COMPLEXITY ABSTRACTS 2005. Volume XV

Abstract

This is a collection of one-page abstracts of recent results of interest
to the Complexity community. The purpose of this document is to
spread this information, not to judge the truth or interest of the results
therein.



TABLE OF CONTENTS

The Directed Planar Reachability Problem

Making the Polynomial-Time Hierarchy Look Like the Arithmetic
Hierarchy

On the Query Complexity of Quantum Learners

Separating the Notions of Self- and Autoreducibility
Autoreducibility, Mitoticity, and Immunity

Redundancy in Complete Sets

Canonical Disjoint NP-Pairs of Propositional Proof Systems

The Complexity of the Inertia and some Closure Properties of
GapL

Kolmogorov Complexity Leads to a Representation Theorem for
Idempotent Probabilities (oc-Maxitive Measures)

If an Exact Interval Computation Problem Is NP-Hard, then the
Approximate Problem Is Also NP-Hard: A Meta-Result

2-Local Random Reductions to 3-Valued Functions
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Abstract Number 05-1
The s-t-connectivity problem for directed graphs is the standard complete problem for non-
deterministic logspace (NL). We consider the restriction of this problem to planar graphs.
This problem is known to be hard for L under AC? reductions, but nothing is known about
its complexity beyond the upper bound of NL and the lower bound of L.
We consider the class of problems logspace-reducible to the planar directed s-t-connectivity
problem. We show that this class is closed under complement, and contains the s-i-
connectivity problems for graphs of genus k for any constant k.
A full paper will be available soon at http://www.cs.rutgers.edu/ -~ allender
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Abstract Number 05-2
We give the first relativized world where the polynomial-time hierarchy acts like the arith-
metic hierarchy, i.e., for all k, X8 # I} and & NIIE = AP,
In addition our oracle makes P # UP and for every NP machine M that accepts X, there
is a polynomial-time function f such that f(z) is an accepting path in the computation
This is also the first relativized world where the latter condition holds and the polynomial-
time hierarchy is infinite answering an open question of Fenner, Fortnow, Naik and Rogers.
To create the oracle, we introduce Kolmogorov-generic oracles where the strings placed in
the oracle are derived from an exponentially long Kolmogorov-random string.

A full paper will be available soon.




On the Query Complexity of Quantum Learners

Jorge Castro, Departament L.S.I., Universitat Politécnica de Catalunya, Campus Nord,
08034 Barcelona, Spain, (castro@lsi.upc.edu)

Abstract Number 05-3

This paper introduces a framework for quantum exact learning via queries, the so-called
quantum protocol. It is shown that usual protocols in the classical learning setting have
quantum counterparts. A combinatorial notion, the general halving dimension, is also
introduced. Given a quantum protocol and a target concept class, the general halving
dimension provides a lower bound on the number of queries that a quantum algorithm
needs to learn. For usual protocols, this lower bound is also valid even if only involution
oracle teachers are considered. The general halving dimension also approximates the query
complexity of ordinary randomized learners. From these bounds we conclude that any
quantum polynomially query learnable concept class must be also polynomially learnable
in the classical setting.

A preliminary version is available by email to castro@lsi.upc.edu
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Abstract Number 05-4
Recently it was shown that all PSPACE-complete languages (as well as all complete lan-
guages for many other classes, including NP) are autoreducible. However, it remains open
whether all PSPACE-complete (NP-complete) languages are Turing self-reducible.
This paper considers a simpler version of this question—whether all PSPACE-complete
(NP-complete) languages are length-decreasing self-reducible. We show that if all PSPACE-
complete languages are length-decreasing self-reducible then PSPACE = P and that the
same kind of implication holds for many other natural complexity classes. In particular, if
all NP-complete sets are length-decreasing self-reducible then NP = P. We also show that
our technique can be applied to L and NL to show that unless L = NL, not all NL-complete
sets are logspace length-decreasing self-reducible.
Using the same technique, we show that some PSPACE-complete languages are not logspace
length-decreasing self-reducible and that some EXP-complete languages are not polynomial-
time length-decreasing self-reducible.

A full paper is available by email to pfali@cs.rochester.edu

?This work is supported in part by NSF Grants EIA-0080124, EIA-0205061, and CCF-0426761.
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Abstract Number 05-5

A set L is many-one autoreducible if L many-one reduces to L via a reduction f such that
f(z) # z. A set L is weakly many-one mitotic if there exists S such that L, L N S, and
LN S are many-one equivalent. If additionally S € P, then L is called many-one mitotic.
The notion of weak Turing mitoticity is defined analogously.

We show the following results regarding complete sets.
e NP-complete sets and PSPACE-complete sets are many-one autoreducible.

e Complete sets of any level of PH, MODPH, or the Boolean hierarchy over NP are
many-one autoreducible.

o EXP-complete sets are many-one mitotic.
e NEXP-complete sets are weakly many-one mitotic.
e PSPACE-complete sets are weakly Turing-mitotic.

e [fone-way permutations and quick pseudo-random generators exist, then NP-complete
languages are many-one mitotic.

e If there is a tally language in NP N coNP — P, then, for every ¢ > 0, NP-complete sets
are not 2"(!T9)_immune.

These results solve several of the open questions raised by Buhrman and Torenvliet in their
1994 survey paper on the structure of complete sets.

A full paper is available at ECCC. The report number is TR05-011.
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Abstract Number 05-6

A set L is many-one autoreducible if L many-one reduces to L via a reduction f such that
f(z) # x. A set L is weakly many-one mitotic if there exists S such that L, L N S, and
LN S are many-one equivalent. If additionally S € P, then L is called many-one mitotic.
Ambos-Spies, 1984, showed that every many-one mitotic set is many-one autoreducible, and
asked whether the converse holds.

We show that every many-one autoreducible set is many-one mitotic. As a corollary we
obtain that many-one complete sets for classes such as NP, PSPACE, EXP, NEXP are
many-one mitotic.

We show that the equivalence of autoreducibility and mitoticity cannot be extended to more
general reductions: We exhibit a sparse set in EXP that is 3-truth-table autoreducible but
not weak Turing mitotic.

A complete version of the paper is not yet avialable.
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Abstract Number 05-7

Razborov, 1994, associated a canonical disjoint NP-pair with every propositional proof
system. In this paper, we prove that every disjoint NP-pair is polynomial-time, many-one
equivalent to the canonical disjoint NP-pair of some propositional proof system. Therefore,
the degree structure of the class of disjoint NP-pairs and of all canonical pairs is identical.
Secondly, we show that this degree structure is not superficial: Assuming there exist P-
inseparable disjoint pairs, there exist intermediate disjoint NP-pairs. That is, if (A, B) is a
P-separable disjoint NP-pair and (C, D) is a P-inseparable disjoint NP-pair, then there exist
P-inseparable, incomparable NP-pairs (E, F') and (G, H) whose degrees lie strictly between
(A,B) and (C, D). Furthermore, between any two disjoint NP-pairs that are comparable
and inequivalent, such a diamond exists. These results are reminiscent of Ladner’s result for
NP, 1975, and our proof is based on Schoning’s formulation, 1982, together with techniques
of Regan, 1983 and 1988.

A full paper is available at ECCC. The report number is TR04-106.
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Abstract Number 05-8

The inertia of an n x n matrix A is defined as the triple (i(A),i—(A),i0(A)), where
i+(A), i_(A), and ip(A) are the number of eigenvalues of A, counting multiplicities, with
positive, negative, and zero real part, respectively. It is known that the inertia of a large
class of matrices can be determined in PL (probabilistic logspace). However, the general
problem, whether the inertia of an arbitrary integer matrix is computable in PL, was an
open question. In this paper we give a positive answer to this question and show that the
problem is complete for PL.

As consequences of this result we show necessary and sufficient conditions that certain
algebraic functions like the rank or the inertia of an integer matrix can be computed in
GapL.

A full paper is available by email to thanh.hoang@uni-ulm.de
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79968, USA, (vladik@utep.edu longpre@cs.utep.edu)

Abstract Number 05-9
In many application areas, it is important to consider o-maxitive measures (idempotent
probabilities), i.e., measures m for which m(A U B) = max(m(A), m(B)). Such measure
are used in science and engineering to describe rare events, in Al to describe degree of
possibility, etc. In his 2003 paper [1], J. H. Lutz has used Kolmogorov complexity to show
that for constructively defined sets A, one o-maxitive measure — fractal dimension — can be
represented as m(A) = sug f(x). We show that a similar representation is possible for an
Te

arbitrary o-maxitive measure.

Let us start by describing what we mean by a constructive set. Intuitively, a set is con-
structive if there exists a constructive procedure for producing elements of this set. Every
procedure has to be described by a finite sequence of instructions, i.e., by a finite sequence
of symbols in some alphabet used to describe these instructions. Since there are countably
many such sequences, there can only be countably many constructive sets. We thus arrive
at the following definition:

Definition 1. Let X be a set, and let F C 2% be a countable family of subsets of X.
Elements of F will be called constructive sets.

Definition 2. By a o-maxitive measure on X, we mean a mapping m : A — R, where
A C 2% is a o-algebra that contains all constructive sets, and for every sequence of sets

o
A, e A, m <U Ai> = supm(4;).
i=1 i
Representation theorem. For every o-mazitive measure on X, there exists a function
f: X — R such that for every constructive set A, we have m(A) = sup f(z).

€A

The above representation holds also for countable unions of constructive sets. For example,
let X be a separable metric space, and let F be a family of all the open balls of rational
radii with centers in z;. Then, the above representation theorem holds for all open sets.

[1] J. H. Lutz, “The dimensions of individual strings and sequences”, Information and
Computation, 2003, Vol. 187, pp. 49-79.

A full paper is available at http://www.cs.utep.edu/vladik /2005 /tr05-20.pdf
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Abstract Number 05-10
One of the main problems of interval computations is, given a function f(z1,...,z,) and n
intervals x;, to compute the range f(x1,...,x,) of possible values of f when z; € x;.

In interval computations, many subclasses of this general problem are NP-hard: e.g., the
problem of computing the range of a quadratic function. Usually, once we prove that a
problem of computing the exact range is NP-hard, then it later turns out that the problem
of computing this range with a given accuracy is also NP-hard.

In theory of computing in general, it is possible that a problem is NP-hard but its approx-
imation is easy to solve. We provide a general explanation why in interval computations,
the introduction of approximations does not make the problem much easier.

In general, most proofs of NP-hardness reduce a known discrete NP-complete problem —
given a discrete object g, find a discrete object o such that P(g, o) is true (where P can be
checked in polynomial time) — to the problem in question. A reduction means that for each
g, we form an instance P, of the corresponding interval computation problem.

In most interval computation proofs, this reduction is usually set up in such a way that:

e the original instance of the discrete problem has a solution if and only if the range [r, 7]
of the corresponding interval problem satisfies the inequality r < a(g) (or, alternatively,
7 > a(g)), where r is a rational number, and a(g) is a feasibly computable rational-valued
function of g;

e based on a solution o of the discrete problem, we can feasibly compute the values z1, ..., z,
for which f4(z1,...,2n) < a(9);
e vice versa, if we know the values z; for which fg(z1,...,2,) < a(g), then we can feasibly

compute a solution o to the original discrete problem.
Also, we usually know that the value r is attained at one of the discretely many points z(d),
where d is a discrete string of length n, and z(d) is a feasible function of d.

We prove that in this case, the approximate interval computations problem is also
NP-hard.  Formal definitions are given in the full paper, which is available at
http://www.cs.utep.edu/vladik /2005 /tr05-21.pdf
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2-Local Random Reductions to 3-Valued Functions
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Abstract Number 05-11

Yao (in a lecture at DIMACS Workshop on structural complexity and cryptography)
showed that if a language L is 2-locally-random reducible to a Boolean function, then
L € PSPACE/poly. Fortnow and Szegedy quantitatively improved Yao’s result to show
that such languages are in fact in NP /poly (Information Processing Letters, 1992).

In this paper we extend Yao’s result to show that if a language L is 2-locally-random
reducible to a target function which takes values in {0, 1,2}, then L € PSPACE/poly.

A full paper is available by email to the authors.
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