
Securing the Personal 
Automated Scheduling 

System
CSCE 548 | Dr. Farkas



Members

● Will Reade
● Breland Miley
● Matthew Zimmermann
● Ryan Bowen



Overview
● Current system

○ Collate desired classes and create combinations for 
every possible schedule

○ Register students for classes
○ Eventually handle entire advisement process to 

simplify registration time

● Goal of 548 Research (In no order)
○ Discover potential vulnerabilities
○ Increase knowledge of security procedures
○ Get an A.
○ Graduate.
○ Make millions.



Vulnerabilities
API

● Malicious Abuse (brute force attack)
● DDoS

SQL Server
● SQL Injection
● Data redundancy
● Data availability (hardware failure)

Application (Front End)
● Cross-Site Scripting



API Research
Key-Based API Access

● Each API call has unique key attached
● Hashed key is validated before any "work" is done

Geographic Distribution
● Distributed servers can help to prevent DDoS
● Relies on consistent, quick key checking and 

multiple servers
Load Balancing

● Load balancing allows us to ensure even if a DDoS 
attack is attempted, attack requests will be 
forwarded to least busy server, ensuring at worst, a 
"higher than average" load across all servers.



API Research
Key Distribution

○ Our generated keys are uniformly 
distributed for our entire keyspace 

● 50 "A"s have an equally likely chance 
of being 50 "Z"s or 50 "0"s.

○ Random key distribution helps to ensure 
true key entropy.

 



Break it
Testing

○ Self DDoS
■ Hosted instances on EC2, allowed to auto deploy 

new instance, distributed geographically. Front 
and back on separate groups of servers.

■ Dev server environment for attacker environment 
(courtesy of SCANA [dual OC-3c @ 149.76 
Mbps/line])

■ Objective: Test Front End/Back End load 
distribution and test API key brute force attack

 



API/DDoS Attack Results
● BF Key Testing + DoS Attack

○ At worst, 15 Amazon EC2 servers spawned 
(6 DB servers, 7 Web Servers)

○ 25 servers generating requests at ~50 
reqs/second (1,250 HTTP reqs/second, 
~75,000 HTTP API reqs/min)

○ Results
● Never had key collision
● ~60 minutes in, Amazon decided 

"malicious activity taking place on 
your account"



API/DDoS Attack Results
● BF Key Testing + DoS Attack

○ In reality, keyspace is 50^62 (50 character key, 
26+26+10), had ~5 billion requests

● Didn't make a dent in keyspace testing 
(testing for key collisions)

○ Load statistics: Web --> 56% CPU Avg, DB -->87% 
CPU Avg; Nearly 100% usage at peak attack times for 
DB server

● Amazon auto scaled and distributed requests, 
wanted more instances of DB servers, but 
setup constraints wouldn't allow for it

○ Conclusion : Don't tick off "Anonymous"



SQL Research
"Treat all input as evil."

 
Parameterized Queries

● Keeps user input separate from query string
● Try to rely on integer inputs for majority of API calls.

Externally Stored SALT
● Explanation of "salting" a password

● Keep SALT separately stored from database



SQL Research
● LINQ provides automatic parameterized 

queries
● SQL account set to only allow updates and 

reads on specific tables necessary for each 
operation

● GreenSQL (database firewall) running 
between API and SQL

■ Looks for things like tautologies and 
non-known queries against the 
database



How we tested
● SQL Ninja - SQL Server Injection and 

takeover tool
■ Ran against firewalled and non-firewalled 

databases
■ With GreenSQL, SQL ninja queries never 

even touched the database = A+
■ Without GreenSQL, app rejected non-

acceptable user input = A+
● Absinthe - Blind SQL injection tool

■ No results found = A+



XSS Research
Cross Site Scripting

● Allows Javascript and HTML to be injected into code 
and deployed to users

● Causes tremendous problem with cookies and local 
browser storage

● Careful coding and scripting can only work to reduce 
the threat level of such attacks



XSS Results
● No perfect solution
● PASS does store input from the user and 

allows it to be reproduced on certain pages
■ Is vulnerable to XSS attacks. 

● Risk minimized in sense that no input from 
one user is ever displayed to another user

■ Worst case: User can initiate XSS attack 
on themselves

● Working on encoding all user input/output



At the end of the day...

● Research provided great insight into how to 
secure PASS
○ Application redesigned with security as top 

priority
● Knew some of the larger security principles, 

but needed to implement specific risk 
mitigation tools

● Based on testing, we managed to build a 
fairly robust and secure application



Questions?

Here's my dog. Hugging a toy. 


