
csce750 — Analysis of Algorithms
Fall 2020 — Lecture Notes: Balanced Binary Search Trees

This document contains slides from the lecture, formatted to be suitable for printing or individ-
ual reading, and with some supplemental explanations added. It is intended as a supplement
to, rather than a replacement for, the lectures themselves — you should not expect the notes to
be self-contained or complete on their own.

1 Introduction
CLRS 12, 13

A binary search tree is a data structure that supports these operations:

• INSERT(k)

• SEARCH(k)

• DELETE(k)

Basic idea: Store one key at each node.

• All keys in the left subtree of n are less than the key stored at n.

• All keys in the right subtree of n are greater than the key stored at n.

Search and insert are trivial. Delete is slightly trickier, but not too bad.

You may notice that these operations are very similar to the opera-
tions available for hash tables. However, data structures like BSTs
remain important because they can be extended to efficiently sup-
port other useful operations like iterating over the elements in order,
and finding the largest and smallest elements. These things cannot
be done efficiently in hash tables.

2 BST Analysis

Each operation can be done in time O(h) on a BST of height h.

Worst case: Θ(n)

Aside: Does randomization help?

• Answer: Sort of. If we know all of the keys at the start, and insert them in a random order, in
which each of the n! permutations is equally likely, then the expected tree height is O(lgn).
(See CLRS 300.)
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3 Balancing

To be a useful improvement over a linked list, a BST must be kept balanced, ensuring that its
height remains O(lg n).

There are lots of schemes to keep BSTs balanced:

• AVL trees: Heights of left and right subtrees differ by at most 1.

• Red-black trees: Heights of left and right subtrees differ at most by a factor of 2.

You have likely seen one or both of these at some point.

We’ll have a look at a more exotic variation: Treaps.

4 Rotations

Treaps (and AVL trees, and Red-Black trees, and . . . ) use a pair of operations called rotations to
change the structure of the BST without breaking the BST property.

• Left rotation

• Right rotation

Pseudocode: CLRS 313

5 It’s a tree! It’s a heap! It’s a treap!

In a treap, every node is labeled with both a unique key and a unique numerical priority.

For each node v:

• v.key is greater than all keys in the subtree rooted at v.left

• v.key is less than all keys in the subtree rooted at v.right

• v.left.priority < v.priority

• v.right.priority < v.priority

Since a treap is a BST, the standard search algorithm works.

6 Treap insertion

To insert a new key k with priority p into a treap:

• Use the standard BST insertion algorithm to add a new leaf (k, p).

• Visit each node v on the path back from this new node to the root.

– If v.priority < v.left.priority, then ROTATER(v).

– If v.priority < v.right.priority, then ROTATEL(v).

– Otherwise, stop.
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7 Treap example

8 Treap analysis

Two observations:

1. Given the keys and their priorities, the shape of the treap is fully determined. (Proof by
induction: The heap property ensures that the highest priority node is the root. The BST
property uniquely partitions the remaining nodes, which form sub-treaps. Base case: Empty
treap.)

2. The uniquely determined shape is identical to the shape that would result from inserting the
elements into a standard (unbalanced) BST, in order of decreasing priority.

Therefore: The analysis for inserting known keys in random order applies here, because we get
the same tree. The expected height of a treap of n nodes is O(lgn).

Therefore: Searching, inserting, and deleting in a treap each take worst-case expected time O(logn).
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