
csce750 — Analysis of Algorithms
Fall 2020 — Lecture Notes: Binary heaps and Heapsort

This document contains slides from the lecture, formatted to be suitable for printing or individ-
ual reading, and with some supplemental explanations added. It is intended as a supplement
to, rather than a replacement for, the lectures themselves — you should not expect the notes to
be self-contained or complete on their own.

1 Heap definition
CLRS 6

A max-priority queue is a data structure that supports these operations:

• INSERT(H,x) — insert element x into the queue

• FINDMAX(H) — return the largest element in the queue

• DELETEMAX(H) — remove the largest element from the queue

We will use a data structure called a binary max-heap to implement these.

Everything we say about max-priority queues and max-heaps can be inverted to get min-priority
queues and min-heaps.

You have likely seen heaps before. We’re covering them here for a
few reasons:

• They’re a good example of how careful analysis can lead to
better results than naive analysis.

• We’ll use priority queues in other algorithms later.

• We’ll also study an alternative implementation of the priority
queue idea called a Fibonacci heap, and it will be useful to
compare its performance to this standard ‘binary heap.’

2 Heap conditions

A heap physically stored as an array (starting at index 1), but we think of it as an essentially
complete binary tree, stored top-to-bottom and left-to-right.

• parent(i) = ⌊i/2⌋.

• left(i) = 2i.

• right(i) = 2i+ 1.

Rule: For every i > 1, a max-heap has A[i] < A[parent(i)].

csce750 Lecture Notes: Binary heaps and Heapsort 1 of 3



3 (Partially) Building a heap

Given an array A of length n and an index i, assume that the subtrees rooted at left(i) and right(i)
are max-heaps, and turn the tree rooted at i into a max-heap:

MAXHEAPIFY(A,n, i)
l = left(i)
r = right(i)
z = i
if l ≤ n and A[z] ≤ A[l] then

z = l
end if
if r ≤ n and A[z] ≤ A[r] then

z = r
end if
if z 6= i then

swap A[i] with A[z]
MAXHEAPIFY(A,n, z)

end if

(Idea: Let A[i] ‘sink’ as far as it needs to.)

4 MaxHeapify analysis

Let h denote the height of the tree rooted at i.

The time for MAXHEAPIFY at i is Θ(h).

5 Building a heap

We can iterate this process to turn an unordered array into a heap.

BUILDMAXHEAP(A,n)
for i = ⌊n/2⌋ , . . . , 1 do

MAXHEAPIFY(A,n, i)
end for

Comments:

• The leaves (from ⌈n/2⌉ to n) are trivially heaps already. No need to MAXHEAPIFY them.

• Invariant: At the start of iteration i, each node i+ 1, i+ 2, . . . , n is the root of a heap.

6 BuildMaxHeap analysis: Trivial bound

T (n) =

⌊n/2⌋
∑

i=1

O(lgn) = O(n lgn)

csce750 Lecture Notes: Binary heaps and Heapsort 2 of 3



7 BuildMaxHeap analysis: A better bound

T (n) =

⌊lgn⌋
∑

h=0

(⌈ n

2h+1

⌉

O(h)
)

≤ cn

⌊lgn⌋
∑

h=0

h

2h
≤ cn

∞
∑

h=0

h

2h

= cn
∞
∑

h=0

h

(

1

2

)h

= cn
1/2

(1− (1/2))2
= 2cn = O(n)

(See CLRS Eq A.8.)

The expression
⌈

n
2h+1

⌉

tells us the number of nodes in the tree that
are roots of subtrees with height h. For example, for h = 0 there are
⌈

n
2

⌉

leaves. The O(h) is from our analysis of MAXHEAPIFY.

8 HeapSort

HEAPSORT(A,n)
BUILDMAXHEAP(A,n)
for i = n, . . . , 2 do

swap A[1] and A[i]
MAXHEAPIFY(A, i− 1, 1)

end for

9 Priority queue operations

INSERT(H,x)

n = n+ 1
H[n] = x
i = n
while i > 1 and A[parent(i)] < A[i] do

swap A[i] and A[parent(i)]
i = parent(i)

end while

FINDMAX(H)

return H[1]

DELETEMAX(H)

H[1] = H[n]
n = n− 1
MAXHEAPIFY(H,n, 1)

csce750 Lecture Notes: Binary heaps and Heapsort 3 of 3


