
csce750 — Analysis of Algorithms
Fall 2020 — Lecture Notes: Introduction

This document contains slides from the lecture, formatted to be suitable for printing or individ-
ual reading, and with some supplemental explanations added. It is intended as a supplement
to, rather than a replacement for, the lectures themselves — you should not expect the notes to
be self-contained or complete on their own.

1 What is an algorithm?
CLRS 1–2
2019-08-22An algorithm is a sequence of unambiguous instructions for solving a problem, that is, for obtain-

ing a required output for any legitimate input in a finite amount of time.

instance algorithm output

Analysis of algorithms is the quantitative study of the performance of algorithms, in terms of their
run time, memory usage, or other properties.

2 What is this course about?

Most of the course will blend two parallel goals:

• Techniques for analyzing algorithms.

• Applications of those techniques to important algorithms and data structures.

3 Models of computation

We can make the idea of sequence of instructions precise by defining a model of computation.

One important early model of computation is the Turing machine which includes:

• A finite, non-empty set of states Q.

• A finine, non-empty set of tape symbols Γ.

• A blank symbol b ∈ Γ.

• A finite set of input symbols Σ.

• A transition function δ : Q× Γ → Q× Γ× {L,R},

• An initial state q0 ∈ Q and a set of final states F ⊆ Q.

Informally, we can think of a Turing machine as a finite state machine
that reads and writes from an infinitely-long strip of tape. The main
idea here is that, though the Turing machine model is very powerful
and expressive, it is also cumbersome to use — essentially no one
describes algorithms in it directly except in college classes on the
theory of computation.

csce750 Lecture Notes: Introduction 1 of 3



4 RAM model

Another, more managable option:

Random-access machine (RAM) model (informal summary)

• Simple operations (arithmetic, comparison, conditional, etc.) each take the same, constant
amount of time.

• Data stored in an infinite array of registers (0, 1, 2, . . . ), each of which can hold c logn bits.

– n – problem size

– c – some constant independent of n

In most cases, this level of detail is unnecessary for understanding
how an algorithm works. However, it’s important to have a for-
mal model behind the scenes; without this, it’s meaningless to try
to prove anything about an algorithm or its performance.

5 Example: Sorting

Sorting is a problem is that practically important and useful for illustrating many recurring ideas
in algorithms.

• Input: A sequence of numbers 〈a1, . . . , an〉.

• Output: A reordering of those numbers, denoted 〈a′
1
, . . . , a′

n
〉, such that

a′1 ≤ a′2 ≤ · · · ≤ a′
n
.

Note that the idea of “sorting” is not restricted to just numbers. As
long as the elements are drawn from a totally ordered set, then the
problem is still well defined. We’ll use numbers through this course
because they make the intuition very easy.

6 Example: Insertion sort

INSERTIONSORT(A)
for j = 2, . . . , A.length do

k = A[j]
i = j − 1
while i > 0 and A[i] > k do

A[i+ 1] = A[i]
i = i− 1

end while
A[i+ 1] = k

end for

csce750 Lecture Notes: Introduction 2 of 3



7 Example: Mergesort

MERGESORT(A, ℓ, r)
if ℓ < r then

m = ⌊(ℓ+ r)/2⌋
MERGESORT(A, ℓ,m)
MERGESORT(A,m+ 1, r)
MERGE(A, ℓ,m, r) // CLRS pg 31

end if

csce750 Lecture Notes: Introduction 3 of 3


