
all NP problems are reducible to Π, and thus Π is NP-complete.

Obviously, the first natural NP-complete problem could not be proved NP-complete using this
method. The first such problem was

SATISFIABILITY (SAT)
Instance: A Boolean formula ϕ.
Question: Is ϕ satisfiable, i.e., is there a setting (truth assignment) of the Boolean

variables of ϕ that makes ϕ true?

SAT is clearly in NP. Given a satisfiable formula ϕ, an easily verifiable proof that ϕ is satisfiable
is a satisfying truth assignment of the variables. Given such an assignment, we simply compute
the corresponding truth value of ϕ in the standard bottom-up way and check that ϕ is indeed true
under the assignment.

In the 1970s, Steve Cook (Waterloo, Ontario, Canada) and Leonid Levin (then in the USSR,
now at Boston U.) independently came up with an ingenious proof that SAT is NP-hard. They used
the Turing machine model to describe algorithms. I prove this theorem when I teach CSCE 551.
[Note: Garey & Johnson call this theorem Cook’s Theorem. Levin’s work was unknown to them
at the time.]

Theorem 34 (Cook, Levin) SAT is NP-complete.

The Cook-Levin Theorem provides the starting point we need to use our technique. By now,
there are hundreds (if not thousands) of known NP-complete problems to start from, and there is
much variety (computer science, operations research, scheduling, game playing, etc.). Proving a
problem to be NP-complete adds to this list, making it easier for further proofs, etc.

CNF-SAT
Cook and Levin actually showed that the following restriction of SAT is NP-complete:

CNF-SAT
Instance: A Boolean formula ϕ in conjunctive normal form (CNF).
Question: Is ϕ satisfiable?

76

A formula is in CNF if it is a conjunction

C1 ∧ · · · ∧ Cn

of clauses Ci, where a clause is defined as a disjunction

(`1 ∨ · · · ∨ `m)

of literals `j , and where a literal is defined as either a Boolean variable (e.g., x) or the negation of
a Boolean variable (e.g., ¬x, also written x). Note here that ∧ means AND, and ∨ means OR.

Thus a truth assignment satisfies a CNF formula if and only if it satisfies every clause, where a
clause is satisfied if and only if at least one literal in the clause is true.

CNF-SAT may appear easier than SAT at first, since we only need to worry about formulas in
CNF instead of arbitrary formulas. But CNF-SAT is NP-complete, so it is polynomially equivalent
to SAT. We will take as given that CNF-SAT is NP-complete.

3-SAT
We can restrict CNF-SAT even further:

3-SAT
Instance: A Boolean formula ϕ in CNF where each clause in ϕ has exactly three literals.
Question: Is ϕ satisfiable?

3-SAT is NP-complete, and we can prove this using our standard technique by finding a poly-
nomial reduction from CNF-SAT to 3-SAT.

[Interesting fact: If we restrict ϕ to have at most two literals per clause, the resulting problem,
2-SAT, can be solved in polynomial time.]

Here is how the reduction will work. Given an instance ϕ = C1 ∧ · · · ∧ Cn of CNF-SAT, where
the Ci are clauses, we will replace each clause C = (`1 ∨ · · · ∨ `m) of ϕ with a conjunction of one or
more 3-literal clauses, depending on the value of m. We take the conjunction of all the resulting
clauses as our output formula ϕ′, an instance of 3-SAT. We must be sure that ϕ is satisfiable if and
only if ϕ′ is satisfiable.

If m = 3, then C already has three literals, so we leave it alone.
If m = 2 (so C = (`1 ∨ `2)), then let y be a fresh variable (fresh means that y does not occur

anywhere else), and replace C by the two clauses

(`1 ∨ `2 ∨ y) ∧ (`1 ∨ `2 ∨ y).

Notice that any truth assignment that satisfies C makes at least one of `1 and `2 true, and so can
be extended to a truth assignment (by giving any truth value for y) that satisfies both replacement
clauses, above. Conversely any truth assignment that satisfies both clauses above must also satisfy
C: if the assignment did not satisfy C, then `1 and `2 would both be false under the assignment,
so no matter how y was set, one of the clause above must have been false.

If m = 1 (so C = (`1)), let y1 and y2 be fresh variables. Replace C by the four clauses

(`1 ∨ y1 ∨ y2) ∧ (`1 ∨ y1 ∨ y2) ∧ (`1 ∨ y1 ∨ y2) ∧ (`1 ∨ y1 ∨ y2).

Again, any truth assignment satisfying C makes `1 true, and thus satisfies all four replacement
clauses. Conversely, any truth assignment that satisfies all four clauses above must make `1 true,
and thus satisfy C.

77

If m > 3, then using fresh variables y1, . . . , ym−3, we replace C with

(`1 ∨ `2 ∨ y1) ∧ (y1 ∨ `3 ∨ y2) ∧
· · · ∧ (yi−2 ∨ `i ∨ yi−1) ∧ · · ·

∧ (ym−4 ∨ `m−2 ∨ ym−3) ∧ (ym−3 ∨ `m−1 ∨ `m).

For example, (`1 ∨ · · · ∨ `5) is replaced with

(`1 ∨ `2 ∨ y1) ∧ (y1 ∨ `3 ∨ y2) ∧ (y2 ∨ `4 ∨ `5).

Suppose some truth assignment satisfies C. Then it makes some literal `i of C true. We can
extend this assignment to satisfy all the replacement clauses simultaneously by making all the y’s
to the left of `i true and all the y’s to the right of `i false. That is, we set yj to true for all j ≤ i−2
and we make yj false for all j ≥ i−1. The true y’s satisfy all clauses to the left of the one containing
`i, and the false y’s satisfy all clauses to the right. `i alone satisfies the clause containing it.

Conversely, it is not too hard to see that the only way a truth assignment can satisfy all
the replacement clauses simultaneously is by making at least one of the `i true. (Consider three
exhaustive cases: y1 is false; ym−3 is true; yi−2 is true and yi−1 is false, for some 3 ≤ i ≤ m − 2.)
Thus, this assignment also satisfies C.

Now let ϕ′ be the conjunction of all the replacement clauses described above, for all the clauses
of ϕ. Constructing ϕ′ can clearly be done in polynomial time (in the length of ϕ). By the accom-
panying arguments, we see that ϕ is satisfiable iff ϕ′ is satisfiable. Thus we have CNF-SAT ≤p

3-SAT, and so, since 3-SAT is clearly in NP, 3-SAT is NP-complete.
3-SAT ≤p VERTEX COVER
The reduction from CNF-SAT to 3-SAT uses a technique called local replacement, where we

take each piece of the input instance and replace it with some object constructed from the piece.
In the reduction above, each piece was a clause, and we replaced it with one or more conjoined
clauses.

To polynomially reduce 3-SAT to VERTEX COVER, we must show how, given an arbitrary
instance ϕ of 3-SAT, to construct in polynomial time a graph G and integer K (depending on ϕ)
such that ϕ is satisfiable if and only if G has a vertex cover of size at most K. We must construct
G and K without knowing whether or not ϕ is satisfiable.

We use a different technique here, called component design. Given an instance ϕ of 3-SAT, we
construct G out of two types of components: truth-setting components, which encode possible truth
assignments of the variables of ϕ, and satisfaction-testing components—one for each clause—which
check whether a clause is satisfied by a truth assignment.

Truth-Setting Components
Let u1, . . . , un be the variables of ϕ. G will have n truth-setting components—one for each

variable. The component for ui is a pair of vertices joined by an edge. We label one vertex ui and
the other ui. The n truth-setting components are pairwise disjoint, and there are no other edges
between them.

· · ·
u1 u1 u2 u2 un un

Observe that any vertex cover of G must include at least one vertex in each component to cover
its edge. If only n component vertices are in the cover, then each component has exactly one of

78

its two vertices in the cover. Such a minimum cover then corresponds to a truth assignment of the
variables, namely, the one that makes each literal true iff it labels a vertex in the cover.

Clause-Satisfaction-Testing Components
Let C1, . . . , Cm be the clauses of ϕ. For each clause Ci = (`1 ∨ `2 ∨ `3) of ϕ, the graph G will

have a satisfaction-testing component consisting of three vertices joined by edges in a triangle. The
vertices of the component are labeled by the literals `1, `2, and `3, respectively.

`1

`2

`3

Observe that any vertex cover of G must include at least two vertices of each satisfaction-testing
component. These components are pairwise disjoint, and there are no other edges between them.

Finally, we include an edge connecting each vertex in each satisfaction-testing component to the
vertex in the truth-setting components with the same label. For example, for the claus (u1∨u2∨un),
we have

u1

u2

un

· · ·
u1 u1 u2 u2 un un

This concludes the construction of G. Setting K = n + 2m completes the description of the
output instance of VERTEX COVER constructed from ϕ. This construction is clearly doable in
polynomial time.

Correctness
We need to show that ϕ is satisfiable if and only if the corresponding graph G has a vertex

cover of size at most n + 2m. By the observations above, any vertex cover of G must have size at
least n + 2m.

First, suppose ϕ is satisfiable. Let t be a truth assignment of the variables u1, . . . , un that
satisfies ϕ. Then there is a vertex cover A of G: A consists of exactly one vertex from each
truth-setting component—the one labeled by the literal made true by t—together with exactly two
vertices of each satisfaction-testing component, making n + 2m vertices in all. The two vertices in

79

each satisfaction-testing component are chosen as follows: in the corresponding clause Ci, choose
the leftmost literal made true by t (such a literal exists for each clause, because t satisfies ϕ), and
include in A the two vertices labeled by the other two literals in Ci.

A has the right size. Is it a vertex cover for G? Each component’s internal edges are covered
by A, so we need only check that each edge connecting a truth-setting component to a satisfaction-
testing component is covered. Each such edge e has endpoints labeled by the same literal `. If ` is
made true by t, then the endpoint of e in the truth-setting component is in A. If ` is made false by
t, then the endpoint of e in the satisfaction-testing component must be in A, since the only literal
of that component left out of A is made true by t. In either case, e is covered by A. Thus, A is a
vertex cover.

Now we must argue the converse: if G has a vertex cover of size n + 2m, then ϕ is satisfiable.
[Occasionally (not in this case) it is more convenient to argue the contrapositive, namely, if ϕ is
not satisfiable, then no vertex cover of size n+2m exists in G. A conditional statement, “if P then
Q” is always logically equivalent to its contrapositive, “if not Q then not P .”]

Suppose G has a vertex cover A of size n+2m. Then by the observations above, A must contain
exactly one vertex of each truth-setting component and exactly two vertices of each satisfaction-
testing component. Let t be the truth assignment of u1, . . . , un that makes each literal true iff that
literal labels a truth-setting vertex in A. The claim is that t satisfies ϕ. Let Ci be any clause of
ϕ and let si be the satisfaction-testing component for Ci. One vertex u in si, labeled with some
literal `, is not in A. But the edge connecting u with the vertex v labeled ` in the truth-setting
components must be covered by A, and so v ∈ A, and so by the definition of the truth assignment
t, ` is made true by t, and thus Ci is satisfied. This is true for each clause, so t indeed satisfies ϕ.

This concludes the proof that 3-SAT ≤p VERTEX COVER, and hence VERTEX COVER is
NP-complete.

INDEPENDENT SET and CLIQUE
Let G = (V,E) be an undirected graph. A clique in G is a subset C ⊆ V such that every two

vertices in C are adjacent, i.e., C is a complete subgraph of G. An independent set in G is the
opposite: a subset I ⊆ V such that no two vertices in I are adjacent.

We can form decision problems based on the existence of cliques and independent sets.

CLIQUE
Instance: an undirected graph G and an integer K > 0.
Question: does G have a clique of size at least K?

INDEPENDENT SET
Instance: an undirected graph G and an integer K > 0.
Question: does G have an independent set of size at least K?

Both these problems are clearly in NP, and we’ll show that both are NP-complete by polynomi-
ally reducing VERTEX COVER to INDEPENDENT SET and INDEPENDENT SET to CLIQUE.
These problems are often useful for showing other problems to be NP-complete.

If G = (V,E) is an undirected graph, we define Gc, the complement of G, to be (V,E′), where

E′ = {(u, v) | u, v ∈ V , u 6= v, and (u, v) /∈ E}.

Note the following two easy facts:

80

1. A is a vertex cover in G iff V −A is an independent set in G.

2. C is an independent set in G iff C is a clique in Gc.

Fact 1 implies that VERTEX COVER ≤p INDEPENDENT SET via the polynomial reduction
that maps an instance G, K of VERTEX COVER to the instance G, K ′ of INDEPENDENT SET,
where K ′ = |V | −K.

Fact 2 implies that INDEPENDENT SET ≤p CLIQUE via the polynomial reduction that maps
an instance G, K of INDEPENDENT SET to the instance Gc,K of CLIQUE.

Restriction
The simplest technique for showing a decision problem Π NP-complete—one that works in many

cases—is to show that there is a restriction of Π that is already known to be NP-complete. (One
must of course also show that Π ∈ NP.)

Definition 35 A decision problem Π1 is a restriction of a decision problem Π2 if every yes-instance
of Π1 is a yes-instance of Π2 and every no-instance of Π1 is a no-instance of Π2.

For example, 3-SAT is a restriction of CNF-SAT, which is itself a restriction of SAT.

Fact 36 If Π1 is a restriction of Π2, Π1 is NP-complete, and Π2 ∈ NP, then Π2 is NP-complete.

Proof Π1 polynomially reduces to Π2 just by mapping each instance of Π1 to itself. 2

We can loosen the definition of restriction somewhat by allowing Π1 to embed into Π2 via some
trivial transformation. Then Fact 36 still holds for this looser definition: the polynomial reduction
performs this trivial transformation.

For example, the problem

HAMILTONIAN PATH
Instance: an undirected graph G.
Question: is there a Hamiltonian path in G, i.e., a simple path that includes each vertex

of G exactly once?

embeds trivially into the problem

LONG PATH
Instance: an undirected graph G and an integer L > 0.
Question: does G have a simple path of length at least L?

by taking an instance G = (V,E) of HAMILTONIAN PATH and mapping it to the instance
G, (|V |−1) of LONG PATH. (Recall that we define the length of a path to be the number of edges
in the path, which is one less than the number of vertices. A path is simple if no vertex appears
more than once in the path.)

Supplemental Lecture
Faster Scalar and Matrix Multiplication

81

Integer Addition and Multiplication
We represent natural numbers in binary as usual. The size of a number n is the number of

binary digits needed to represent n, namely, dlg(n + 1)e = lg n + O(1).
Adding two k-bit natural numbers takes time Θ(k), and the usual “add-and-carry” method that

we all know from grade school (except that it is base 2) is aymptotically optimal.

Add(a, b, n)
// a[(n− 1) . . . 0] and b[(n− 1) . . . 0] are two bit arrays of length n.
// Returns a bit array s[n . . . 0] of size n + 1.

c←0
for i←0 to n− 1 do

s[i]←a[i]⊕ b[i]⊕ c // single-bit xor
c← Majority(a[i], b[i], c)

s[n]←c
return s

Subtraction is also clearly linear time, using the “subtract-and-borrow” method from grade
school.

Now consider multiplication. The grade school approach (adapted to base 2) is to repreatedly
multiply the first number by each bit of the second, then add up all the results, suitably shifted.

Multiply(a, b, n)
// a[(n− 1) . . . 0] and b[(n− 1) . . . 0] are two bit arrays of length n
// s is a bit array of size 2n.

pad a and b with leading 0s to length 2n− 1
fill s with all 0s
for i←0 to n− 1 do

if b[i] = 1 then
s← Add(s,A · 2i, 2n− 1) // using arithmetic shift

return S

Clearly, this algorithm takes time Θ(n2). Can we do better?
A Divide-and-Conquer Approach to Multiplication
Assume that n is a power of 2. (Otherwise, pad input numbers with leading zeros out to the

next higher power of 2.) We are given two n-bit natural numbers a and b to multiply.
Base case: n = 1. This is trivial.
Recursive case: n = 2m, where m > 0 is an integer (the next lower power of 2):

1. Write a = ah2m + a` and b = bh2m + b`, where ah and a` are unique integers in the range
0 . . . 2m−1. Similarly for bh and b`. These are the high and low halves of a and b, respectively.
Clearly,

ab = ahbh2n + (ahb` + a`bh)2m + a`b`.

2. Recursively compute the four subproducts ahbh, ahb`, a`bh, a`b`.

3. Add up the four subproducts, suitably shifted.

82

The time T (n) of this algorithm satisfies T (n) = 4T (n/2)+Θ(n), and so by the Master Theorem,
T (n) = Θ(n2)—no better than the grade school approach.

We can use a trick, however, to reduce the number of recursive multiplications from four to
three. We recursively compute ahbh and a`b` as before, but then we recursively compute p =
(ah + a`)(bh + b`). This is enough, because we have

ab = ahbh2n + (p− ahbh − a`b`)2m + a`b`.

Which requires a constant number of shifts, additions, and subtractions.
[There’s a technical glitch here. The number of bits in ah +a` and bh + b` may be m+1 instead

of m, so in multiplying these directly we lose our assumption that m is a power of two. There’s no
problem with adapting the algorithm for any n: just split each number into two numbers of bn/2c
and dn/2e bits, respectively. This works best in practice, and it does not change the asympototic
run time. Alternatively, we can keep the size of the recursive multiply to m-bit numbers as follows:
to multiply two numbers x, y of m + 1 bits each, express

x = bx2m + cx,

y = by2m + cy,

where bx, by ∈ {0, 1} and cx and cy are expressible with m bits each (i.e., 0 ≤ cx, cy < 2m), then
notice that

xy = bxby22m + (bxcy + bycx)2m + cxcy.

Only one product on the right-hand side is nontrivial (cxcy), which is a product of two m-bit
integers.]

The running time T (n) of the algorithm above now satisfies T (n) = 3T (n/2) + Θ(n), and
so T (n) = Θ(nlg 3) = Θ(n1.58...), which is a significant speed-up over the naive quadratic time
algorithm.

Matrix Multiplication
We can use a similar idea to multiply two n×n matrices faster than the obvious Θ(n3) algorithm.

This faster algorithm is due to Volker Strassen. Although the idea is similar, the actual algorithm
is much more complicated in the case of matrices.

We use the divide-and-conquer approach again, assuming that n is a power of two. We count
scalar multiplications, which we regard as primitive, and which dominate all the other operations
(including addition). If n = 1, then there is only one scalar multiplication. Assume that n > 1
and let m = n/2. Suppose A and B are the two n× n matrices to be multiplied together to get an
n× n matrix C = AB. We can chop each of A, B, and C into four m×m submatrices (“blocks”)
as follows: [

a b

c d

]
·
[

e f

g h

]
=
[

r s

t u

]
.

The m×m submatrices are a, b, c, d, e, f, g, h, r, s, t, u. A nice property of matrix multiplication is
that we can just multiply the submatrices as if they were scalars:

r = ae + bg,

s = af + bh,

t = ce + dh,

u = cf + dh.

83

The only caveat is that matrix multiplication is not commutative, so the order of the factors matters.
We can naively just compute each of the eight products on the right-hand sides recursively then

add up the results. This gives a running time T (n) satisfying T (n) = 8T (n/2) + Θ(n2), that is,
T (n) = Θ(n3) by the Master Theorem. This is asymptotically no better than our original approach.

By multiplying certain sums and differences of submatrices, Strassen found a way to reduce the
number of recursive matrix multiplications from eight to seven. The run time of his method thus
satisfies T (n) = 7T (n/2) + Θ(n2), that is, T (n) = Θ(nlg 7). I’ll give his algorithm here so that
you can check that it is correct and implement it if need be, but the presentation won’t give much
insight into how he came up with it.

Letting A,B, C andn = 2m as above, we define m×m matrices Ai and Bi and Pi = AiBi, for
1 ≤ i ≤ 7.

1. Let A1 = a and B1 = f − h, and so P1 = af − ah.

2. Let A2 = a + b and B2 = h, and so P2 = ah + bh (whence s = P1 + P2).

3. Let A3 = c + d and B3 = e, and so P3 = ce + de.

4. Let A4 = d and B4 = g − e, and so P4 = dg − de (whence t = P3 + P4).

5. Let A5 = a + d and B5 = e + h, and so P5 = ae + ah + de + dh.

6. Let A6 = b−d and B6 = g +h, and so P6 = bg + bh−dg−dh (whence r = P5 +P4−P2 +P6).

7. Let A7 = a−c and B7 = e+f , and so P7 = ae+af −ce−cf (whence u = P5 +P1−P3−P7).

Exercise: verify that all the conclusions are correct.
Faster Algorithms
n-bit integer multiplication can actually be done in time O(n lg n), using a fast implementation of

the Discrete Fourier Transform (DFT) known as the Fast Fourier Transform (FFT). The technique
also works for multiplying two polynomials of degree n in time O(n lg n).

DFT over Zn

Fix an integer n ≥ 1. Let ωn = e2πi/n (we call ωn the primitive nth root of unity, because n
is the least positive integer such that ωn

n = 1). The Discrete Fourier Transform on Zn, denoted
DFTn, is the linear map from Cn to Cn defined by the n×n matrix whose (i, j)th entry is ωij

n /
√

n,
for all 0 ≤ i, j < n. That is,

DFTn =
1√
n

1 1 1 1 · · · 1
1 ωn ω2

n ω3
n · · · ωn−1

n

1 ω2
n ω4

n ω6
n · · · ω2n−2

n

1 ω3
n ω6

n ω9
n · · · ω3n−3

n
...

...
...

...
. . .

...
1 ωn−1

n ω2n−2
n ω3n−3

n · · · ω
(n−1)2

n

.

It is easily checked that the inverse transformation, DFT−1
n , is given by the matrix with (i, j)th

entry equal to ω−ij
n /
√

n.
[The Fourier Transform is useful for a variety of purposes, including signal and image processing,

because it decomposes a signal into its component pure frequencies. The digital signal read off of

84

an audio CD is in the frequency domain. A CD player applies an (inverse) Fourier Transform to
produce an analog signal. Your ear is a natural Fourier transformer, allowing you to recognize the
various pitches in music.]

Applying DFTn to a vector of n complex numbers naively takes n2 complex scalar multiplica-
tions. However, due to the extreme regularity of the DFTn matrix, the time to apply both DFTn

and DFT−1
n can be reduced to O(n lg n) in the case where n is a power of two, counting operations

on complex scalars as primitive, which is reasonable for our purposes, since the we only need O(lg n)
bits of precision. This is the Fast Fourier Transform (FFT), which we won’t go into here.

To multiply two n-bit numbers a and b, where n is a power of 2, we first pad a and b with
leading zeros out to 2n bits. Next, we apply DFT2n separately to both a and b (as vectors of 2n
values in {0, 1}), obtaining two vectors â and b̂ of 2n complex numbers, respectively. Maintaining
Θ(lg n) bits of precision, compute a vector ĉ of size 2n whose ith entry is the product of the ith
entries of â and of b̂. Now apply DFT−1

2n to ĉ to obtain a vector c′ of 2n complex numbers. If we
did this with infinite precision, the entries of c′ would be all integers. With our level of precision,
they are all close to integers. Let 〈c0, c1, . . . , c2n−1〉 be the vector such that ci is the integer closest
to the ith component of c′. Then

ab =
2n−1∑
i=0

ci2i.

This last sum can be computed in time O(n) using a method called Horner’s Rule. The entire time
taken to multiply a by b is thus O(n lg n) when we use the FFT to implement DFT.

FFT can be efficiently parallelized: it can be computed by a circuit (known as a “butterfly
network”) of depth lg n with a linear number of gates.

Fast Matrix Multiplication
The fastest known way to multiply two n × n matrices is due to Coppersmith and Winograd,

and takes time O(n2.376...). Although this is the best known to date, the possibility of a faster
algorithm has not been ruled out mathematically. For all we know, a linear time algorithm (i.e.,
one that runs in time Θ(n2) because the inputs and outputs are both of size Θ(n2)) may exist.

85

