Securing the Personal
Automated Scheduling
_System

CSCE 548 | Dr. Farkas




Members

e Will Reade

e Breland Miley

e Matthew Zimmermann
e Ryan Bowen



Overview

e (Current system
o Collate desired classes and create combinations for
every possible schedule
o Register students for classes
o Eventually handle entire advisement process to
simplify registration time

e Goal of 548 Research (In no order)
o Discover potential vulnerabilities
o Increase knowledge of security procedures
o Getan A.
o Graduate.
o Make millions.



Vulnerabilities

API

e Malicious Abuse (brute force attack)
e DDoS

SQL Server
e SQL Injection
e Data redundancy
e Data availability (hardware failure)

Application (Front End)
e (Cross-Site Scripting



API Research

Key-Based API Access

e Each API call has unique key attached
e Hashed key is validated before any "work" is done

Geographic Distribution

e Distributed servers can help to prevent DDoS
e Relies on consistent, quick key checking and
multiple servers

Load Balancing

e Load balancing allows us to ensure even if a DDoS
attack is attempted, attack requests will be
forwarded to least busy server, ensuring at worst, a
"higher than average" load across all servers.



API Research

Key Distribution
o Our generated keys are uniformly
distributed for our entire keyspace
e 50 "A"s have an equally likely chance
of being 50 "Z"s or 50 "0"s.
o Random key distribution helps to ensure

true key entropy.



[FrxTrzxze

Break it

Testing | u =
o Self DDoS "’ T R— e,

m Hosted instances on EC2, allowed to auto deploy
new instance, distributed geographically. Front
and back on separate groups of servers.

m Dev server environment for attacker environment
(courtesy of SCANA [dual OC-3c @ 149.76
Mbps/line])

m Objective: Test Front End/Back End load
distribution and test API key brute force attack




API/DDoS Attack Results

e BF Key Testing + DoS Attack

o At worst, 15 Amazon EC2 servers spawned
(6 DB servers, 7 Web Servers)

o 25 servers generating requests at ~50
reqs/second (1,250 HTTP reqs/second,
~75,000 HTTP API reqs/min)

o Results

e Never had key collision

« ~60 minutes in, Amazon decided
"malicious activity taking place on
your account”



API/DDoS Attack Results

e BF Key Testing + DoS Attack

O In reality, keyspace is 50”62 (50 character key,
26+26+10), had ~5 billion requests

® Didn't make a dent in keyspace testing

(testing for key collisions)

o Load statistics: Web --> 56% CPU Avg, DB -->87%
CPU Avg; Nearly 100% usage at peak attack times for
DB server

e Amazon auto scaled and distributed requests,
wanted more instances of DB servers, but
setup constraints wouldn't allow for it

o Conclusion : Don't tick off "Anonymous"



SQL Research

"Treat all input as evil."

Parameterized Queries

e Keeps user input separate from query string
e Try to rely on integer inputs for majority of API calls.

Externally Stored SALT

® Explanation of "salting" a password

® Keep SALT separately stored from database



SQL Research

LINQ provides automatic parameterized
queries
SQL account set to only allow updates and
reads on specific tables necessary for each
operation
GreenSQL (database firewall) running
between API and SQL
s Looks for things like tautologies and
non-known queries against the
database



How we tested

e SQL Ninja - SQL Server Injection and
takeover tool
s Ran against firewalled and non-firewalled
databases
s With GreenSQL, SQL ninja queries never
even touched the database = A+
s Without GreenSQL, app rejected non-
acceptable user input = A+
e Absinthe - Blind SQL injection tool
m No results found = A+



XSS Research

Cross Site Scripting

® Allows Javascript and HTML to be injected into code
and deployed to users

® (Causes tremendous problem with cookies and local
browser storage

® (Careful coding and scripting can only work to reduce
the threat level of such attacks



XSS Results

e No perfect solution
e PASS does store input from the user and

allows it to be reproduced on certain pages
m Is vulnerable to XSS attacks.
e Risk minimized in sense that no input from
one user 1s ever displayed to another user
m Worst case: User can initiate XSS attack
on themselves

e Working on encoding all user input/output



At the end of the day...

e Research provided great insight into how to
secure PASS
o Application redesigned with security as top

priority

e Knew some of the larger security principles,
but needed to implement specific risk
mitigation tools

e Based on testing, we managed to build a
fairly robust and secure application



uestions?

Here's my dog. Hugging a toy.



