
csce750 — Analysis of Algorithms
Fall 2020 — Lecture Notes: Solving Recurrences

This document contains slides from the lecture, formatted to be suitable for printing or individ-
ual reading, and with some supplemental explanations added. It is intended as a supplement
to, rather than a replacement for, the lectures themselves — you should not expect the notes to
be self-contained or complete on their own.

1 Definition
CLRS 4.3–4.5

A recurrence is an equation or inequality that describes a function in terms of its own value on
smaller inputs.

We’ve already seen one example (for the run time of MergeSort):

T (n) =

{

Θ(1) if n ≤ 1

2T (n
2
) + Θ(n) otherwise

Recurrences are important because they are the primary tool for analyzing recursive algorithms.

We’ll look at three different ways to solve recurrences.

• Substitution method

• Recursion trees

• The Master theorem

2 Smoothness rule

Definition A non-negative function f(n) is called smooth if

f(2n) ∈ Θ(f(n)).

Example: f(n) = n3 is a smooth function, because

f(2n) = (2n)3 = 8n3 = Θ(n3).

Example: g(n) = 2n is not a smooth function, because

g(2n) = 22n 6= Θ(2n).

Smoothness rule (informally): Suppose we show, for some b ≥ 2, that f(n) = Θ(g(n)) when n is
a power of b. Then, if f(n) is a smooth function, we have f(n) = Θ(g(n)) for all n.

Smoothness rule (even more informally): Most of the time, floors and ceilings do not affect the
asymptotic growth rate.

csce750 Lecture Notes: Solving Recurrences 1 of 8

3 Substitution method

The substitution method for solving recurrences has two parts.

1. Guess the correct answer.

2. Prove by induction that your guess is correct.

4 Example

Use the substitution method to solve T (n) = 2T (n/2) + n.

Guess: T (n) = O(n lgn)

Proof: Use induction on n to show that there exist c and n0 for which T (n) ≤ cn lgn for all n ≥ n0.

• Base case: Almost always omitted, because T (n) = Θ(1) when n is sufficiently small, so we
can always choose c large enough.

Details: CLRS 84

• Induction step: Assume that T (m) ≤ cm lgm for all m < n, to prove that T (n) ≤ cn lgn.

(We’ll find restrictions on c and n0 along the way.)

T (n) = 2T (n/2) + n

≤ 2 · c(n/2) lg(n/2) + n

= cn lg(n/2) + n

= cn lgn− cn lg 2 + n

= cn lgn− cn+ n

≤ cn lgn [when c ≥ 1]

In the last step, we replace −cn+ n with 0. This increases the sum if

−cn+ n ≤ 0.

Solve for c to get the constraint c ≥ 1.

5 Be careful!

Substitution proofs must ensure that they use the same constant as in the inductive hypothesis.

Here’s an example of how to “prove” (incorrectly!) that T (n) = O(n).

T (n) = 2T (n/2) + n

≤ 2c(n/2) + n

= (c+ 1)n

= O(n)

csce750 Lecture Notes: Solving Recurrences 2 of 8

The problem is that we have not proved the exact form of the in-
ductive hypothesis. In particular, the constant c we use when we
substitute at the beginning must be the same c we have at the end of
the inequalities.

6 Even correct guesses can lead to dead ends

Show that T (n) = 5T (n/2) + n2 is O(nlog2 5).

Attempt 1: Use induction to (try to) show that, for some c,

T (n) ≤ cnlog2 5.

“Proof:”

T (n) = 5T (n/2) + n2

≤ 5

(

c
(n

2

)log2 5
)

+ n2

= 5

(

c
nlog2 5

2log2 5

)

+ n2

= cnlog2 5 + n2

A dead end! No choice of c makes this inequality true.

7 Proving a stronger bound

Show that T (n) = 5T (n/2) + n2 is O(nlog2 5).

Attempt 2: Use induction to show that, for some c and some a,

T (n) ≤ cnlog2 5 − an2.

Note that if we can show that T (n) ≤ cnlog2 5− an2 for some positive
constant a, then we know immediately that T (n) ≤ cnlog2 5, which is
sufficient to show that T (n) ∈ O(nlog2 5). So this strong bound really
is doing the job that we need it to.

The choice of adding −an2 here is based on the dead end from the
previous slide — we had an extra n2 term, and we’re hoping that
the new term in the inductive hypothesis will counteract that. This
doesn’t always work out, but it often does, and it’s a good place to
start.

csce750 Lecture Notes: Solving Recurrences 3 of 8

Proof:

T (n) = 5T (n/2) + n2

≤ 5

(

c
(n

2

)log2 5 − a
(n

2

)2
)

+ n2

= 5

(

c
nlog2 5

2log2 5
− a

n2

4

)

+ n2

= cnlog2 5 +

(

1− 5a

4

)

n2

≤ cnlog2 5 − an2 [a ≥ 4]

This is enough to conclude T (n) = O(nlog2 5), because cnlog2 5 − 4n2 ≤ cnlog2 5.

In the last step of the proof, we replace
(

1− 5a
4

)

with −a. We want
−a, because we need to match the exact form of the inductive hy-
pothesis.

This replacement increases the expression (or leaves it unchanged),
making the ≤ we write there correct, when

(

1− 5a

4

)

≤ −a.

Solving for a (first multiply both sides by 4, then add 5a to both sides)
we get:

4− 5a ≤ −4a

4 ≤ a

Hence the constraint a ≥ 4.

8 Change of variables

Solve the recurrence T (n) = 2T (
√
n) + lgn.

Solution: Change of variables. Let m = lgn and S(m) = T (2m).

Note that n = 2m and
√
n = 2m/2.

Then we get:

T (n) = T (2m)

= 2T (2m/2) + lg (2m)

= 2S(m/2) +m

= O(m logm)

= O(logn log logn)

csce750 Lecture Notes: Solving Recurrences 4 of 8

Recall that we’ve solved the recurrence S(m) = 2S(m/2)+n already,
a few slides back.

9 Recursion trees

We can solve many recurrences by drawing a recursion tree.

• Nodes: Label with the contribution to the total for that ‘recursive call’.

. . . not counting what happens inside children.

• Children: One for each appearance of a recurrent term.

After drawing such a tree, we can solve the recurrence:

1. Compute (or bound) the depth of the leaves.

2. Compute (or bound) the sum for each level.

3. Compute (or bound) the sum across all levels.

10 Example: Mergesort recurrence

T (n) =

{

Θ(1) if n ≤ 1

2T (n
2
) + Θ(n) otherwise

cn

cn/2

cn/4cn/4

cn/2

cn/4cn/4

...
Θ(1) · Θ(1)

11 Example: Mergesort recurrence

• Depth of the leaves: lg n

• Sum for each level: cn

• Sum across all levels: cn lgn = Θ(n logn).

csce750 Lecture Notes: Solving Recurrences 5 of 8

12 Example: Another divide-and-conquer recurrence

T (n) =

{

Θ(1) if n ≤ 1

3T (n
4
) + Θ(n2) otherwise

cn2

c
(

n
4

)2

c
(

n
16

)2
c
(

n
16

)2
c
(

n
16

)2

c
(

n
4

)2

c
(

n
16

)2
c
(

n
16

)2
c
(

n
16

)2

c
(

n
4

)2

c
(

n
16

)2
c
(

n
16

)2
c
(

n
16

)2

...
Θ(1) · Θ(1)

13 Example continued

• Depth of the leaves: log4 n

• Sum for each level: 3ic(n/4i)2 = (3/16)icn2.

• Sum across all levels:

T (n) =

log4 n
∑

i=0

(

3

16

)i

cn2

≤
∞
∑

i=0

(

3

16

)i

cn2

=
1

1− (3/16)
cn2

=
16

13
cn2

= O(n2)

Note also: T (n) = Ω(n2). (Why?)

At depth i, the ‘problem size’ is n/2i. To get down to to the base case,
we need this value to be 1 or less.

14 A lopsided tree

T (n) = T (n/3) + T (2n/3) +O(n)

cn

c(2n/3)

c(4n/9)c(2n/9)

c(n/3)

c(2n/9)c(n/9)

...

csce750 Lecture Notes: Solving Recurrences 6 of 8

• Depth of the (deepest) leaves: log3/2 n

• Sum for each level: ≤ cn

• Sum across all levels: cn log3/2 n = O(n logn).

15 Some branches terminate before others

Note that this recurrence does not produce a complete tree!

For n = 6 (assuming ⌊n/3⌋ and ⌊2n/3⌋):

6c

4c

2c

Θ(1)Θ(1)

Θ(1)

2c

Θ(1)Θ(1)

Therefore, the sum from the previous slide gives an upper bound. We could also get a lower
bound by truncating the tree at the level of its shallowest leaves.

16 Master theorem: Simple version

Theorem: Consider the recurrence

T (n) = aT (n/b) + Θ(nd).

If a > bd then T (n) = Θ(nlogb a).
If a = bd then T (n) = Θ(nd log n).
If a < bd then T (n) = Θ(nd).

For this simple version, the final added part must be a polynomial.

17 Master theorem: Real version

Theorem: Consider the recurrence

T (n) = aT (n/b) + f(n).

1. If there exists ǫ > 0, for which f(n) = O(nlogb a−ǫ), then T (n) = Θ(nlogb a).

2. If f(n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n).

3. If there exists ǫ > 0, for which f(n) = Ω(nlogb a+ǫ), and af(n/b) ≤ cf(n) for some constant c
and sufficiently large n, then T (n) = Θ(f(n)).

csce750 Lecture Notes: Solving Recurrences 7 of 8

18 Example 1

T (n) = 9T (n/3) + n

We have a = 9, b = 3, and f(n) = n.

Compare nlog3 9 = n2 to n. Observe that n = O(n2−ǫ), with ǫ = 1.

Therefore, the first case applies, and T (n) = Θ(nlogb a) = Θ(n2).

19 Example 2

T (n) = T (2n/3) + 1

We have a = 1, b = 3/2, and f(n) = 1.

Compare nlog3/2 1 = 1 to 1. Observe that 1 = Θ(1).

Therefore, the second case applies, and T (n) = Θ(nlogb a logn) = Θ(logn).

20 Example 3

T (n) = 3T (n/4) + n logn

We have a = 3, b = 4, and f(n) = n logn.

Compare nlog4 3 to n logn. Observe that n logn = Ω(nlog4 3+ǫ), as long as log4 3 + ǫ ≤ 1. (For
example, choose ǫ = 0.2.)

The “regularity condition” also holds.

Therefore, the third case applies, and T (n) = Θ(n logn).

21 Example 4

T (n) = 2T (n/2) + n logn

We have a = 2, b = 2, and f(n) = n logn.

Compare nlog2 2 = n to n logn. Observe that, although n logn = Ω(n), for any ǫ > 0, n logn 6=
Ω(n1+ǫ).

(Intuition: Even for a very small ǫ, n1+ǫ will eventually grow faster than n logn.)

Therefore, the Master theorem does not apply.

csce750 Lecture Notes: Solving Recurrences 8 of 8

