
csce750 — Analysis of Algorithms
Fall 2020 — Lecture Notes: Randomized Algorithms

This document contains slides from the lecture, formatted to be suitable for printing or individ-
ual reading, and with some supplemental explanations added. It is intended as a supplement
to, rather than a replacement for, the lectures themselves — you should not expect the notes to
be self-contained or complete on their own.

1 Randomized algorithms
CLRS 7

A randomized algorithm is an algorithm that solves a problem by making some of its decisions
based on (pseudo-)random numbers.

Why? This technique can be useful because many problems have randomized algorithms that are
very simple and very efficient.

2 Quicksort review

To sort an array A[p, . . . , r]:

• Partition the array. (Θ(r − p) time)

– Choose a pivot element.

– Rearrange the array to get:

∗ Pivot element at A[q].

∗ If i < q, then A[i] < A[q].

∗ If i > q, then A[i] > A[q].

– Details about partitioning: CLRS 171–173.

• Sort the two sides recursively.

– A[p, . . . , q − 1]

– A[q + 1, . . . , r]

Though it’s likely that you’ve seen quicksort before, there are a few
reasons that it’s worth our time to revisit it here.

1. If you want to sort arrays in practice, in most cases, some vari-
ant of quicksort is the right tool for the job.

2. It’s a chance to see another example of the substitution method
for solving a recurrence.

3. It provides an opportunity to analyze a randomized algorithm.
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3 Quicksort analysis

The sizes of the two subproblems depend on the final location q of the pivot. In the worst case, we
get:

T (n) = max
0≤q≤n−1

(T (q) + T (n− q − 1)) + Θ(n)

Use the substitution method to show that T (n) = O(n2).

T (n) = max
0≤q≤n−1

(T (q) + T (n− q − 1)) + Θ(n)

≤ max
0≤q≤n−1

(

cq2 + c(n− q − 1)2
)

+ dn

= c max
0≤q≤n−1

(

q2 + (n− q − 1)2
)

+ dn

= cmax
{

(n− 1)2, (n− 1)2
}

+ dn

= . . .

In the last step, we need to find maxima of the function f(q) = q2 +
(n−q−1)2 on the interval [0, n−1]. We can do this using the standard
tools from calculus. Since f ′′(q) = 4, such maxima can occur only
that the endpoints, q = 0 and q = n− 1.

4 Quicksort analysis (continued)

T (n) ≤ · · ·

= cmax
{

(n− 1)2, (n− 1)2
}

+ dn

= c(n− 1)2 + dn

= cn2 + c(1− 2n) + dn

≤ cn2

For the last step, we need c(1 − 2n) + dn ≤ 0. One way to achieve this is to let c = d. Then the
inequality holds for all n ≥ 1.

Conclude that T (n) = O(n2).

5 Pivot selection

The choice of pivot has a huge impact on the performance of Quicksort.

So. . . how to choose a pivot?

• First element?

• Last element?

• “Median-of-three”?

Problem: For each of these, we can construct inputs that elicit the worst case Θ(n2) time behavior.

Solution: Choose the pivot randomly.
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6 Average case vs. Worst case expected runtime

Average case run time is measured across some distribution of instances that we assume will
appear as inputs to our algorithm.

Tavg(n) = E
|X|=n

[T (X)] =
∑

|X|=n

T (X)Pr(X)

Worst case expected run time is measured across the distribution of random selections made by
the algorithm itself.

Twce(n) = max
|X|=n

E[T (X)]

(Worst case over all instances of a given size, considering the expected run time for each instance.)

For many algorithms, the “worst case” concept does not play a role, because all instances of each
size have the same expected run time.

7 Simple example

DOSOMETHINGBIG(A[1, . . . , n])

k = random integer between 1 and log
2
n

for i = 1, . . . , k do
j = random integer between 1 and n
A[j] = DOSOMETHINGSMALL(A[j], n)

end for
return A

Assume that DOSOMETHINGSMALL takes Θ(n) time.

8 DoSomethingBig analysis

• The run time is fully determined by the first random number k. (All instances of size n have
the same expected run time.)

• For a given k, there are k iterations of the loop.

• The total run time is Θ(kn).

• Values of k can range from 1 to log n, each with probability 1/ log n.

9 DoSomethingBig analysis

Putting these together we get the expected run time:

E(n) =

log n
∑

k=1

(

1

logn

)

kn

=
n

log n

log n
∑

k=1

k

=
n

log n
·
logn(log n+ 1)

2

= Θ(n log n)
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10 Worst case expected run time for randomized quicksort

In randomized quicksort:

• The run time is fully determined by the pivot positions. (...so we need not write the max
over all instances.)

• Because each element has an equal chance to be the pivot, each final position for the pivot is
equally likely.

Write E(n) to denote E[T (n)].

E(n) = Θ(n) +
1

n

n−1
∑

q=0

(E(q) + E(n− q − 1))

= Θ(n) +
2

n

n−1
∑

q=0

E(q)

11 Worst case expected run time for randomized quicksort (continued)

Show that E(n) = O(n lnn) by substitution.

E(n) ≤ an+
2

n

n−1
∑

q=0

E(q)

≤ an+
2c

n

n−1
∑

q=0

q ln q

≤ an+
2c

n

∫ n

1

x lnx dx

= an+
2c

n

[

x2 lnx

2
−

x2

4

]n

1

= an+
2c

n

(

n2 lnn

2
−

n2

4
+

1

4

)

= an+ cn lnn− c
n2 − 1

2n
≤ cn lnn [c > 3a]

Observe that when we bound the sum with an integral, we use 1
as the lower limit of the definite integral, rather than the 0 that we
might expect based on the integral bound inequalities we’ve seen.
Note, however, that on the interval (0, 1), we have lnx < 0. Thus,
by omitting that portion of the definite integral, we only increase the
value of the expression.
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12 Steps to analyze (many) randomized algorithms

Many randomized algorithms can be analyzed using an approach like this:

• Find or invent a variable that characterizes the run time of the algorithm.

Key idea: Given this variable, the run time should be known.

• Find the range of values for that variable, and the probability of getting each of those values.

• Express the expected run time as the weighted sum of these probabilities times run time for
each value.

csce750 Lecture Notes: Randomized Algorithms 5 of 5


