This document contains slides from the lecture, formatted to be suitable for printing or individual reading, and with some supplemental explanations added. It is intended as a supplement to, rather than a replacement for, the lectures themselves — you should not expect the notes to be self-contained or complete on their own.

1 Asymptotic notations

In the analysis of algorithms, we are usually interested in how the performance of our algorithm changes *as the problem size increases*.

The primary tools for measuring the growth rate of a function that describes the run time of an algorithm are the **asymptotic notations**.

This provides a way of studying the algorithms themselves, independent of any specific hardware, operating system, compiler, programmer, *etc*.

2 Big-*O*

 $O(g(n)) = \{f(n) \mid \text{there exist positive constants } c \text{ and } n_0, \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0. \}$

3 Big- Ω

 $\Omega(g(n)) = \{f(n) \mid \text{there exist positive constants } c \text{ and } n_0, \\ \text{such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0. \}$

4 **Big-** Θ

 $\Theta(g(n)) = \{f(n) \mid \text{there exist positive constants } c_1, c_2, \text{ and } n_0, \\ \text{such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0. \}$

More succinctly: $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$

5 Anonymous functions

These notations officially refer to sets of functions, but it's often useful to use them in larger arithmetic expressions.

 $T(n) = O(n^2)$ means:

$$T(n) \in O(n^2)$$

 $T(n) = 2n^2 + O(n)$ means:

There exists $f(n) \in O(n)$ with $T(n) = 2n^2 + f(n)$.

6 Little-o

 $o(g(n)) = \{f(n) \mid \text{for any positive constant } c,$ there exists a constant n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$. }

This indicates a loose bound: f(n) = o(g(n)) means f(n) grows strictly slower than g(n).

7 Little- ω

 $\omega(g(n)) = \{f(n) \mid \text{for any positive constant } c, \\ \text{there exists a constant } n_0 \text{ such that } 0 \leq cg(n) \leq f(n) \\ \text{for all } n \geq n_0. \}$

This indicates a loose bound: $f(n) = \omega(g(n))$ means f(n) grows strictly faster than g(n).

8 Little- θ ?

9 Limits

For functions that are eventually positive, we can compare asymptotic growth rates using limits.

Let $L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$, if that limit exists.

Then f(n) is in . . .

10 Informal summary of intuition

- f(n) = O(g(n)) is like $a \le b$.
- $f(n) = \Omega(g(n))$ is like $a \ge b$.
- $f(n) = \Theta(g(n))$ is like a = b.
- f(n) = o(g(n)) is like a < b.
- $f(n) = \omega(g(n))$ is like a > b.