Minimal DFAs

A DFA M is minimal if there is no DFA N equivalent to M with fewer states.

We will assume a fixed alphabet 3 throughout.

For convenience, we make the following definition: suppose N = (Q, X, §, qo, F') is a DFA.
For any state ¢ € Q and string w over X, define § (¢, w) to be the unique state resulting from
starting in state ¢ and reading w on the input. That is, 6 extends & to strings of any length.

More formally, we can define 5 @ x X* — @ inductively:

Base case: 5((1,5) =q.
Inductive case: §(q,aw) = §(5(¢,a),w) for a € ¥ and w € T*.

It is clear by the definition that for any strings x and y and state g, S(q, xy) = 5(5(q, x),y).
Note also that a string w is in L(N) iff §(go,w) € F' (i.e., 5(go, w) is an accepting state).
Let L be any language (not necessarily regular) over . For every string w define L,, =
{z | wz € L}. Note that L, = L, and if L,, = L, then Ly, = Ly, for any a € ¥, because
T € Ly, < war € L < ar € L, < ax € Ly <= war € L <= x € Ly,.
Define
Cr,={L,|weX}

Theorem 1 (Myhill, Nerode) Let L be any language. L is regular if and only if Cy, is
finite, and in this case, there is a (unique) minimal DFA recognizing L with |Cp| many states.

We’ll prove Theorem 1 via three lemmata.
The first lemma shows that |C,| is a lower bound on the number of states of any DFA
recognizing a language L.

Lemma 1 If a language L is reqular, recognized by some DFA N with state set @), then
ICo| < Q.

Proof. Suppose N = (Q, X, 6, qo, F'). For any state p € @, define N, to be the DFA that is
the same as NV but whose start state is p. That is, N, = (@, %, 6,p, F). (So, for example,
N = N,.) Now let w be any string over X, and let ¢ = (o, w). We claim that

L, = L(N,).
To see this, note that, for any string x € ¥*, we have

x € Ly, wz € L (by definition of L)

wz € L(N) (since L = L(N))

~

d(qo, wz) € F (definition of acceptance)
5(6(qo, w),z) € F (since this is the same state)
(g,z) € F (definition of q)

x € L(N,).

(&%

111ttt

So, with NV fixed, we see that L,, only depends on the state obtained by starting in ¢y and
reading w, and thus the number of distinct L,, is no more than the number of states of V.
O

The next lemma gives |Cy| (if C, is finite) as an upper bound on the number of states
necessary for a DFA to recognize L.

Lemma 2 Let L be a language. If Cp, is finite, then L is regular, recognized by a DFA M|,
with ezactly |Cr,| many states.

Proof. We construct My, having state set Cr,. We let My, = (Cr, 3, 0, qo, F') where
e ¢o=L. =1L,
e §(Ly,a) = Ly, (this is well-defined!), and
e F={qeC,|ec€q}

Note that if we start in the start state gy of My and read a string w, then we wind up
in state L,,; that is, 5(qo,w) = L,. You can see this by induction on |w|. The base case is
when |w| = 0, that is, when w = €. In this case, reading w keeps us in ¢o. But ¢ = L. = L,,
by definition, so we wind up in state L,, in this case. Now suppse |w| > 0 and so w = ya
for some string y and alphabet symbol a. By the inductive hypothesis, reading y lands us
in state L,, but then further reading a moves us to state 6(L,, a) = Ly, = Ly,

Intuitively, the state L,, coincides with the set of all strings x such that starting in this
state and reading = would lead us to accept wx. This is why we make L,, itself to be an
accepting state when we do: if reading € should make us accept w. Immediately after this
proof, we give a concrete example of an M.

We must show that L = L(Mp). For any = € ¥* we have (below, ¢, §, and F are all
with respect to My):

x €L <= ¢e€L, (by definition of L,)
< L, € F (by definition of F')
> 0(qo,x) € F (since L, = 6(go, z) from above)
<= x € L(Mj) (by definition of acceptance).
Thus My, recognizes L. O

Example. Let ¥ = {a,b} and let L be the set of all strings that contain three consecutive
b’s somewhere in the string. So L is denoted by the regular expression (a U b)*bbb(a U b)*.
With a little thought, we can see that |Cr| = 4. In fact, C, = {L., Ly, Ly, Lppp }. These four
languages are all distinct:

o [.=1L.

e L, contains bb (which is not in L.), but does not contain b.
e Ly, contains b (which is neither in L, nor in L;), but does not contain ¢.
e Ly contains all strings over {a, b}, including e.

Furthermore, any L,, is equal to one of these four. For example, Lypaaos = Lpp and Lipppagaaa =
L. (For any w, how do you tell which of the four L,, is?) We thus get the following DFA
My, for L, as constructed in the proof of Lemma 2:

e The state set is C;y..
e The start state is L,.

e The sole accepting state is Ly, as this is the only one of the four languages that
contains ¢.

e The transition function ¢ is as follows:

6(Le, b) Ly,
0(Ly,a) = Ly, = Le,
d(Lp,b) = Ly,
6(Lw,a) = Lppa = Le,
6(Lys,b) = Liw,
6(Leps, @) = Lpppa = {a,0}" = Lyg,
6 (Lybs, b) Lipsy = Lppp-

O

The third and final lemma proves that My is unique, thus completing the proof of The-
orem 1. First, we will say that a DFA N = (Q, %, 6, o, F) is economical if every state of
N is reachable from the start state, that is, for every ¢ € @) there is a string w such that
q=) (go, w). Clearly, a DFA N is equivalent to an economical DFA with the same number
or fewer states—just remove any states of N that are unreachable from ¢y. These states will
never be visited in a computation, so they are completely irrelevant.

Lemma 3 Let L be a reqular language. The DFA My of Lemma 2 is the unique (up to
renaming of states) minimal DFA recognizing L.

Proof. Let N = (Q,3,0,qo, F') be any economical DFA recognizing L. We can map the
states of N surjectively onto the states of My, in a way that preserves the transition function,
start state, and accepting states. For every ¢ € @, define f(q) = L(N,), where IV, is as in the
proof of Lemma 1. This defines a mapping f with domain (), mapping states to languages.
We will verify the following properties of f:

1. The range of f is exactly Cy,, that is, f maps @ onto C;, (the state set of Mjy,).
2. f(qo) = Le = L (the start state of My).

3. Let ¢ € @ be a state, and let w be any string such that f(q) = L, (such a w exists
by item (1)). For any a € ¥, we have f(d(q,a)) = Ly, (which is the result of the
transition function of M}, being applied to the state L,, = f(q) and a).

4. For any ¢ € @, we have ¢ € F if and only if € € f(q) (that is, if and only if f(q) is an
accepting state of M,).

For (1): First, let ¢ be any state in (). Since NV is economical, there is some string w such
that ¢ = 0(go, w). In the proof of Lemma 1 we showed that L,, = L(N,). Since L(N,) = f(q)
by definition, this shows that f(¢q) € C;, and thus the range of f is a subset of C;,. Lastly,
we must show that every element of Cy, is equal to f(g) for some ¢ € Q. Given any string w,
we define ¢ = 6(go, w). Then again by the proof of Lemma 1, we have L,, = L(Ny), which
also equals f(q). Thus every L, is in the range of f, and so f maps @ surjectively onto Cy,.

For (2): Clearly, f(go) = L(Ng) = L(N) =L = L..

For (3): Let r = §(q,a). For any string x, we have

xz € f(r) x € L(N,)

5(r,x) € F
5(q,ax) € F
ax € L(Ny)
az € f(q)
ax € Ly,
wazr € L

T € Ly,.

rrreeeey

Therefore f(r) = Luyq. R
For (4): Clearly, q € F if and only if € € L(N,), because §(q,¢) = q.

Now we're ready to prove the lemma. Let M; = (C;, X%, ¢, L., F') be the minimal DFA
for L constructed in the proof of Lemma 2. Suppose N = (Q, 3,0, qo, F) is any minimal
DFA recognizing L. We show that N and M, are the same DFA after relabelling states.
Since N is minimal, it must also be economical (otherwise, we could remove at least one
unreachable state to get a smaller equivalent DFA). Thus we have the surjective mapping
f:@Q — Cr, defined above. Also, by Lemmata 1 and 2 we must also have |Q| = |Cy| (since N
is minimal). Thus f must be a bijection (perfect matching) between @ and Cr. This is the
relabelling we want: f maps the start state of N to the start state of My, (by (2)); it maps
accepting states to accepting states and nonaccepting states to nonaccepting states (by (4));
finally, it preserves the transition function, that is, for any ¢ € @ and a € X,

f(d(qa a’)) = Lya = (Sl(f(Q)’ a)

4

by (3), where w is any string such that f(q) = L.
This shows that N and M, are identical up to the relabelling f, which proves the lemma.
O

Minimizing a DFA

Nice as they are, the results in the last section do not give an explicit general procedure
to construct a minimal DFA equivalent to a given DFA. Often one can determine M} by
inspection, as we did in the Example, above. Nevertheless, we would like a general algorithm
that, given a DFA N = (Q, X, §, o, F'), constructs My, where L = L(N).

The algorithm to do this works in two steps: (1) remove all states of N that are not
reachable from ¢y, making N economical, and (2) collapse remaining states together that
we find are equivalent. We’'ll assume that we have already performed (1), so that N is
economical.

For any state ¢ € (), define N, as in the proof of Lemma 1, above.

State equivalence and distinguishability

We say that two states p and ¢ in Q are distinguishable if L(N,) # L(N,), that is, there is
some string such that one of d(p,z) and 6(g, z) is accepting and the other is not. Such a
string z, if it exists, distinguishes p from ¢. (Such an z is in L(N,) A L(N,), the symmetric
difference of L(N,) and L(N,).")

If p and ¢ are indistinguishable (i.e., not distinguishable by any string, i.e., L(N,) =
L(N,)), then we say p and g are equivalent and write p & ¢. This is obviously an equivalence
relation. Intuitively, p &~ ¢ means that our acceptance or rejection of any string w does not
depend on whether we start in state p or in state ¢ before reading w. (Although it’s not
necessary for the current development, you may observe that p & ¢ iff p and ¢ are mapped
to the same state by the f defined in the proof of Lemma 3.)

The meat of the algorithm is to determine which pairs of states are equivalent. This
is done using a table-filling technique. We methodically find distinguishable pairs of states;
when we can’t find any more, the pairs of states left over must be equivalent. For convenience,
assume that @ = {1,...,n}. We use a two-dimensional array 7" with entries T'[p, ¢| for all
1 < p,q <n. We'll keep T' symmetric in what follows, i.e., any value assigned to T'[p, q] will
automatically also be assigned to T[q, p] implicitly. (Also, we will have no use for diagonal
entries T'[p, p|, so actually, only the proper upper triangle of 7' need be stored: those entries
Tp, q] where p < q.) We proceed as follows:

Initially, all entries of 7" are blank;

!For any sets A and B, we define AAB =(A— B)U(B - A)=(AUB)— (AN B), i.e., the set of all z
such that z € A or z € B but not both.

FOR each pair (p, q) of states with p < ¢, DO
IF p € F or g € F but not both, THEN
Tlp,q] < X;
REPEAT
FOR each pair (p, q) with p < ¢ and each a € ¥, DO
IF Tp, q| is blank and T'[§(p, a), é(q, a)] = X, THEN
Tlp,q] < X
UNTIL no entries are marked X in one full iteration of this loop

When finished, it will be the case that an entry T'[p,] is blank if and only if p ~ q.

To see the “if” part, notice that we only mark an entry with X if we have evidence that
the two states in question are distinguishable. If T'[p,q] gets marked in the initial FOR-
loop, it is because ¢ distinguishes p from ¢. For entries marked in the REPEAT-loop, we
can proceed by induction on the number of steps taken by the algorithm when an entry is
marked to show that the corresponding states are distinguishable: if T'[p,] is marked in
the REPEAT-loop, it is because T[0(p, a), d(g, a)] was marked sometime previously, for some
a € X. By the inductive hypothesis, d(p,a) and 6(g, a) are distinguished by some string w.
But then, aw clearly distinguishes p from ¢, so marking T'[p, ¢ is correct. This proves the
“if” part.

To show the “only if” part, we need to show that all distinguishable pairs of states are
eventually marked with X. Suppose this is not the case. We call (p, q) a bad pair if p % ¢ but
Tp, q] is left blank by the algorithm. Our assumption is that there is at least one bad pair.
Let w be a string distinguishing some bad pair (p, ¢), and assume that w is as short as any
string distinguishing any bad pair. It must be that w # ¢, since otherwise, ¢ distinguishes
p from ¢, which in turn implies that either p € F or ¢ € F but not both; but then T'[p, ¢]
is marked X in the initial FOR-loop, so (p, ¢) is not a bad pair. So we must have w = ay
for some a € ¥ and y € ¥*. Then, y distinquishes r = §(p, a) from s = §(q,a), and since
ly| < |wl|, (r,s)is not a bad pair (by the minimality of w). So T'r, s] is marked with an X
at some point. But then, on the first iteration of the REPEAT-loop following the marking
of T'[r, s], we mark T'[p, g] with X, which contradicts the assumption that (p, ¢) is a bad pair.
Thus there are no bad pairs.

Now that we can tell whether any two states are equivalent, we are ready to construct
the minimum DFA M for L. The let the state set of M be the set @/~ of equivalence classes
of @ under the ~-relation. For any ¢ € @) we let [¢] denote the equivalence class containing

q.
We define the transition function 4, for M as follows: for any ¢ € @ and a € ¥, let

o (lgl; @) = [0(g,)]

This is a legitimate definition, because p & ¢ clearly implies d(p,a) = 0(g,a), and so the
transition does not depend on which representative of the equivalence class we use. Also
note that when we extend d,; to 05, acting on all strings, we can routinely check that

dar([al, w) = [8(g, w)]

6

for all ¢ € Q and w € X*.

We define the start state of M to be [g], and the set of accepting states of M to be
Fy=A[r]|r € F}.

We must verify two things:

1. M recognizes L, and
2. M is minimal.

For (1), let w be any string.

~

d(qo, w) € F
(0.)] € Fiy
om([qo], w) € Fiur
w € L(M).

w e L

1117

Thus L = L(M).

For (2), first note that since N is economical, so is M: if [r] is any state of M, let
w be such that 6(ge, w) = r; then dy([go], w) = [0(go,w)] = [r], and thus [r] is reachable
from the start state [go] via w. Now we show that C;, = {L(My) | ¢’ € Q/~}. By adapting
the proof of Lemma 1 we get that L,, = L(M,) for any string w, where ¢' = 35 ([qo], w).
But since M is economical, every state of M is of this form for some w, so indeed Cp, =
{L(My) | ¢ € Q/~}. We'll be done if we can show that any two distinct states of M are
distinguishable, for then L(My) # L(My) for all p’,¢' € Q/~, and so it must be that
Q/~| = {L(My) | ¢ € Q/~}| = |C|, which implies that M is minimal by Lemmata 1 and
2.

To see that all distinct states of M are distinguishable, notice that if [p| # [g], then p % ¢,
and so p and ¢ are distinguished (in N) by some string 2. We claim that the same string z
also distinguishes [p] from [¢] in M. Let r = §(p,z) and let s = 6(q,). Then either r € F
or s € F but not both. We also have d,/([p],z) = [r] and 5 ([q],z) = [s] by definition,
so we're done if either [r] or [s] is accepting (in M) but not both. Suppose, WLOG, that
r € F. Then [r] is accepting in M by definition. Further, s ¢ F. This implies that [s] cannot
be accepting in M: otherwise, there is some s’ € [s] N F, but then s’ &~ s, and so s’ ¢ F
because s ¢ F—contradiction. Thus [s] is not accepting in M. (Any equivalence class in
@)/~ either contains only accepting states or only nonaccepting states.) A similar argument
works assuming s € F. Thus [p| and [g] are distinguishable in M.

