
csce750 — Analysis of Algorithms
Fall 2020 — Lecture Notes: Lower Bounds

This document contains slides from the lecture, formatted to be suitable for printing or individ-
ual reading, and with some supplemental explanations added. It is intended as a supplement
to, rather than a replacement for, the lectures themselves — you should not expect the notes to
be self-contained or complete on their own.

1 Can we sort by comparisons faster than Θ(n log n)?
CLRS 8.1

We have seen two sorting algorithms that run in Θ(n logn) time in the worst case. Can we do any
better?

If the algorithm is based on comparisons between array elements, then the answer is: No.

(Chapter 8 describes a few sorting algorithms not based on comparisons that can be faster.)

2 Decision trees

Given a comparison-based algorithm and an input size n, we can build a decision tree.

• Internal nodes are labeled with comparisons.

• Edges show the algorithm’s progress based on the results of each comparison.

• Leaves represent final permutations of the elements.

• Other algorithm details are not shown in the decision tree.

Key idea: The height of the tree gives a lower bound on the run time of the algorithm.

3 Example: Sorting for n = 3

a1 < a2?

a1 < a3?

a2 < a3?

(a3, a2, a1)(a2, a3, a1)

(a2, a1, a3)

a2 < a3?

a1 < a3?

(a3, a1, a2)(a1, a3, a2)

(a1, a2, a3)

4 How short can a sorting decision tree be?

In any decision tree that correctly sorts n distinct elements:

• There must be at least n! leaves, one for each permutation of the n elements.

• A binary tree with height h has at most 2h leaves.

csce750 Lecture Notes: Lower Bounds 1 of 2



Therefore n! ≤ 2h, and we have

T (n) ≥ h ≥ log n! = log

(

n
∏

i=1

i

)

=
n
∑

i=1

log i ≥
n
∑

i=⌈n/2⌉

log i

≥

n
∑

i=⌈n/2⌉

log ⌈n/2⌉ ≥ (n/2) log(n/2)

= Ω(n log n)

Therefore: Any correct comparison-based sorting algorithm takes Ω(n log n) time.

csce750 Lecture Notes: Lower Bounds 2 of 2


