
csce750 — Analysis of Algorithms
Fall 2020 — Lecture Notes: Minimum spanning trees

This document contains slides from the lecture, formatted to be suitable for printing or individ-
ual reading, and with some supplemental explanations added. It is intended as a supplement
to, rather than a replacement for, the lectures themselves — you should not expect the notes to
be self-contained or complete on their own.

1 Introduction
CLRS 23

Given a connected weighted undirected graph G with V vertices, a spanning tree is a set of V − 1
edges of G, under which G remains connected.

A minimum spanning tree is a spanning tree that minimizes the total weight of the edges in the
tree.

2 Generic MST algorithm

GENERICMST(G,w)

T = ∅
while T is not a spanning tree do

Find an edge (u, v) that is safe to add.
T = T ∪ {(u, v)}

end while
return T

Invariant: Before each iteration, T is a subset of some MST.

This is a greedy algorithm.

3 Why does the greedy approach work?

Corollary 23.2: Let G = (V,E) be a connected, undirected graph with a real-valued weight func-
tion w defined on E. Let A be a subset of E that is included in some minimum spanning tree for
G, and let C = (VC , EC) be a connected component (tree) in the forest GA = (V,A). If u is a light
edge connecting C to some other component in GA, then u is safe for A.

Here the term “light edge” refers to the lowest-weight edge with that property.

Intuition: Think of the partially-completed tree as a set of connected components. If we pick one
connected component, then the lightest edge that connects it to any another connected component
is safe to add to the MST.

4 Kruskal’s algorithm

Idea: Add the lightest edge, across the entire graph, that does not create a cycle.

• First sort the edges by order of increasing weight.

• Use a disjoint sets data structure to test whether an edge creates a cycle.

Details: CLRS 631

csce750 Lecture Notes: Minimum spanning trees 1 of 3



5 Kruskal’s analysis

• Sorting the edges: O(E logE)

• E FIND operations: O(Eα(V ))

• V UNION operations: O(V α(V ))

Total run time:

T (n) = O(E logE) +O(Eα(V )) +O(V α(V ))

= O(E logE) +O(Eα(V ))

= O(E logE) +O(E log V )

= O(E log V )

In the second step, we use the fact that E ≥ V − 1, since the graph is
connected. In the third step, we use the fact the α(V ) = O(log V ) =
O(logE). In the final step, note that logE ≤ log V 2 = O(log V ).

6 Prim’s algorithm

Idea: Pick one node v as the “root.” Add the lightest edge that connects an isolated node to the
connected component containing v.
Each node has two new attributes:

• A parent v.π, a pointer to another node:

– For the root, v.π = nil.

– For other nodes in the tree v.π is the node that connects v to the tree.

– For nodes in the queue with finite keys, v.π is the closest node in the tree to v.

– For nodes in the queue with infinite keys, v.π = nil.

• A key v.d, the weight of the edge connecting to the parent.

Use a priority queue of all not-yet-added nodes, ordered by the v.d values.

• When a node is added to the tree, perform the appropriate DECREASEKEY operations for its
out-edges.

Details: CLRS 634

7 Analysis of Prim’s algorithm

With a binary heap:

• 1 BUILDMINHEAP operation: O(V )

• V EXTRACTMIN operations: O(V log V )

• E DECREASEKEY operations: O(E log V )

csce750 Lecture Notes: Minimum spanning trees 2 of 3



Total run time:

T (n) = O(V ) +O(V log V ) +O(E log V )

= O(E log V )

With a Fibonacci heap:

• V INSERT operations: O(V )

• V EXTRACTMIN operations: O(V log V )

• E DECREASEKEY operations: O(E)

Total run time:

T (n) = O(V ) +O(V log V ) +O(E)

= O(E + V log V )

csce750 Lecture Notes: Minimum spanning trees 3 of 3


