
CSCE 551 Final Exam, Spring 2004

Answer Key

1. (10 points) Using any method you like (including intuition), give the unique minimal
DFA equivalent to the following NFA:

ε

ε

ε

ε

0

εε

ε

0

1 2

3 4

5

1

If your answer is correct, you get full credit even if you do not show how you arrived
at it.

Answer: The one-state DFA whose start start is also an accepting state, and both
of whose transitions are self-loops. This DFA accepts every binary string, recognizing
{0, 1}∗.

2. (10 points) Give an implementation-level description of a standard (1-tape determin-
istic) TM M that decides the following language over input alphabet {0, 1}:

{w | w contains at least as many zeros as ones}.

Answer: “On input w ∈ {0, 1}:

(a) Scan right until a blank is encountered, replacing the first ‘1’ seen with ‘x’. If no
‘1’ is seen in this scan, then accept.

(b) Scan left to the beginning, replacing the first ‘0’ seen with ‘x’. If no ‘0’ is seen,
then reject; otherwise, go to Step (a).”

Other algorithms are possible.

3. (10 points) Let A and B be two disjoint languages. Recall (Problem 4.18) that a
language C separates A from B if A ⊆ C and B ⊆ C. Consider the two languages

ADIAG = {〈M〉 |M is a TM that accepts the string 〈M〉}

and
RDIAG = {〈M〉 |M is a TM that rejects the string 〈M〉}.

By filling in the bracketed parts, complete the following proof that there is no decidable
language C that separates ADIAG from RDIAG:

Suppose that there is some decidable C separating ADIAG from RDIAG. Let D
be the following machine: “On input w: [YOU FILL IN THIS PART (HIGH-
LEVEL DESCRIPTION)].” Consider D running on input 〈D〉. Clearly, D
does not loop on input 〈D〉. But, if D accepts 〈D〉, then [YOU EXPLAIN
WHY D MUST REJECT 〈D〉]. Likewise, if D rejects 〈D〉, then [YOU
EXPLAIN WHY D MUST ACCEPT 〈D〉]. This is a contradiction, thus
there is no such decidable C.

Answer: Here is a description of D. In fact, D decides C.

D := “On input w:

(a) If w ∈ C, then reject; otherwise accept.”

If D accepts 〈D〉, then 〈D〉 /∈ C (by the definition of D), and thus D does not accept
〈D〉 (by the definition of C), and thus D rejects 〈D〉 (because D is a decider). Likewise,
if D rejects 〈D〉, then 〈D〉 ∈ C (by the definition of D), and thus D does not reject
〈D〉 (by the definition of C), and thus D accepts 〈D〉 (because D is a decider).

4. (10 points) Let f be any computable function. Show that the set

R = {y | (∃x ∈ ATM) f(x) = y}

is Turing-recognizable by giving a high-level description of a TM that recognizes R.

Answer: The following machine recognizes R:

M := “On input y:

(a) Cycling through every string x:

i. Compute f(x).

ii. If f(x) = y, then accept; else continue to the next x.”

5. (10 points) Find a mapping reduction from ATM to the language

{〈M〉 |M is a TM and L(M) = ATM}.

Answer: Let L be the language above. Fix a TM M0 that loops on all inputs. (Thus
L(M0) = ∅ 6= ATM, and so 〈M0〉 /∈ L.)

Let f := “On input x:

(a) If x is not of the form 〈M,w〉, where M is a TM and w an input string to M ,
then output 〈M0〉. // This works because x /∈ ATM.

(b) Otherwise, we have x = 〈M,w〉 as above. Let R be the following TM:
R := ‘On input 〈N, y〉, where N is a TM and y a string:

i. Run M on input w.

ii. If M ever accepts w, then run N on input y (and do what N does).

iii. Otherwise, loop.’

(c) Output 〈R〉.”

If M does not accept w, then L(R) = ∅ 6= ATM. Conversely, if M does accept w, then
L(R) = ATM. Thus

〈M,w〉 ∈ ATM ⇐⇒ f(〈M,w〉) ∈ L .

6. (10 points) Show that there is no computable function f outputting natural numbers
such that, for any TM M and string w, if M accepts w, then M accepts w in at most
f(〈M,w〉) steps. [Hint: Argue by contradiction.]

Answer: Suppose there exists such an f . Then the following TM clearly decides ATM:
D := “On input 〈M,w〉, where M is a TM and w is a string:

(a) Compute t := f(〈M,w〉).
(b) Run M on input w for t steps.

(c) If M accepts w within this time, then accept; else reject.”

This is a contradiction, because ATM is undecidable.

7. Below, G is always an undirected graph, and k is a natural number. A path in G is
simple if no vertex appears more than once along the path. The length of a path is
the number of edges in the path.

(a) (10 points) Explain why the language

LONGPATH = {〈G, v, k〉 | G has a simple path of length k starting at vertex v}

is in NP.

(b) (10 points) Show that if LONGPATH ∈ P, then there is a polynomial-time com-
putable function f that, on input 〈G, k〉, either outputs some simple path in G of
length k or outputs “no” if there is no such path. You may take the statement of
part (a) as given. A high-level description of f is fine.

Answer:

(a) LONGPATH is in NP because if G does have a simple path of length ≥ k starting
at v, then a ptime verifiable proof could be such a path p itself, given as a sequence
of vertices. The verifier checks that: there are at least k vertices in p; no vertex
is repeated in p; p starts with v; and each vertex in p except the last is adjacent
to the immediately following vertex in p.

(b) Here is a description of f :
“On input 〈G, k〉, where G is a graph and k a natural number:

i. Run through the vertices v of G, checking whether 〈G, v, k〉 ∈ LONGPATH.

ii. If there is no vertex v such that 〈G, v, k〉 ∈ LONGPATH, then output “no”
and halt.

iii. Otherwise, let v be the first vertex found such that 〈G, v, k〉 ∈ LONGPATH.

iv. Initialize p to be the length 0 path consisting of just v.

v. While k > 0, do the following:

A. Let G′ be the graph obtained by removing v and its incident edges from
G.

B. Run through the neighbors1 of v in G until a neighbor w is found such
that 〈G′, w, k − 1〉 ∈ LONGPATH. // Such a w must exist.

C. Append w onto the end of p.

D. Set G := G′ and k := k − 1.

vi. Return p.”

The function f can be computed in ptime, because there are at most 2|V (G)| − 1 calls
to LONGPATH, each on a polynomial sized input. The rest of the algorithm (besides
the calls to LONGPATH clearly takes polynomial time.

8. (10 points) Using any method you like, show that the language

{0m1n | m,n ≥ 0 and n 6= m2}

is not regular.

Answer: Let L be the language above. There are (at least) two different solutions to this
problem:

Solution 1: Suppose L is regular. Then by the closure properties of regular languages, the
language L′ = L ∩ L(0∗1∗) is also regular. But

L′ = {0m1m2 | m ≥ 0} ,
1A neighbor of a vertex v is any vertex adjacent to v.

and this language cannot be regular, as is seen via the pumping lemma for regular
languages: given any p > 0, set s := 0p1p2 . Clearly s ∈ L′ and |s| ≥ p. Given any
x, y, z such that xyz = s, |y| > 0, and |xy| ≤ p, it must be that y = 0k for some k > 0.
Let i := 0. Then xyiz = xz = 0p−k1p2 /∈ L′. Thus L′ is not regular. Contradiction. It
follows that L cannot be regular.

Solution 2: Using the pumping lemma directly, given any p > 0, set s := 0p1(p!+p)2 . Clearly,
|s| ≥ p and s ∈ L, since (p! + p)2 6= p2. Given strings x, y, z such that xyz = s, |y| > 0,
and |xy| ≤ p, it must be that y = 0k for some 0 < k ≤ p. Set i := p!

k
+ 1 (which is an

integer). Then

xyiz = 0p!+p1(p!+p)2 /∈ L .

Thus L is not regular.

