csce750 — Analysis of Algorithms Fall 2020 — Lecture Notes: Minimum spanning trees

This document contains slides from the lecture, formatted to be suitable for printing or individual reading, and with some supplemental explanations added. It is intended as a supplement to, rather than a replacement for, the lectures themselves — you should not expect the notes to be self-contained or complete on their own.

1 Introduction

Given a connected weighted undirected graph *G* with *V* vertices, a **spanning tree** is a set of V - 1 edges of *G*, under which *G* remains connected.

A **minimum spanning tree** is a spanning tree that minimizes the total weight of the edges in the tree.

2 Generic MST algorithm

 $\frac{\text{GENERICMST}(G, w)}{T = \emptyset}$ while *T* is not a spanning tree **do** Find an edge (u, v) that is safe to add. $T = T \cup \{(u, v)\}$ end while return *T*

Invariant: Before each iteration, *T* is a subset of some MST.

This is a **greedy** algorithm.

3 Why does the greedy approach work?

Corollary 23.2: Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, and let $C = (V_C, E_C)$ be a connected component (tree) in the forest $G_A = (V, A)$. If u is a light edge connecting C to some other component in G_A , then u is safe for A.

Here the term "light edge" refers to the lowest-weight edge with that property.

Intuition: Think of the partially-completed tree as a set of connected components. If we pick one connected component, then the lightest edge that connects it to any another connected component is safe to add to the MST.

4 Kruskal's algorithm

Idea: Add the lightest edge, across the entire graph, that does not create a cycle.

- First sort the edges by order of increasing weight.
- Use a disjoint sets data structure to test whether an edge creates a cycle.

Details: CLRS 631

5 Kruskal's analysis

- Sorting the edges: $O(E \log E)$
- *E* FIND operations: $O(E\alpha(V))$
- *V* UNION operations: $O(V\alpha(V))$

Total run time:

$$T(n) = O(E \log E) + O(E\alpha(V)) + O(V\alpha(V))$$

= $O(E \log E) + O(E\alpha(V))$
= $O(E \log E) + O(E \log V)$
= $O(E \log V)$

In the second step, we use the fact that $E \ge V - 1$, since the graph is connected. In the third step, we use the fact the $\alpha(V) = O(\log V) = O(\log E)$. In the final step, note that $\log E \le \log V^2 = O(\log V)$.

6 Prim's algorithm

Idea: Pick one node v as the "root." Add the lightest edge that connects an isolated node to the connected component containing v.

Each node has two new attributes:

- A **parent** $v.\pi$, a pointer to another node:
 - For the root, $v.\pi = \text{nil}$.
 - For other nodes in the tree $v.\pi$ is the node that connects v to the tree.
 - For nodes in the queue with finite keys, $v.\pi$ is the closest node in the tree to v.
 - For nodes in the queue with infinite keys, $v.\pi = nil$.
- A **key** *v.d*, the weight of the edge connecting to the parent.

Use a priority queue of all not-yet-added nodes, ordered by the v.d values.

• When a node is added to the tree, perform the appropriate DECREASEKEY operations for its out-edges.

Details: CLRS 634

7 Analysis of Prim's algorithm

With a binary heap:

- 1 BUILDMINHEAP operation: O(V)
- V EXTRACTMIN operations: $O(V \log V)$
- E DECREASEKEY operations: $O(E \log V)$

Total run time:

$$T(n) = O(V) + O(V \log V) + O(E \log V)$$

= $O(E \log V)$

With a Fibonacci heap:

- V INSERT operations: O(V)
- V EXTRACTMIN operations: $O(V \log V)$
- E DECREASEKEY operations: O(E)

Total run time:

$$T(n) = O(V) + O(V \log V) + O(E)$$

= $O(E + V \log V)$