## csce750 — Analysis of Algorithms Fall 2020 — Lecture Notes: Disjoint Sets

This document contains slides from the lecture, formatted to be suitable for printing or individual reading, and with some supplemental explanations added. It is intended as a supplement to, rather than a replacement for, the lectures themselves — you should not expect the notes to be self-contained or complete on their own.

#### 1 Data Structures for Disjoint Sets

Data structures for **disjoint sets** support these operations:

- MAKESET(x) create a new set containing only x.
- UNION(x, y) union the set containing x with the set containing y.
- FIND(x) return a unique *representative* of the set containing x.

For analysis, we consider sequences of m total operations, of which n are calls to MAKESET.

#### 2 Example Application: Connected components of a graph



| Edge processed          | Collection of disjoint sets |              |              |              |              |              |              |              |              |              |
|-------------------------|-----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| initial sets            | {a}                         | { <i>b</i> } | { <i>c</i> } | { <i>d</i> } | { <i>e</i> } | { <i>f</i> } | { <i>g</i> } | { <i>h</i> } | { <i>i</i> } | { <i>j</i> } |
| ( <i>b</i> , <i>d</i> ) | { <i>a</i> }                | $\{b,d\}$    | $\{c\}$      |              | $\{e\}$      | { <i>f</i> } | $\{g\}$      | $\{h\}$      | $\{i\}$      | $\{j\}$      |
| (e,g)                   | { <i>a</i> }                | $\{b,d\}$    | { <i>c</i> } |              | $\{e,g\}$    | { <i>f</i> } |              | $\{h\}$      | $\{i\}$      | $\{j\}$      |
| (a,c)                   | <i>{a,c}</i>                | $\{b,d\}$    |              |              | $\{e,g\}$    | { <i>f</i> } |              | $\{h\}$      | $\{i\}$      | $\{j\}$      |
| (h,i)                   | { <i>a</i> , <i>c</i> }     | $\{b,d\}$    |              |              | $\{e,g\}$    | { <i>f</i> } |              | $\{h,i\}$    |              | $\{j\}$      |
| (a,b)                   | $\{a,b,c,d\}$               |              |              |              | $\{e,g\}$    | { <i>f</i> } |              | $\{h,i\}$    |              | $\{j\}$      |
| (e,f)                   | $\{a,b,c,d\}$               |              |              |              | $\{e,f,g\}$  |              |              | $\{h,i\}$    |              | $\{j\}$      |
| ( <i>b</i> , <i>c</i> ) | $\{a,b,c,d\}$               |              |              |              | $\{e,f,g\}$  |              |              | $\{h,i\}$    |              | $\{j\}$      |
|                         |                             |              |              |              |              |              |              |              |              |              |

(b)

Pseudocode: CLRS 563

# 3 A simple option: Linked lists

We can implement these operations using a linked list to represent each set:

csce750

CLRS 21



# 4 Weighted unions

For each UNION, we need to update the pointers on each element of one of the two lists.

- Without this step, we could not do FIND in O(1) time.
- If we always append the shorter list to the longer one, then the entire sequence of operations takes  $O(m + n \lg n)$  time.

#### 5 Disjoint Set Forests

We can to better than the linked list approach if we use **trees** instead of lists.

- Each element has a pointer to its **parent**.
- Elements do not keep track of their **children**.
- Root elements are their own parents.
- The root of each tree is its **representative**.





## 6 Disjoint set operations (Simple version)

```
\frac{\text{MakeSet}(a)}{a. \text{ parent} = a}
```

```
\frac{\text{UNION}(a, b)}{\text{FIND}(a). \text{parent}} = \text{FIND}(b)
```

### 7 Speeding things up

To improve upon the linked list version, we need two enhancements to this basic idea.

- Union-by-rank Each node keeps an upper bound, called its rank, on the height of its subtree. For UNION, make the lower-ranked tree a child of the higher-ranked one.
- **Path compression** During each FIND, rewire the parent pointers to go directly to the root.

#### 8 Disjoint set operations (Real version)

```
\frac{\text{MakeSet}(a)}{a. \text{ parent} = a}
a. \text{ rank} = 0
```

### 9 Disjoint set operations (Real version)

## 10 Analysis

In a disjoint set forest with union-by-rank and path compression, any sequence of m operations, including n MakeSets, takes time  $O(m\alpha(n))$ , in which  $\alpha(n)$  is the **inverse Ackermann function**. (Details: CLRS 21.4)

If  $n < 16^{512} \approx 10^{616}$  then  $\alpha(n) \le 4$ .

(Note: There are only about  $10^{80}$  atoms in the observable universe.)