
csce750 — Analysis of Algorithms
Fall 2020 — Lecture Notes: Dynamic Programming

This document contains slides from the lecture, formatted to be suitable for printing or individ-
ual reading, and with some supplemental explanations added. It is intended as a supplement
to, rather than a replacement for, the lectures themselves — you should not expect the notes to
be self-contained or complete on their own.

1 Introduction
CLRS 15

Dynamic programming is a technique for algorithm design based on decomposing a problem into
overlapping subproblems.

Key idea: Express the solution using a recurrence that relates the solution to the solutions to
subproblems.

Signs that your problem is a good fit for dynamic programming:

• Optimal substructure: An optimal solution to a problem contains optimal solutions to sub-
problems.

• Overlapping subproblems: The subproblems that generate the optimal substructure are
dependent on each other.

Dynamic programming is recursion without repetition.

2 How to design a dynamic programming algorithm

Creating dynamic programming algorithms is not an automatable process, but there is a general
pattern.

1. Identify a family of subproblems, in which the final answer is a special case.

2. Write a recurrence showing how the solutions to those subproblems are related to each other.

3. Find base cases for the recurrence.

4. Form the algorithm.

(a) Fill in a table of recurrence values in an order that obeys the dependencies.

(b) Extract the final solution from the table.

(CLRS 359 describes the same pattern in a slightly different way.)

3 Example: Rod cutting

Section 15.1 of the textbook describes a classic and useful example of dynamic programming called
the rod cutting problem, including “top down” versus “bottom up” versions of the solution.

For the sake of time, we will not discuss rod cutting in detail in class, but you should read Section
15.1 carefully.

csce750 Lecture Notes: Dynamic Programming 1 of 4



4 Example: Matrix multiplication ordering

Suppose we have n matrices A1, . . . , An to multiply:

X = A1 ·A2 · · · · ·An

Because matrix multiplication is associative, we can choose the order in which we perform the
multiplications.

A(BC) = (AB)C

The simple algorithm for multiplying an m × n matrix with an n × p matrix takes mnp scalar
multiplications.

Which order should we use to compute X as quickly as possible?

5 Order matters

Suppose A is 5× 20, B is 20× 2, and C is 2× 10.

• (AB)C:

– A ·B takes 5 · 20 · 2 = 200 multiplications.

– (AB) · C takes 5 · 2 · 10 = 100 multiplications.

• A(BC):

– B · C takes 20 · 2 · 10 = 400 multiplications.

– A · (BC) takes 5 · 20 · 10 = 1000 multiplications.

Therefore: The order in which we perform the multiplications can make a big difference.

Problem (‘optimal parenthezation’): Given a sequence of matrix sizes

p0, p1, . . . , pn,

in which matrix i has size pi−1× pi, find an ordering for the matrix multiplications that minimizes
the total number of scalar multiplications needed.

6 Matrix chain multiplication: Family of subproblems

Idea 1: Given indices i and j, define

Ai..j = Ai ·Ai+1 · · · · ·Aj .

The final answer we seek is A1..n.

Idea 2: Let m[i, j] denote the smallest number of multiplications needed to compute Ai..j .

csce750 Lecture Notes: Dynamic Programming 2 of 4



7 Matrix chain multiplication: Recurrence

Suppose we want to compute Ai..j . Consider the last multiplication in the optimal sequence:

Ai..j = Ai..k ·Ak+1..j

Idea 3: Both Ai..k and Ak+1..j must both be optimal sequences for their respective subproblems.

Idea 4: If we know i, j, and k, the total number of matrix multiplications to compute Ai..j is:

m[i, k] +m[k + 1, j] + pi−1pkpj

8 Matrix chain multiplication: Recurrence (2)

Question: What value should we choose for k?

Answer: Try them all, and choose the best one.

m[i, j] = min
i≤k<j

(m[i, k] +m[k + 1, j] + pi−1pkpj)

9 Matrix chain multiplication: Base case

If i = j, then it’s easy because there is only one matrix:

m[i, j] = 0 if i = j

10 Matrix chain multiplication: Algorithm

MATRIXCHAINMULT(p[0, . . . , n])

m = new n× n array
for i = 1, . . . , n do

m[i, i] = 0
end for
for l = 2, . . . , n do

for i = 1, . . . , n− l + 1 do
j = i+ l − 1
m[i, j] = ∞

for k = i, . . . , j − 1 do
m[i, j] = min(m[i, j],m[i, k] +m[k + 1, j] + p[i− 1]p[k]p[j])

end for
end for

end for
return m

11 Matrix chain multiplication: Solution extraction

To extract the solution, we need to know, for each m[i, j], which value of k led to the smallest total.

s[i, j] = argmin
i≤k<j

(m[i, k] +m[k + 1, j] + pi−1pkpj)

We can use this information to extract the complete solution recursively:

csce750 Lecture Notes: Dynamic Programming 3 of 4



PRINTOPTIMALPARENTHEZATION(s, i, j)

if i = j then
print “A”i

else
print “(”
PRINTOPTIMALPARENTHEZATION(s, i, s[i, j])
PRINTOPTIMALPARENTHEZATION(s, s[i, j] + 1, j)
print “)”

end if

12 Matrix chain multiplication: Algorithm (with extraction data)

MATRIXCHAINMULT(p[0, . . . , n])

m = new n× n array
s = new n× n array
for i = 1, . . . , n do

m[i, i] = 0
end for
for l = 2, . . . , n do

for i = 1, . . . , n− l + 1 do
j = i+ l − 1
m[i, j] = ∞

for k = i, . . . , j − 1 do
q = m[i, k] +m[k + 1, j] + p[i− 1]p[k]p[j]
if q < m[i, j] then

m[i, j] = q

s[i, j] = k

end if
end for

end for
end for
return m and s

13 Greedy algorithms
CLRS 16

We won’t cover greedy algorithms directly (though we will see a few examples later). However,
Chapter 16 has some interesting insight into when a greedy approach might work correctly:

[B]eneath every greedy algorithm, there is almost always a more cumbersome dynamic-programming
solution.

csce750 Lecture Notes: Dynamic Programming 4 of 4


