csce750 — Analysis of Algorithms
Fall 2020 — Lecture Notes: Lower Bounds

This document contains slides from the lecture, formatted to be suitable for printing or individ-
ual reading, and with some supplemental explanations added. It is intended as a supplement
to, rather than a replacement for, the lectures themselves — you should not expect the notes to
be self-contained or complete on their own.

1 Can we sort by comparisons faster than O (nlogn)?

We have seen two sorting algorithms that run in ©(nlogn) time in the worst case. Can we do any
better?

CLRS 8.1

If the algorithm is based on comparisons between array elements, then the answer is: No.

(Chapter 8 describes a few sorting algorithms not based on comparisons that can be faster.)

2 Decision trees

Given a comparison-based algorithm and an input size n, we can build a decision tree.
e Internal nodes are labeled with comparisons.
e Edges show the algorithm’s progress based on the results of each comparison.
e Leaves represent final permutations of the elements.

e Other algorithm details are not shown in the decision tree.

Key idea: The height of the tree gives a lower bound on the run time of the algorithm.

3 Example: Sorting forn = 3

a1 < as?

/\

as < as? a; < as?

/\ /\

(a1, a2,as3) a; < ag? (az,a1,as3) az < az?

/\ /\

(a1,as3,a2) (as,ar,az) (ag,a3,a1) (as,az,a1)

4 How short can a sorting decision tree be?

In any decision tree that correctly sorts n distinct elements:
e There must be at least n! leaves, one for each permutation of the n elements.

e A binary tree with height h has at most 2" leaves.

csce”750 Lecture Notes: Lower Bounds 1of2



Therefore n! < 2", and we have

T(n) > hzlogn!:log<

n
1
i=1

n n
= Z logi > Z log i
i=1 1

i=[n/2

> ) log[n/2] > (n/2)log(n/2)
i=[n/2]
= Q(nlogn)

Therefore: Any correct comparison-based sorting algorithm takes §2(n log n) time.

csce”750 Lecture Notes: Lower Bounds 20f2



