
csce750 — Analysis of Algorithms
Fall 2020 — Lecture Notes: NP-Complete Problems

This document contains slides from the lecture, formatted to be suitable for printing or individ-
ual reading, and with some supplemental explanations added. It is intended as a supplement
to, rather than a replacement for, the lectures themselves — you should not expect the notes to
be self-contained or complete on their own.

1 Introduction
CLRS 34
GJ 1–3The theory of NP-completeness can be used cast doubt on the existence of any polynomial-time

algorithm for a given problem.

• So far, we have concentrated mostly on designing and analyzing efficient algorithms for
various problems. Algorithms are evidence of how easy those problems are.

• By showing that a problem is NP-complete, we are giving evidence of how hard a problem
is.

Practically, we can think of an NP-completeness proof as a ‘license’ to stop looking for an efficient
algorithm, and settle for approximation or to consider only special cases.

Note: Both CLRS and GJ define things at higher level of precision than we’ll examine in the lecture:
models of computation, abstract vs. concrete problems, encodings, etc.

2 Four classes of problems

We’ll examine four different classes of problems.

• P — problems that can be decided in polynomial time

• NP — problems that can be verified in polynomial time

• NP-hard — problems to which anything in NP can be reduced in polynomial time

• NP-complete — problems in both NP and NP-hard.

csce750 Lecture Notes: NP-Complete Problems 1 of 10



3 Illustration (from Garey and Johnson)

“I can’t find an efficient algorithm. I guess I’m just too dumb.”

“I can’t find an efficient algorithm, because no such algorithm is possible.”

csce750 Lecture Notes: NP-Complete Problems 2 of 10



“I can’t find an efficient algorithm, but neither can any of these famous people.”

4 Decision problems

A decision problem is a problem in which the correct output for each instance is either ‘Yes’ or
‘No’.

HAM-CYCLE:

Instance: An undirected graph G = (V,E).
Question: Does G contain a cycle that visits every vertex exactly once?

PATH:

Instance: A weighted directed graph G, a pair of vertices u, v ∈ V (G), and a number k.
Question: Does G contain a path from u to v with total weight at most k?

5 Aside: Optimization problems

We can convert any optimization problem (‘Find the largest. . . ’, ‘Find the smallest. . . ’, etc) to a
decision problem by including a bound on the objective function as part of the input.

6 Problems as languages

We can think of a decision problem as a formal language.

• The input is a (binary) string s.

• The output is either ‘Yes’ or ‘No’.

The language of a problem is the set of binary input strings, under a suitable encoding, for which
the correct output is ‘Yes’.

csce750 Lecture Notes: NP-Complete Problems 3 of 10



7 Example language

HAM-CYCLE:

Instance: An undirected graph G = (V,E).
Question: Does G contain a cycle that visits every vertex exactly once?

The language LHAM-CYCLE is the set of strings describing undirected graphs that have Hamilto-
nian cycles.

8 Deciding a language

Definition: An algorithm decides a language if it correctly determines whether its input string is
a member of that language.

Specifically, the algorithm should:

• Terminate for any input instance.

• Return ‘yes’ if the input instance is in the language.

• Return ‘no’ if the input instance is not in the language.

9 P

Intuition: P is the set of all problems that can be decided in polynomial time.

Definition: P is the set of all languages L for which there exists an algorithm A and a constant c,
such that

• A decides L, and

• the worst-case run time of A is O(nc).

10 How to prove: P

To prove that your problem L is in P:

• Describe an algorithm whose input is an instance of L.

• Show that your algorithm decides L.

– If the input is a Yes instance, must return Yes.

– If the input is a No instance, must return No.

• Show that the worst-case run time of your algorithm is bounded by some polynomial.

csce750 Lecture Notes: NP-Complete Problems 4 of 10



11 Verification algorithms

A verification algorithm accepts two inputs:

• An ordinary string x (the ‘real’ input)

• A certificate y (a ‘proof’ that the correct answer for x is Yes).

A verification algorithm produces one of two outputs:

• ’Yes’, or

• ’No’.

The language verified by a verification algorithm is

L = {x | there exists y for which A(x, y) outputs Yes.}

12 Verification example: HAM-CYCLE

We can form a verification algorithm for HAM-CYCLE that accepts two inputs:

• An undirected graph G = (V,E).

• An ordered list of vertices (v1, . . . , vm).

The algorithm would:

• Output ‘Yes’ if:

– the sequence (v1, . . . , vm) contains all of the vertices of V , with no duplicates, and

– E contains an edge (vi, vi+1) for each i = 1, . . . ,m− 1.

– E contains an edge (vm, v1).

• Output ’No’ otherwise.

13 Verification example: PATH

We can form a verification algorithm for PATH that accepts two inputs:

• A weighted directed graph G, a pair of vertices u, v ∈ E(G), and a number k.

• An ordered list of vertices (v1, . . . , vm).

The algorithm would:

• Output ’Yes’ if:

– v1 = u,

– vm = v,

– E contains an edge (vi, vi+1) for each i = 1, . . . ,m, and

– the total weight of all these edges is at most k.

• Output ’No’ otherwise.

csce750 Lecture Notes: NP-Complete Problems 5 of 10



14 NP

Intuition: NP is the set of all problems for which ’Yes’ answers can be verified in polynomial time.

Definition: NP is the set of all languages L for which there exists a verification algorithm A and a
constant c, such that

• A verifies L, and

• the worst-case run time of A is O(nc).

“non-polynomial time” “nondeterministic polynomial time”

15 How to prove: NP

To prove that your problem L is in NP:

• Decide what to use as the certificate. That is, for each yes instance, explain what a certificate
should be.

• Describe an algorithm whose input is an instance of L and a certificate.

• Show that your algorithm verifies L.

– If it’s a Yes instance and the certificate is correct, it returns Yes.

– Otherwise, it returns No.

∗ If it’s a Yes instance but the certificate is not correct.

∗ If it’s a No instance.

• Show that the worst-case run time of your algorithm is bounded by some polynomial.

16 P ⊆ NP

Every problem in P is also in NP.

Why?

17 NP ⊆ P?

Are there problems in NP that are not in P?

That is: Are all problems that are polynomially verifiable also polynomially solvable?

Note: If NP ⊂ P, then P = NP.

18 Reductions

We can show relationships between problems using reductions:

Definition: A language L1 is polynomial-time reducible to another language L2 if there exists a
polynomial time algorithm f such that

x ∈ L1 if and only if f(x) ∈ L2

If L1 is polynomial-time reducible to L2, we write L1 ≤P L2

csce750 Lecture Notes: NP-Complete Problems 6 of 10



19 Polynomial-time reductions preserve polynomial-time solvability

Lemma (34.2): If B ∈ P and A ≤P B, then A ∈ P.

CLRS3.pdf ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Intuition: A ≤P B means that A is “no harder” to solve than B.

20 NP-hard

Definition: A language L is NP-hard if, for every L′ ∈ NP , L′ ≤P L.

21 Watch out!

It is very easy to get the direction of the reduction wrong.

• L′ — known NP-complete problem

• L — problem you want to show is NP-hard

The reduction must be an algorithm whose

• input is instance of problem L′, and

• output is an equivalent instance of problem L.

22 How to prove: NP-hard

To prove that your problem L is in NP-hard:

• Choose some other problem L′ that is already known to be NP-complete.

• Describe an algorithm that converts an instance of L′ into an instance of L.

• Double check the direction: Does your reduction algorithm accept an instance of L′ as its
input?

• Show that your algorithm is a reduction.

– If it’s a Yes instance of L′, it should produce a Yes instance of L.

– If it’s a No instance of L′, it should produce a No instance of L.

• Show that the worst-case run time of your algorithm is polynomial.

23 NP-complete

Definition: A language that is both NP and NP-hard is called NP-complete.

Intuition: NP-complete is the set of the “hardest” problems in NP .

csce750 Lecture Notes: NP-Complete Problems 7 of 10



24 Why is NP-complete important?

Theorem 34.4: If any language in NP-complete is polynomial-time solvable, then P = NP .

25 The Cook-Levin Theorem

SAT:

Instance: A Boolean formula φ consisting of variables, parentheses, and and/or/not operators.
Question: Is there an assignment of True/False values to the variables that makes the formula

evaluate to True?

Theorem (Cook-Levin): Boolean satisfiability is NP-complete.

(The surprisingly accessible proof is covered in CSCE551.)

26 NP-completeness proofs
CLRS3.pdf ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Intuition: This is essentially a proof by contradiction. We’re showing that, if we have a polynomial-
time algorithm to decide L2, then we can use it form a polynomial-time algorithm to decide L1.

27 How to prove: NP-complete

To prove that your problem L is in NP-complete:

• Prove that your problem is in NP.

• Prove that your problem is NP-hard.

28 Example: 3-SAT

Definition: A Boolean formula in conjunctive normal form is a series of clauses.

• Each clause is an OR of literals (that is, variables or negations of variables).

• The complete formula is the AND of all of the clauses.

(x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (¬x1 ∨ x2 ∨ x5)

3-SAT:

Instance: A CNF formula with 3 literals in each clause.
Question: Is there an assignment of True/False values to the variables that makes the formula

evaluate to True?

Theorem: 3-SAT is NP-complete.

Proof: Reduction from SAT. (CLRS 1082)

csce750 Lecture Notes: NP-Complete Problems 8 of 10



29 Example: Vertex cover

VERTEX COVER:

Instance: A graph G and an integer K.
Question: Is there a set of K vertices in G that touches each edge at least once?

30 VERTEX COVER is in NP

Theorem: VERTEX COVER is in NP.

Proof: Use the set of vertices that covers the graph as the certificate. Verify that there are at most
K vertices (constant time) and that each edge touches at least one of them (linear time).

31 VERTEX COVER is NP-hard

Theorem: VERTEX COVER is NP-hard.

Proof: Reduction from 3-SAT. Given an arbitrary instance φ of 3-SAT with n variables and m
clauses, form an instance (G,K) of VERTEX COVER as follows.

• Truth-setting components: One vertex for each literal in φ, with each x connected to ¬x.

x1 ¬x1 x2 ¬x2

Idea: A vertex cover must contain at least one vertex from each pair.

32 Vertex cover (reduction continued)

• Clause-satisfaction components: Three vertices for each clause, connected to each other.

¬x2 x3

¬x4

Idea: A vertex cover must select at least two vertices from each of these triangles.

33 Vertex cover (reduction continued)

• Connecting edges: A edge connecting each node in each clause-satisfaction component to
the corresponding truth-setting node.

• Number of vertices allowed in cover: Choose K = n+ 2m.

csce750 Lecture Notes: NP-Complete Problems 9 of 10



34 Vertex cover (correctness of reduction)

Theorem: If φ is satisfiable, then G has a vertex cover of size n+ 2m.

Proof: Given a satisfying assignment t for φ, consider this set of vertices:

• In truth-setting components, choose xi if t sets xi to true, or ¬xi otherwise.

• In clause-satisfaction components, find the first literal set to true, and choose the other two

vertices.

Clearly this set has size n+ 2m. Note that it covers all edges (1) within truth-setting components,
(2) within clause-satisfaction components, and (3) between truth-setting and clause-satisfaction
components. Therefore, it is a vertex cover for G.

35 Vertex cover (correctness of reduction)

Theorem: If G has a vertex cover of size n+ 2m, then φ is satisfiable.

Proof: Suppose there exists a vertex cover A of G with size n + 2m. By construction, this cover
must include

• one vertex in each truth-setting component, and

• two vertices in each clause-satisfaction component.

Let t be the truth assignment that makes xi true iff its truth-setting vertex is in the vertex cover A.

• For each clause C in φ, the corresponding clause-satisfaction component has exactly one
vertex v that is not in the vertex cover.

• An edge connects v to a truth-setting vertex u. Since A is a vertex cover, and v /∈ A, we know
that u ∈ A.

• Therefore, the literal associated with u is satisfied in t, which implies that C is satisfied.

Because t satisfies each clause of φ, it satisfies φ.

36 More examples

Additional reduction examples:

• CLRS 34.5

• GJ

• Fenner’s notes

• Erickson’s notes

• All over the internet.

csce750 Lecture Notes: NP-Complete Problems 10 of 10


